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Course Structure

@ MMath Part C & MSc in Applied Statistics
Lectures:
@ Tuesdays 14:00-15:00, LG.01.
@ Thursdays 12:00-13:00, LG.01.
MSc:
@ 4 problem sheets, discussed at the classes: Mondays 11:00-12:00
(weeks 3,5,7,8), LG.01.
@ Practicals: Fridays 14:00-16:00 (weeks 5 and 8 - group assessed),
LG.02.
Part C:
@ 4 problem sheets, solutions due Mondays 10:00 in weeks 3,5,7,8.
@ Class Tutors: |Jovana Mitrovic and Leonard Hasenclever.
@ Teaching Assistants: Leon Law and Fadhel Ayed.
@ Classes (Group I): Wednesdays 14:30-16:00 (weeks 3,5,7,8), LG.04.
@ Classes (Group Il): Wednesdays 17:00-18:30 (weeks 3,5,7,8), LG.04.
@ Classes (Group lll): Fridays 16:30-18:00 (weeks 3,5,7,8), LG.04.
@ Please sign up for the classes today on the sign up sheet!

Department of Statistics, Oxford SC4/SM4 DMML, HT2017 2/72



mailto:jovana.mitrovic@spc.ox.ac.uk
mailto:leonard.hasenclever@spc.ox.ac.uk
mailto:ho.law@spc.ox.ac.uk
mailto:fadhel.ayed@some.ox.ac.uk

Course Aims

@ Have ability to identify and use appropriate methods and models for given
data and task.

@ Have ability to use the relevant software packages to analyse data,
interpret results, and evaluate methods.

© Understand the statistical theory framing machine learning and data
mining.

@ Able to construct appropriate models and derive learning algorithms for
given data and task.
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Data Mining? Machine Learning?
What is Data Mining?

Oxford Dictionary

The practice of examining large pre-existing databases in order to generate
new information.

Encyclopaedia Britannica

Also called knowledge discovery in databases, in computer science, the
process of discovering interesting and useful patterns and relationships in
large volumes of data.
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Data Mining? Machine Learning?
What is Machine Learning?

Arthur Samuel, 1959

Field of study that gives computers the ability to learn without being explicitly
programmed.

Tom Mitchell, 1997

Any computer program that improves its performance at some task through
experience.

Kevin Murphy, 2012

To develop methods that can automatically detect patterns in data, and
then to use the uncovered patterns to predict future data or other outcomes
of interest.
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Data Mining? Machine Learning?
What is Machine Learning?
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Types of Machine Learning

Supervised learning
@ Data contains “labels”: every example is an input-output pair
@ classification, regression
@ Goal: prediction on new examples

Unsupervised learning
@ Extract key features of the “unlabelled” data
@ clustering, signal separation, density estimation
@ Goal: representation, hypothesis generation, visualization
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Types of Machine Learning

Semi-supervised Learning
A database of examples, only a small subset of which are labelled.

Multi-task Learning

A database of examples, each of which has multiple labels corresponding to
different prediction tasks.

Reinforcement Learning

An agent acting in an environment, given rewards for performing appropriate
actions, learns to maximize their reward.
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Software

e R
@ Python: scikit-learn, mipy, Theano

@ Weka, mlpack, Torch, Shogun, TensorFlow...

@ Matlab/Octave
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http://scikit-learn.org/stable/
http://mlpy.sourceforge.net/
http://deeplearning.net/software/theano/
http://www.cs.waikato.ac.nz/ml/weka/
http://mlpack.org/
http://torch.ch/
http://www.shogun-toolbox.org/
https://www.tensorflow.org/

Introduction OxWaSsP

OXWSP

Oxford-Warwick CDT

@ Doctoral Training in Next Generational Statistical Science: theory,
methods and applications of Statistical Science for 21st Century
data-intensive environments and large-scale models.

