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8.1 Different views of regression

Regression with least squares loss L(y, f(x)) = (y−f(x))2 implies that we are fitting the conditional
mean function f∗(x) = E [Y |X = x]. This loss also corresponds to the probabilistic model where
yi is a noisy version of the underlying function f evaluated at input xi:

yi|f(xi) ∼ N (f(xi), σ
2), independently for i = 1, . . . , n. (8.1)

There are different ways to model the class of functions f .

• Frequentist Parametric approach: model f as fθ for some parameter vector θ. Fit θ by ML
/ ERM with squared loss (linear regression).

• Frequentist Nonparametric approach: model f as the unknown parameter taking values in an
infinite-dimensional space of functions (RKHS). Fit f by regularized ML / ERM with squared
loss (kernel ridge regression)

• Bayesian Parametric approach: model f as fθ for some parameter vector θ. Put a prior on
θ and compute a posterior p(θ|D) (Bayesian linear regression).

• Bayesian Nonparametric approach: treat f as the random variable taking values in an infinite-
dimensional space of functions. Put a prior over functions f ∈ F , and compute a posterior
p(f |D) (Gaussian Process regression).

8.2 Gaussian Process Regression

Gaussian processes (GPs) are a widely used class of models that allow us to place a prior distribution
directly on the space of functions rather than on parameters in a particular family of functions.
This prior can then be converted into a posterior distribution once we have seen some data. One
can think of a Gaussian process as an infinite-dimensional generalisation of a multivariate normal
distribution. Namely, given an index set X , a collection of random variables {Ax}x∈X is said to

be a Gaussian process if and only if for every finite set of indices x1, . . . , xn, vector [Ax1 , . . . , Axn ]>

has a multivariate normal distribution on Rn. Thus, to any Gaussian process, we can associate a
random function f : X → R by setting f(x) = Ax, for all x ∈ X . Gaussian process is fully specified
by its mean and covariance functions, i.e.

m (x) = E [f (x)] ,

k
(
x, x′

)
= E

[
(f (x)−m (x))

(
f
(
x′
)
−m

(
x′
))]

,

where expectations are taken over f (x and x′ are fixed elements in the index set X ). This means
that for any finite set x1, . . . , xn, f = [f(x1), . . . , f(xn)]> ∈ Rn has a distribution N (m,K), where



mi = m(xi) and K is the covariance matrix given by Kij = k(xi, xj). We will typically assume that
the mean function m(x) is zero under the Gaussian process prior. If we know before seeing any
data that the distribution of the function evaluations should be centered around some other mean,
we could easily include that into the model. Equivalently, we could also subtract that known mean
from the data and just use the zero mean model. If we are looking at the data to estimate the
mean function, then often the zero mean GP suffices – in fact, structural information about mean
functions (constant, linear) can be included into the choice of the covariance function (exercises).
Covariance functions k : X × X → R obviously has to be positive definite so they are essentially
equivalent to the kernel functions we have seen before. In fact, there is a rich connection between
RKHS methods and Gaussian processes, an example of which we will discuss below.

8.2.1 Gaussian Conditioning and Regression Model

The convenience of manipulating multivariate normal distributions carries over to Gaussian pro-
cesses. Let us review the rules for Gaussian conditioning, which are key to Gaussian process
regression.

Gaussian Conditioning. Let z ∼ N (µ,Σ) be a multivariate normal random vector and let us
split its dimensions into two parts, i.e.

z =

[
z1
z2

]
, µ =

[
µ1
µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. (8.2)

Note that Σ21 = Σ>12 due to symmetry of covariance matrices. Then the conditional density of z2
given z1 is also normal and given by

p(z2|z1) = N (z2; µ2 + Σ21Σ
−1
11 (z1 − µ1), Σ22 − Σ21Σ

−1
11 Σ12). (8.3)

For a given set of inputs x = {xi}ni=1, we denote the vector of evaluations of f by f = [f(x1), . . . , f(xn)]> ∈
Rn and the vector of observed outputs by y = [y1, . . . , yn]> ∈ Rn. Note that since we treat f as
a random function, f is a random n-dimensional vector. The Gaussian process regression model,
assuming likelihood function in (8.1), is then given by

f ∼ N (0,K)

y|f ∼ N (f , σ2I),

where K is the covariance (kernel) matrix given by Kij = k(xi, xj). But because both the prior
and the likelihood are normal this simply means that f and y are jointly normal with[

f
y

]
∼ N

([
0
0

]
,

[
K K
K K + σ2I

])
. (8.4)

For example, to find the cross-covariance between f and y note that

E
[
fy>

]
= E

[
f(f + σε)>

]
= E

[
ff>
]

+ σE
[
fε>
]

= K, (8.5)
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where ε ∼ N (0, I) is independent of f . Now, we can simply apply the Gaussian conditioning to
find the posterior distribution

f |y ∼ N (K(K + σ2I)−1y,K−K(K + σ2I)−1K).

