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7.1 Bayesian Inference

So far, our treatment of probabilistic machine learning models has been frequentist, i.e. we used
one set of tools to reason about latent variables z (e.g. cluster indicators in a mixture model)
and another to reason about model parameters θ (e.g. parameters of mixture components defining
those clusters). The generative processes we considered define the likelihood function: the joint
distribution p (D|θ) of all the observed data D given the model parameters θ and the learning
consists in computing the maximum likelihood estimator

θ̂ = arg max
θ∈Θ

p (D|θ) .

For example, in the EM algorithm (which is a frequentist method aimed at locally maximising the
likelihood function), we were placing a variational distribution q on latent variables but not on θ,
which was inferred using point estimates at each iteration.

In Bayesian inference, we also treat the model parameters θ as random variables and the process
of learning is then computation of the posterior distribution p(θ|D). In addition to the likeli-
hood p (D|θ) specified by the generative model, one needs to also specify a prior distribution p(θ).
Posterior distribution is then given by the Bayes Theorem:

p(θ|D) =
p(D|θ)p(θ)
p(D)

,

where the denominator is the marginal likelihood or evidence:

p(D) =

∫
Θ
p(D|θ)p(θ)dθ.

All the questions about model parameters can be addressed based on the posterior. We can, for
example, consider

• Posterior mode: θ̂MAP = arg maxθ∈Θ p(θ|D) (maximum a posteriori).

• Posterior mean: θ̂mean = E [θ|D].

• Posterior variance: Var[θ|D].

• Posterior expectations of functions of parameters: E [g (θ) |D] for some g : Θ→ Rs.

A particularly convenient choice of prior distributions are conjugate priors to a given likelihood
function. A prior and likelihood are said to be conjugate if they result in a posterior that lies in
the same parametric family as the prior.



Example: Bayesian inference on a categorical distribution. Suppose we observe D =
{yi}ni=1, with yi ∈ {1, . . . ,K}, and model them as i.i.d. with the probability mass function π =
(π1, . . . , πK):

p(D|π) =
n∏
i=1

πyi =
K∏
k=1

πnk
k

with nk =
∑n

i=1 1(yi = k) and πk > 0,
∑K

k=1 πk = 1. The conjugate prior on π is the Dirichlet
distribution Dir(α1, . . . , αK) with parameters αk > 0, and density

p(π) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

παk−1
k

on the probability simplex {π : πk > 0,
∑K

k=1 πk = 1}. Since

p (π|D) ∝
K∏
k=1

πnk+αk−1
k ,

the posterior is also Dirichlet Dir(α1 + n1, . . . , αK + nK). Posterior mean is given by

π̂mean
k =

αk + nk∑K
j=1 αj + nj

.

Notice how parameters of the prior (hyperparameters) are essentially playing the role of the pseu-
docounts for each of the classes 1, . . . ,K (but they need not be integer-valued). They are reflecting
prior beliefs about class proportions. For the case of two classes, this is equivalent to a Beta (α1, α2)

prior on π1, i.e. p(π1) = Γ(α1+α2)
Γ(α1)Γ(α1)π

α1
1 (1− π1)α2 .

7.2 Predictive distributions

How do we construct predictions based on the posterior distributions? Write the observations as
D = {xi}ni=1 and assume the generative model specifies p(x|θ), e.g. a mixture model p(x|θ) =∑K

k=1 πkf (x|φk), with θ = (π1, . . . , πK ;φ1, . . . , φK). The posterior predictive distribution is the
conditional distribution of xn+1 given D = {xi}ni=1:

p(xn+1|D) =

∫
Θ
p(xn+1|θ,D)p(θ|D)dθ

=

∫
Θ
p(xn+1|θ)p(θ|D)dθ.