@ Full DPhil/PhD studentships available for UK students
@ Website for prospective students.
@ Deadline: January 20, 2017
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http://www.oxwasp-cdt.ac.uk/how-to-apply.html

Dimensionality Reduction

Unsupervised Learning:
Dimensionality Reduction
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Unsupervised Learning

Goals:
@ Find the variables that summarise the data / capture relevant information.
@ Discover informative ways to visualise the data.
@ Discover the subgroups among the observations.

It is often much easier to obtain unlabeled data than labeled data!
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Exploratory Data Analysis

Notation

@ Data consists of p variables (features/attributes/dimensions) on n
examples (items/observations).

@ X = (x;) is a n x p-matrix with x;; := the j-th variable for the i-th example

X1 X2 ... Xpjoo... Xip
X21 X2 ... Xpi ... XD
X =
Xi1 Xi2 B 71 Xip
L Xnl  Xn2 - Xpjo ... Xpp |

@ Denote the i-th data item by x; € R? (we will treat it as a column vector: it

is the transpose of the i-th row of X).
@ Assume xi,...,x, are independently and identically distributed

samples of a random vector X over R”. The j-th dimension of X will be

denoted XU,
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Crabs Data (n = 200, p = 5)

Campbell (1974) studied rock crabs of the genus leptograpsus. One species,
L. variegatus, had been split into two new species according to their colour:
orange and blue. Preserved specimens lose their colour, so it was hoped that
morphological differences would enable museum material to be classified.

Data are available on 50 specimens of each sex of each species. Each
specimen has measurements on:

@ the width of the frontal lobe F1,,

@ the rear width RrRwW,

@ the length along the carapace midline CL,

@ the maximum width cw of the carapace,
and

@ the body depth BD in mm.

photo from: inaturalist.org

in addition to colour/species and sex (we will later view these as labels, but
will ignore for now).
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Dimensionality Reduction Exploratory Data Analysis

## load package MASS containing the data
library (MASS)

## extract variables we will look at
varnames<-c ('FL’,’RW’,’CL’,"CW",’BD’")

Crabs <- crabs|[,varnames]

## look at raw data
Crabs
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Dimensionality Reduction Exploratory Data Analysis

## look at raw data

Crabs
FL RW CL CW BD
1 8.1 6.7 16.1 19.0 7.0
2 8.8 7.7 18.1 20.8 7.4
3 9.2 7.8 19.0 22.4 7.7
4 9.6 7.9 20.1 23.1 8.2
5 9.8 8.0 20.3 23.0 8.2
6 10.8 9.0 23.0 26.5 9.8
7 11.1 9.9 23.8 27.1 9.8
8 11.6 9.1 24.5 28.4 10.4
9 11.8 9.6 24.2 27.8 9.7
10 11.8 10.5 25.2 29.3 10.3
11 12.2 10.8 27.3 31.6 10.9
12 12.3 11.0 26.8 31.5 11.4
13 12.6 10.0 27.7 31.7 11.4
14 12.8 10.2 27.2 31.8 10.9
15 12.8 10.9 27.4 31.5 11.0
16 12.9 11.0 26.8 30.9 11.4
17 13.1 10.6 28.2 32.3 11.0
18 13.1 10.9 28.3 32.4 11.2
19 13.3 11.1 27.8 32.3 11.3
20 13.9 11.1 29.2 33.3 12.1
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Univariate Boxplots

boxplot (Crabs)
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Univariate Histograms

par (mfrow=c (2, 3))

hist (Crabs$FL,col='red’,xlab='FL: Frontal Lobe Size (mm)’)
hist (CrabsSRW, col='red’,xlab="RW: Rear Width (mm)’)

hist (Crabs$CL, col="red’,xlab='CL: Carapace Length (mm)’)
hist (Crabs$CW,col="red’,xlab='CW: Carapace Width (mm)’)
hist (Crabs$BD,col='red’,xlab='BD: Body Depth (mm)’)
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Simple Pairwise Scatterplots

pairs (Crabs)
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Visualisation and Dimensionality Reduction

The summary plots are useful, but limited use if the dimensionality p is high (a
few dozens or even thousands).