This gives as the posterior distribution of the evaluations of the unknown function at the set of
inputs where we have observed noisy evaluations y.

8.2.2 Posterior Predictive Distribution

But we can continue with this formalism further and construct the posterior predictive distribution.
Suppose x′ = {x′j}mj=1 is a test set. We can extend our model to include the function values

f ′ = [f(x′1), . . . , f(x′m)]> ∈ Rm at the test set. The prior can now be extended to include f ′ (recall
that our prior was on the whole function – not on its values at specific locations!), so that the
model reads: [

f
f ′

]
|x,x′ ∼ N

([
0
0

]
,

[
Kxx Kxx′

Kx′x Kx′x′

])
y|f ∼ N (f , σ2I)

where (Kxx)ij = k(xi, xj), (Kx′x′)ij = k(x′i, x
′
j), Kxx′ is an n × m matrix with (i, j)-th entry

k(xi, x
′
j) and Kx′x = K>xx′ We are now making use of the joint normality of f ′ and y:[

f ′

y

]
∼ N

([
0
0

]
,

[
Kx′x′ Kx′x

Kxx′ Kxx + σ2I

])
(8.6)

and from Gaussian conditioning rules again, we can read off the posterior predictive distribution
as

f ′|y ∼ N
(
Kx′x(Kxx + σ2I)−1y,Kx′x′ −Kx′x(Kxx + σ2I)−1Kxx′

)
. (8.7)

Thus, we also have a closed form expression for the posterior distribution of the evaluations of
the unknown function at any collection of inputs in X . While this follows directly from the joint
normality and Gaussian conditioning rules, it is instructive to notice that we could have arrived at
the posterior predictive by integrating p(f ′|f) through the posterior p(f |y), i.e.

p(f ′|y) =

∫
p(f ′|f)p(f |y)df . (8.8)

This follows from
∫
N (a|Bc,D)N (c|e, F )dc = N (a|Be,D + BFB>) (exercises). Namely, even if

we no longer have the Gaussian observation model (8.1) and y and f are no longer jointly normal,
we can still use (8.8) to reason about the posterior predictive distribution.

8.2.3 Kernel Ridge Regression vs Gaussian Process Regression

If kernel ridge regression (KRR) uses the same kernel as the covariance function in Gaussian process
regression (GPR) and moreover, if the regularisation parameter λ in KRR is the same as the noise
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variance σ2 in GPR, KRR estimate of the function coincides with the GPR posterior mean. Indeed,
recall that in KRR we are solving empirical risk minimisation

min
f∈Hk

n∑
i=1

(yi − f(xi))
2 + σ2 ‖f‖2Hk

,

and are fitting a function of the form f(x) =
∑n

i=1 αik (·, xi). Closed form solution is given by

α =
(
Kxx + σ2I

)−1
y. But then if we wish to predict function values at a new set x′ = {x′j}mj=1 of

input vectors, we have

f(x′j) =

n∑
i=1

αik
(
x′j , xi

)
=
[
k(x′j , x1), . . . , k(x′j , xn)

]
(Kxx + σ2I)−1y,

and
[
k(x′j , x1), . . . , k(x′j , xn)

]
is the j-th row of Kx′x, so this is the same as the mean in (8.7). Note

that GPR also gives predictive variance, a measure of uncertainty, which can be important when
making predictions far away from the input data. There are other important differences between
the two approaches: KRR is frequentist, while GPR is Bayesian, and thus the hyperparameters
are fitted in different ways. KRR typically uses cross-validation and grid search, while GPR, as we
discuss next, uses maximum marginal likelihood or a fully Bayesian treatment with hyperparameters
integrated out.

8.3 Hyperparameter Selection

Probabilistic model given by Gaussian processes allows principled selection of hyperparameters in
the model (parameters of the kernel function and the noise variance in the likelihood (8.1)) using
maximum marginal likelihood.

Marginal likelihood of the hyperparameter vector θ = (ν, σ2) which would generally include kernel
parameters ν as well as the standard deviation σ2 of the noise in the observation model, is given
by

p(y|θ) =

∫
p(y|f , θ)p(f |θ)df = N

(
y; 0,Kν + σ2I

)
.

We will introduce the shorthand Kθ+ = Kν + σ2I. Thus, we can write the marginal log-likelihood
as

log p(y|θ) = −1

2
log |Kθ+| −

1

2
y>K−1θ+y − n

2
log(2π). (8.9)

In general, marginal log-likelihood is a nonconvex function of the parameter vector θ and it can have
multiple maxima - thus we typically resort to numerical optimisation methods, such as gradient
ascent. The derivative with respect to θi (exercise) has the form
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∂

∂θi
log p(y|θ) = −1

2
Tr

(
K−1θ+

∂Kθ+

∂θi

)
+

1

2
y>K−1θ+

∂Kθ+

∂θi
K−1θ+y. (8.10)

Some common kernel choices in this context involve Automatic Relevance Determination (ARD)
kernel

k(x, x′) = τ2 exp

− p∑
j=1

(x(j) − x′(j))2

η2j

 , (8.11)

which has a global scale parameter τ as well as one bandwidth parameter ηj per covariate dimension
j. If in the hyperparameter selection, very large values of ηj are selected, this essentially means
that the dimension j is switched off (does not contribute to the kernel function). This is very useful
in applications where it is likely that not all dimensions will be relevant.

In addition to maximum marginal likelihood, we can also perform full Bayesian inference for hy-
perparameters. Namely, we could start with a prior p(θ) on θ and draw samples from the posterior

p(θ|y) ∝ p(θ)p(y|θ) = p(θ)

∫
p(y|f , θ)p(f |θ)df .

This means that we can integrate uncertainty over hyperparameters into predictions as well, and
approximate (integral is typically not available in closed form)

p(f ′|y) =

∫
p(f ′|y, θ)p(θ|y)dθ.

8.4 Gaussian Processes for Classification

In Bayesian classification problems, we are interested in modelling the posterior probabilities of
the categorical response variable given a set of training examples and a new input vector. These
probabilities must lie in the interval (0, 1) while a Gaussian process models functions that have
output on the entire real axis. Thus, it is necessary to adapt Gaussian processes by transforming
their outputs using an appropriate nonlinear activation function. Consider the binary classification
model with classes −1 and +1, using the logistic sigmoid:

p(yi = +1|f(xi)) = σ(f(xi)) =
1

1 + e−f(xi)
. (8.12)

This non-Gaussian form of the likelihood function, however, renders exact posterior inference in-
tractable and approximate methods are needed. There are a number of approximate schemes that
can be used but we will focus here on Laplace approximation. We know that

log p(f |y) = const + log p (f) + log p (y|f)

= const− 1

2
f>K−1f +

n∑
i=1

log σ(yif(xi)).
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Thus, we can compute the gradient

∂ log p(f |y)

∂f
= −K−1f + qf ,

where qf = [q1, . . . , qn]>with qi = σ(−yif(xi))yi. The Hessian is given by

∂2 log p(f |y)

∂f∂f>
= −K−1 −Df ,

where Df is an n × n diagonal matrix with (Df )ii = σ(f(xi))σ(−f(xi)). This Hessian is negative
definite, since K−1 is positive definite and (Df )ii ≥ 0. Thus, there is a unique posterior mode.
Note that Df depends on f = [f(x1), . . . , f(xn)]> but not on the labels y. We can now employ
numerical optimisation (gradient ascent or Newton-Raphson method) to find the posterior mode
f̂MAP and approximate the posterior p (f |y) with a normal distribution:

p̃ (f |y) = N
(
f
∣∣∣ f̂MAP,

(
K−1 + Df̂MAP

)−1)
.

Note that this can be rewritten as

p̃ (f |y) = N
(

f
∣∣∣ f̂MAP,K−K

(
K + D−1

f̂MAP

)−1
K

)
,

using the Woodbury identity1
(
K−1 + D

)−1
= K −K

(
K + D−1

)−1
K for invertible matrices K

and D.