@ Constrained to view data in 2 or 3 dimensions
@ Approach: look for ‘interesting’ projections of X into lower dimensions

@ Hope that even though p is large, considering only carefully selected
k < p dimensions is just as informative.

Dimensionality reduction

@ For each data item x; € R”, find its lower dimensional representation
7 € RF with k <« p-

@ Map x — z should preserve the interesting statistical properties in
data.
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Dimensionality reduction

@ deceptively many variables to measure, many of them redundant /
correlated to each other (large p)

@ often, there is a simple but unknown underlying relationship hiding

@ example: ball on a frictionless spring recorded by three different cameras

@ our imperfect measurements obfuscate the true underlying dynamics
@ are our coordinates meaningful or do they simply reflect the method of data

gathering?
camera B ‘
camera C

=
SN

N

J. Shlens, A Tutorial on Principal Component Analysis| 2005
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Principal Components Analysis (PCA)

@ PCA considers interesting directions to be those with greatest variance.

@ A linear dimensionality reduction technique: looks for a new basis to
represent a noisy dataset.

@ Workhorse for many different types of data analysis (often used for data
preprocessing before supervised techniques are applied).

@ Often the first thing to run on high-dimensional data.
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Principal Components Analysis (PCA)

@ Assume that the dataset is centred, i.e.,

S _ 1y _
x*;zl'zl-xiio' 10
@ Sample covariance: : Sy
1 n B T : ‘1 .‘:9;{.’ o
:n_lz(x,-—x)(x,—x) . N
i=1 ~ ° o
1 n 6 e
T T @ g
= xx, =——X'X 0
n—1 ZI o n—1 7—2“5 w5 a0 s o o s w P
i=
PCA

PCA recovers an orthonormal basis vy, v, ..., v, in R” — vectors v; are called
principal components (PC) or loading vectors — such that:

@ The first principal component (PC) v, is the direction of greatest
variance of data.

@ The j-th PC v, is the direction orthogonal to v;,v,, ..., v,_; of greatest
variance, forj=2,...,p.
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Principal Components Analysis (PCA)

@ The k-dimensional representation of data item x; is the vector of
projections of x; onto first k PCs:

T T T.17 k
zi = Vi = [vl x[,...7vkx,-] € R7,

where Vi = [vi, ..., vl
@ Transformed data matrix, also called the scores matrix

Z = XV, € Rk,

@ Reconstruction of x;:
- T
Xi = V]:kvlzkx,«.

@ PCA gives the optimal linear reconstruction of the original data based
on a k-dimensional compression (problem sheets).
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Deriving the First Principal Component

@ Our data set is an i.i.d. sample {x;}}_, of a random vector
X =[x, x0]"
@ For the 1* PC, we seek a derived scalar variable of the form

Z(l) — VIX _ VIIX(]) + V12X(2) R leX(p)
where v; = [vi1,...,v1,]" € R” are chosen to maximise the sample
variance - .
Var(z(V) = v Cov(X)v; = v/ Sv;.
@ Optimisation problem
max v;rSvl

subject to: v/ v; = 1.
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Deriving the First Principal Component

@ Lagrangian of the problem is given by:

ﬁ(Vl,/\l) = VITSW — )\1 (V?Vl — 1) .

@ The corresponding vector of partial derivatives is

3£(v1,)\1)

=28V — 2\ vy.
e Vi 11

@ Setting this to zero reveals the eigenvector equation Sv; = A\jvy, i.e. vy
must be an eigenvector of S and the dual variable A, is the corresponding
eigenvalue.

@ Since v Sv; = A\1v/ v; = Ay, the first PC must be the eigenvector
associated with the largest eigenvalue of S.
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PCA as eigendecomposition of the covariance matrix

@ The 2 PC is chosen to be orthogonal with the 1* and is computed in a
similar way (see notes). It will have the largest variance in the remaining
p — 1 dimensions, etc.