We can use this further to construct an approximation of the predictive posterior as well, writing

p̃(f ′|y) =

∫
p(f ′|f)p̃(f |y)df , (8.13)

which can now be solved in the closed form since p(f ′|f) is also normal,

p
(
f ′|f
)

= N
(
f ′ |Kx′xK−1xxf ,Kx′x′ −Kx′xK−1xxKxx′

)
,

giving

p̃
(
f ′|y

)
= N

(
f ′ |Kx′xK−1xx f̂MAP,Kx′x′ −Kx′x

(
Kxx + D−1

f̂MAP

)−1
Kxx′

)
. (8.14)

8.5 Large-Scale Approximations2

Gaussian processes and kernel methods require computational cost that scales at least as O(n2)
and often as O(n3) in the number of observations n (due to the need to compute, store and invert
the n × n kernel matrix K). This is the price we pay for having a nonparametric model, i.e.

1Woodbury matrix identity or matrix inversion lemma in its general form is (A+ UCV )−1 = A−1 −
A−1U

(
C−1 + V A−1U

)−1
V A−1 for matrices A,U ,C,V of conformable sizes.

2not examinable
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for performing the computation in terms of the dual coefficients. For large datasets, e.g. where
n ∼ 105, this becomes a prohibitive computational cost and memory requirement, however. Many
methods have been proposed to deal with this issue, here we will overview the basic approaches
based on the reduced-rank approximation of Kxx - see Chapter 8 of [2] for an in-depth overview.

8.5.1 Nyström method

GP regression and kernel ridge regression both require inversion of the matrix Kxx + σ2I. Let
us assume for the moment that Kxx can be approximated by a rank m matrix, with m � n, i.e.
Kxx ≈ QQ>, where Q is an n ×m matrix. Then we can apply the matrix inversion lemma and
write (

QQ> + σ2I
)−1

= σ−2I − σ−2Q
(
σ2I +Q>Q

)−1
Q>, (8.15)

such that the inversion of an n×n matrix has been transformed into an inversion of an m×m matrix.
However, in order to derive the optimal reduced-rank approximation to Kxx, we need to perform
the eigendecomposition of Kxx which is itself a costly operation, requiring O(n3) computation.
Instead, an often used approach is the Nyström approximation:

K̃xx = KxzK
−1
zz Kzx,

where {zj}mj=1 is a collection of a small number of inputs in X (which could be a subset of the
training set, but could also be some auxiliary pseudo-inputs) called inducing variables or landmark
points, and we denoted as usual (Kzz)ij = k(zi, zj), (Kxz)ij = k(xi, zj) and Kzx = K>xz. Now,

we can set Q = KxzK
−1/2
zz and apply the formula (8.15). Note that this is equivalent to using a

finite-dimensional feature map φ : x 7→ K−1zz [k(z1, x), . . . , k(zm, x)]>and an approximate kernel :

k̃(x, x′) = φ (x)> φ
(
x′
)
.

8.5.2 Random Fourier Features

Another popular method within the frequentist kernel methods are random Fourier features (RFF)
of [1]. The idea behind RFF is to use Bochner’s representation of translation-invariant kernels on
Rp, i.e. if a real-valued kernel k(x, x′) depends only on the difference x− x′, then it can be written
as

k(x, x′) =

∫
Rp

exp
(
iω>(x− x′)

)
dΛ(ω)

=

∫
Rp

{
cos
(
ω>x

)
cos
(
ω>x′

)
+ sin

(
ω>x

)
sin
(
ω>x′

)}
dΛ(ω) (8.16)

for some positive measure (w.l.o.g. a probability distribution) Λ called spectral measure of k. For

many widely used kernels, spectral measure takes a simple form, e.g. if k(x, x′) = exp
(
− 1

2γ2
‖x− x′‖22

)
,

then Λ is a multivariate normal N (0, γ−2I). Now, for a given Λ, we sample m frequencies {ωj} ∼ Λ
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and use a Monte Carlo estimator of the kernel function given by the integral in (8.16):

k̃(x, y) =
1

m

m∑
j=1

{
cos
(
ω>j x

)
cos
(
ω>j y

)
+ sin

(
ω>j x

)
sin
(
ω>j y

)}
= 〈φω(x), φω(y)〉R2m ,

which is an approximate kernel corresponding to an explicit set of features φω(x) ∈ R2m given by

x 7→ 1√
m

[
cos
(
ω>1 x

)
, sin

(
ω>1 x

)
, . . . , cos

(
ω>mx

)
, sin

(
ω>mx

)]
With this set of features, we can now run algorithms in the primal representation which is less
costly than paying the computational cost in n.
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