@ The eigenvalue decomposition of S is given by
S=VAVT
where A is a diagonal matrix with eigenvalues
AMZ2X2> 2020

and V is a p x p orthogonal matrix whose columns are the p eigenvectors
of S, i.e. the principal components vy, ..., v,.
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Properties of the Principal Components

@ Derived scalar variable (projection to the j-th principal component)
ZY =y X has sample variance \;, forj = 1,...,p

@ Sis a real symmetric matrix, so eigenvectors (principal components) are
orthogonal.

@ Projections to principal components are uncorrelated:
Cov(z®,z0)) ~ v Sv; = ATy =0, fori # j.

@ The total sample variance is given by Tr(S) = >/ S; = A\i +...+),, 0O

the proportion of total variance explained by the j* PC is Wﬁ
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Dimensionality Reduction Principal Components Analysis

This is what we have had before:
> library (MASS)

> varnames<-c ('FL’,’'RW’,’CL’,"CW’,’BD’")
> Crabs <- crabs|[,varnames]

Now perform PCA with function princomp.
(Alternatively, solve for the PCs yourself using eigen or svd)

> Crabs.pca <- princomp (Crabs)
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Exploring PCA output

> Crabs.pca <- princomp (Crabs)

> summary (Crabs.pca)

Importance of components:

Standard deviation

Proportion of Variance
Cumulative Proportion

> loadings (Crabs.pca)

Loadings:

Comp.1
FL -0.289
RW -0.197
CL -0.599
CW -0.662
BD -0.284

Department of Statistics, Oxford

Comp.2 Comp.3

-0.
-0.
0.
0.
-0.

323
865 0.
198
288 -0.
160

0.

0.

0.

507
414
175
491
547

Comp.1

Comp.2 Comp.3 Comp. 4 Comp.5

11.8322521 1.135936870 0.997631086 0.3669098284 0.2784325016

0.9824718 0.009055108 0.006984337 0.0009447218 0.0005440328
0.9824718 0.991526908 0.998511245 0.9994559672 1.0000000000

Comp.4 Comp.5

0.
-0.
-0.

0.
-0.

734
148
144
126
634

0.
-0.
-0.

0.

0.

125
141
742
471
439
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Dimensionality Reduction Principal Components Analysis

Raw Crabs Data

> pairs(Crabs)
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PCA of Crabs Data

> Crabs.pca <- princomp (Crabs)
> pairs(predict (Crabs.pca))

T
-20 0 20

0.5

T
-0.5
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What did we discover?

Now let us use our label information (species+sex).

> Crabs.class <- factor (paste (crabs$sp,crabs$sex, sep=""))
> Crabs.class
[1] BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM
[27] BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BM BF BF
[53] BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF
[79] BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF BF OM OM OM OM
[105] oM OM OM OM OM OM OM OM OM OM OM OM OM OM OM OM OM OM OM OM OM OM OM OM OM OM
[131] OM OM OM OM OM OM OM OM OM OM OM OM OM OM OM OM OM OM OM OM OF OF OF OF OF OF
[157] OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF
[183] OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF OF
Levels: BF BM OF OM
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Raw Crabs Data - with labels

> pairs (Crabs,col=unclass (Crabs.class))
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PCA of Crabs Data - with labels

> Crabs.pca <- princomp (Crabs)
> pairs (predict (Crabs.pca),col=unclass (Crabs.class))

-1.0 00 10
R
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Dimensionality Reduction Principal Components Analysis

> Z<-predict (Crabs.pca)
> plot (Comp.3~Comp.2,data=Z,col=unclass (Crabs.class))
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PCA on Face Images: Eigenfaces

Turk and Pentland, CVPR 1995
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https://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf

\Genes mirror geography within Europe, Nature 2008
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http://www.nature.com/nature/journal/v456/n7218/full/nature07331.html

Comments on the use of PCA

@ PCA commonly used to project data X onto the first k PCs giving the
k-dimensional view of the data that best preserves the first two
moments.

@ Although PCs are uncorrelated, scatterplots sometimes reveal structures
in the data other than linear correlation.

@ Emphasis on variance is where the weaknesses of PCA stem from:

e Assuming large variances are meaningful (high signal-to-noise ratio)

e The PCs depend heavily on the units measurement. Where the data matrix
contains measurements of vastly differing orders of magnitude, the PC will
be greatly biased in the direction of larger measurement. In these cases, it is
recommended to calculate PCs from Corr(X) instead of Cov(X) (cor=True
in the call of princomp).

o Lack of robustness to outliers: variance is affected by outliers and so are
PCs.
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PCA: summary

PCA
Find an orthogonal basis {vi, v, ...,v,} for the data space such that:

@ The first principal component (PC) v, is the direction of greatest
variance of data.

@ The j-th PC v, is the direction orthogonal to v;,v,,...,v,_; of greatest
variance, forj=2,...,p.

@ Eigendecomposition of the sample covariance matrix S = ni] S

S=VAV'.
e A is a diagonal matrix with eigenvalues (variances along each principal
component) Ay > A > - >\, >0
e Vis ap x p orthogonal matrix whose columns are the p eigenvectors of S,

i.e. the principal components vi, ..., v,
@ Dimensionality reduction by projecting x; € R” onto first k principal
components:
= [v?xi, . ,vax,}T € Rk,
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Eigendecomposition and PCA

:n_IZx, _—XTX

@ Sis a real and symmetric matrix, so there exist p eigenvectors vy, ..., v,
that are pairwise orthogonal and p associated eigenvalues Ay, ..., \,
which satisfy the eigenvalue equation Sv; = \v;. In particular, V is an
orthogonal matrix:

wh=vTv=

@ Sis a positive-semidefinite matrix, so the eigenvalues are non-negative:

\ >0, Vi.

Why is § symmetric? Why is S positive-semidefinite?
Reminder: A symmetric p x p matrix R is said to be positive-semidefinite if

VYa € R”,aTRa > 0.
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Singular Value Decomposition (SVD)

SVD
Any real-valued n x p matrix X can be written as X = UDV " where
@ Uis an n x n orthogonal matrix: UUT = U'U =1,

@ Dis an x p matrix with decreasing non-negative elements on the
diagonal (the singular values) and zero off-diagonal elements.

@ Visap x p orthogonal matrix: Vv =vTv =1,

@ SVD always exists, even for non-square matrices.

@ Fast and numerically stable algorithms for SVD are available in most
packages.The relevant R command is svd.
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Dimensionality Reduction PCA and SVD

@ Let X = UDVT be the SVD of the n x p data matrix X.
@ Note that

mn—1)S=X"X=(upbv")"(ubv")=vD"U"UDV" = VDDV,
using orthogonality (U U = 1,) of U.

@ The eigenvalues of S are thus the diagonal entries of A = -, DT D.
@ We also have

XX" = (upv")(upv")T =upv'vD"UT =UDD"UT,
using orthogonality (V'V = 1,) of V.

Gram matrix

B = XX, B; = x/ x; is called the Gram matrix of dataset X.
B and (n — 1)S = XX have the same nonzero eigenvalues, equal to the
non-zero squared singular values of X.
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PCA projections from Gram matrix

If we consider projections to all principal components, the transformed data
matrix is

Z =XV =UDV'V = UD, (1)

If p < n this means

zi = [UaDn,..., U; DP[’]Ta (2)

and if p > n only the first n projections are defined (sample covariance will
have rank at most n):

2= [UnDi, ..., UpDu,0,...,0] " . (3)

Thus, Z can be obtained from the eigendecomposition of Gram matrix B.
When p > n, eigendecomposition of B requires much less computation,
O(n?), than the eigendecomposition of the covariance matrix, O(p?), so is the
preferred method for PCA in that case.
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Dimensionality Reduction Biplots

Biplots

> biplot (Crabs.pca, scale=1)
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@ PCA plots show the data items (rows of X) in the space spanned by PCs.
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@ Biplots allow us to visualize the original variables X", ..., X (corresponding
to columns of X) in the same plot.
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Dimensionality Reduction Biplots
Biplots

Recall that X = [X(1), ..., Xx®]T and X = UDV" is the SVD of the data matrix.
@ The “full" PC projection of x; is the i-th row of UD (assuming p < n):

z=V'x=[UaDy,...,UpD,,) " equivalently: XV = UD.

@ The j-th unit vector e; € R” points in the direction of the original variable
XV Its PC projection v; is:

vy=V'e =[Vy,...,V,]T  (thej-th row of V)

@ The projection of e; indicates the weighting each PC gives to the original
variable X0,
@ Dot products between these projections give entries of the data matrix:

min{n,p}
Xjj = Z UiDeVie = 2 vj.
=1
@ Biplots focus on the first two PCs and the quality depends on the
proportion of variance explained by the first two PCs.
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.
Iris Data

50 samples from each of the 3 species of iris:
setosa, versicolor,and virginica

Each measuring the length and widths of
both sepal and petals

Collected by E. Anderson (1935) and
analysed by R.A. Fisher (1936)
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Dimensionality Reduction Biplots

Iris Data

> data(iris)
> iris[sample (150,20),]

Sepal.Length Sepal.Width Petal.Length Petal.Width

54
33
30
73
107
4
90
83
50
92
128
57
9

2
86
66
85
147
8
41

5

5.
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Iris data biplot

> iris.pca<-princomp(iris|[,-5], cor=TRUE)
> loadings (iris.pca)

Comp.1l Comp.2 Comp.3 Comp.4
Sepal.Length 0.521 -0.377 0.720 0.261
Sepal.Width -0.269 -0.923 -0.244 -0.124

Petal.Length 0.580 -0.142 -0.801
Petal.Width 0.565 -0.634 0.524
> biplot (iris.pca, scale=0)
-1.0 -0.5 0.0 0.5 1.0

1.0

42

Comp.2
IS
>

1819
« 33 15
34
8
16 Sepal Width 183 o
@ >
! T T T T T T -
-3 -2 -1 0 1 2 3
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Dimensionality Reduction Biplots
Biplots

@ There are other projections we can consider for biplots (assuming p < n):

p

~T~

Xjj = E UitDeeVie = 2; 7
=1

where for some « € [0, 1]:

- _ —all ~
Z=[UaD|T®,...,UpD) ] =D\ Viu,..., DVl "
@ Inthecase a = 1,i.e. Z=Uj..1,
@ Sample covariance of the projected points is:
~ /= 1 T 1
COV (Z) — njUI:ml:pUl;ml;p — ﬁ]p.
Derived variables Z', ..., Z are uncorrelated and have equal variance.
e Sample covariance between X and X% is:
— ) ) 1 1
Cov(x?, x") = —— (VDTDVT) = A
n—1 ij n—1 ’

The angle between the projected variables can be interpreted as the
correlation between the original variables.
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Iris Data biplot - scaled

> ?biplot
scale: The variables are scaled by lambda " scale and the observations
are scaled by lambda ~ (l-scale) where lambda are the singular values
as computed by princomp. (default=1)

> biplot (iris.pca, scale=1)
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Crabs Data biplots

> biplot (Crabs.pca, scale=0) > biplot (Crabs.pca, scale=1)
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US Arrests Data

This data set contains statistics, in arrests per 100,000 residents for assault,
murder, and rape in each of the 50 US states in 1973. Also given is the
percent of the population living in urban areas.

pairs (USArrests)
usarrests.pca <- princomp (USArrests, cor=T)
plot (usarrests.pca)

pairs (predict (usarrests.pca))
biplot (usarrests.pca)
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US Arrests Data Pairs Plot

> pairs (USArrests)
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US Arrests Data Biplot

> biplot (usarrests.pca)
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Multidimensional Scaling
Suppose there are n points X in R”?, but we are only given the n x n matrix D of
inter-point dissimilarities.

Can we reconstruct X?
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Multidimensional Scaling

Rigid transformations (translations, rotations and reflections) do not change
inter-point distances so cannot recover X exactly. However X can be
recovered up to these transformations!

@ LetD; = |lx; — x;||3 be the squared Euclidean distance between points x;
and x;.
D; = |x—uxl>
(=) " (xi — %))

T T T
Xp X+ X x5 — 2x; %

@ Let B = XX be the n x n matrix of dot-products, B; = x,” x;. The above
shows that D can be computed from B.

@ Conversely, B can be recovered from D if we assume > x; =0
(exercise).
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Multidimensional Scaling
@ If we knew X, then SVD gives X = UDV ". As X has rank at most

r = min(n, p), we have at most r non-zero singular values in D and we can
assume U € R, D e R™ and V' € R™P.

@ The eigendecomposition of B is then:

B=XX" =UD’U" = UAU".

@ This eigendecomposition can be obtained from B without knowledge of X!
o Letx| = UAz e R If r < p, pad %; with Os so that it has length p. Then,

Y =UAU; =B;=x; x

and we have found a set of vectors with dot-products given by B (and
hence distances given by D), as desired.

@ The vectors ; differs from x; only via the orthogonal matrix V' (recall that
=UDV' =5'VT) so are equivalent up to rotation and reflections.
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US City Flight Distances

We present a table of flying mileages between 10 American cities, distances
calculated from our 2-dimensional world. Using D as the starting point, metric

MDS finds a configuration with the same distance matrix.

ATLA
0
587
1212
701
1936
604
748
2139
2182
543

CHIG
587
0
920
940
1745
1188
713
1858
1737
597

DENV HOUS

1212
920
0
879
831
1726
1631
949
1021
1494

701
940
879
0
1374
968
1420
1645
1891
1220

LA

MIAM

1936 604

1745
831
1374

1188
1726
968

2339

2339 0

2451
347
959
2300

1092
2594
2734
923

NY
748
713
1631
1420
2451
1092
0
2571
2408
205

SF
2139
1858
949
1645
347
2594
2571

678
2442

SEAT
2182
1737
1021
1891
959
2734
2408
678
0
2329

DC
543
597
1494
1220
2300
923
205
2442
2329
0
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US City Flight Distances

library (MASS)
us <- read.csv("http://www.stats.ox.ac.uk/~sejdinov/sdmml/data/uscities.csv")

## use classical MDS to find lower dimensional views of the data
## recover X in 2 dimensions

us.classical <- cmdscale (d=us, k=2)

plot (us.classical)
text (us.classical, labels=names (us))
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US City Flight Distances
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Lower-dimensional Reconstructions

In classical MDS derivation, we used all eigenvalues in the
eigendecomposition of B to reconstruct

.ifi = Ul'Ai.
We can use only the largest k < min(n, p) eigenvalues and eigenvectors in the
reconstruction, giving the ‘best’ k-dimensional view of the data.

This is analogous to PCA, where only the largest eigenvalues of X "X are
used, and the smallest ones effectively suppressed.

Indeed, PCA and classical MDS are duals and yield effectively the same
result.
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Crabs Data

library (MASS)
crabs$spsex=paste (crabs$sp, crabs$sex, sep="")
varnames<-c ('FL’,’RW’,’CL’,"CW’,”BD")

Crabs <- crabs]|[,varnames]

Crabs.class <- factor (crabs$spsex)

crabsmds <- cmdscale (d= dist (Crabs), k=2)

plot (crabsmds, pch=20, cex=2,col=unclass(Crabs.class))

MDS 2

MDS 1
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Crabs Data

Compare with previous PCA analysis.
Classical MDS solution corresponds to the first 2 PCs.
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Varieties of MDS

Generally, MDS is a class of dimensionality reduction techniques which
represents data points xy, ... ,x, € R? in a lower-dimensional space
71, ...,2, € RF which tries to preserve inter-point (dis)similarities.

@ It requires only the matrix D of pairwise dissimilarities D; = p(x;, x;) (not
necessarily Euclidean distances).

@ MDS finds representations zi, ..., z, € R¥ such that
lzi — zill2 = p(xi; x;) = Dy,

and differences in dissimilarities are measured by the appropriate loss
ADy;, [lzi — zll2)-

@ Goal: Find Z which minimizes the stress function

S(z) = Z ADy, [|lzi = zll2)-

i#J
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Varieties of MDS

@ Choices of (dis)similarities and (stress) functions lead to different
algorithms.
o Classical/Torgerson: preserves inner products instead - strain function
(cmdscale)

S(Z) = Z(Btj —(z -7, -2)

i#
o Metric Shephard-Kruskal: preserves distances w.r.t. squared stress
S(Z) = (D — ||z — zl2)*
i#
@ Sammon: preserves shorter distances more (sammon)

sz) =% (D — |z — zi[|2)*

i D;

o Non-Metric Shephard-Kruskal: ignores actual distance values, only
preserves ranks (isoMDS)
. (gDy) — |lzi — zi]]2)*
@)= min 2@~ = 5l)
g increasing Zi;ﬁj HZi — sz2
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Nonlinear Dimensionality Reduction

Two aims of different varieties of MDS:
@ To visualize the (dis)similarities among items in a dataset, where these
(dis)disimilarities may not have Euclidean geometric interpretations.
@ To perform nonlinear dimensionality reduction.

Many high-dimensional datasets exhibit low-dimensional structure (“live on a
low-dimensional menifold”).

high-dim distribution high-dim samples estimated manifold

Department of Statistics, Oxford SC4/SM4 DMML, HT2017 67/72



Isomap

Isomap is a non-linear dimensional reduction technique based on classical
MDS. Differs from other MDSs as it uses estimates of geodesic distances
between the data points.

A

‘Tenenbaum et al. (2000)
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http://isomap.stanford.edu/

Isomap

Isomap

@ Calculate Euclidean distances D;; for i,j = 1, ... ,n between all data
points.

@ Form a graph G with n samples as nodes, and edges between the
respective K nearest neighbours (K-Isomap) or between i and j if D; < e
(e-lIsomap).

@ For i,jlinked by an edge, set D = D;;. Otherwise, set D{/ to be the
shortest-path distance between i and j in G.

@ Run classical MDS using distances Dg

R function: isomap{vegan}.
SC4/SM4 DMML, HT2017 69/72



Handwritten Characters

B Bottom loop articulation

Top arch articulation

Lo
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Dimensionality Reduction Isomap
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Summary

@ Other dimensionality reduction techniques:
e t-Distributed Stochastic Neighbor Embedding (-SNE)|
o Kernel PCA
o Locally Linear Embedding
@ |Laplacian Eigenmaps|
o Maximum Variance Unfolding
@ Further reading:
@ Bishop 12.1
o Hastie et al 14.8-14.9
@ Manifold learning on scikit-learn
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http://www.cs.toronto.edu/~hinton/absps/tsne.pdf
http://www.mitpressjournals.org/doi/abs/10.1162/089976698300017467
http://www.cs.nyu.edu/~roweis/lle/
http://www.mitpressjournals.org/doi/abs/10.1162/089976603321780317
http://www.cse.wustl.edu/~kilian/research/manifold/manifold.html
http://scikit-learn.org/stable/modules/manifold.html
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