Thus, we predict new data by averaging the predictive distribution over the posterior. This is
fundamentally different than predicting using a point estimate of θ, i.e. p(xn+1|θ̂) as it takes into
account the posterior uncertainty in parameters.
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Example: Bayesian treatment of näıve Bayes classifer. Consider a K-class classification
problem with binary input vectors, i.e. D = {(xi, yi)}ni=1, xi ∈ {0, 1}p and yi ∈ {1, . . . ,K}. Näıve
Bayes classifier uses the following model:

p(yi = k|θ) = πk, p(xi|yi = k, θ) =

p∏
j=1

φ
x
(j)
i
kj (1− φkj)1−x(j)i ,

i.e. it assumes that given the class labels, individual dimensions in input vectors are independent.
The parameters of the model are collated into θ = ((πk) , (φkj)). It is often used in text classification

where data items correspond to documents and x
(j)
i indicates whether word j from a list of p words

has appeared in document i. Class labels correspond to e.g. topics of the documents. Despite the
name, näıve Bayes is often treated in a frequentist way, i.e. using maximum likelihood estimation

of parameters. If we set nk =
∑n

i=1 1{yi = k}, nkj =
∑n

i=1 1(yi = k, x
(j)
i = 1), the MLE can be

written as

π̂k =
nk
n
, φ̂kj =

∑
i:yi=k

x
(j)
i

nk
=
nkj
nk

.

But the MLEs can be problematic in some cases. For example, if the `-th word did not appear in
any documents labelled as class k (nkl = 0), then φ̂k` = 0. But if we then wish to compute the
predictive probability once for a new document x̃ which contains `-th word, we have:

p(ỹ = k|x̃ with `-th entry equal to 1, θ̂)

∝ π̂k
p∏
j=1

(
φ̂kj

)x̃(j) (
1− φ̂kj

)1−x̃(j)
= 0,

since φ̂k` = 0. This means that we will never attribute a new document containing word ` to class
k (regardless of what other words in it may be!). Moreover, probability of a document under all
classes can be 0 by the same reasoning.

Let us consider a Bayesian approach to the same model. We can write the likelihood as

p(D|θ) =

n∏
i=1

p(xi, yi|θ) =

n∏
i=1

K∏
k=1

πk p∏
j=1

φ
x
(j)
i
kj (1− φkj)1−x(j)i

1(yi=k)

=

K∏
k=1

πnk
k

p∏
j=1

φ
nkj

kj (1− φkj)nk−nkj .

For a conjugate prior, we can use Dir((αk)
K
k=1) for π, and Beta(a, b) for φkj independently. Now,

because the likelihood factorises, the posterior distribution over π and (φkj) also factorises, and
posterior for π is Dir((αk +nk)

K
k=1), and for φkj is Beta(a+nkj , b+nk−nkj). If we want to predict

a label ỹ for a new document x̃, we obtain

p(x̃, ỹ = k|D) = p(ỹ = k|D)p(x̃|ỹ = k,D)

with

p(ỹ = k|D) =
αk + nk∑K
l=1 αl + n

p(x̃(j) = 1|ỹ = k,D) =
a+ nkj
a+ b+ nk
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and the predicted class is

p(ỹ = k|x̃,D) =
p(ỹ = k|D)p(x̃|ỹ = k,D)

p(x̃|D)
∝ αk + nk∑K

l=1 αl + n

p∏
j=1

(
a+ nkj
a+ b+ nk

)x̃(j) (b+ nk − nkj
a+ b+ nk

)1−x̃(j)

.

Compared to the MLE plug-in predictions, pseudocounts help to “regularise” probabilities away
from the extreme values.

7.3 Laplace Approximation

Bayesian approach to learning is conceptually very elegant, but the posterior distributions are
intractable in almost all interesting cases, and we therefore need to resort to various approximations.
One of the most popular techniques for approximation of intractable posterior distributions is the
Laplace or saddlepoint approximation. The idea is to simply approximate the posterior distribution
p(θ|D) with a (multivariate) Gaussian distribution. Given the ease of manipulating Gaussians, this
is a convenient choice, since the various posterior expectations and predictive distributions will be
easier to calculate when we have Gaussian approximate posteriors.

Consider for simplicity the case where parameter θ is a scalar and assume that posterior mode
θ̂MAP is available. Often, the posterior mode can be found even if the normalising constant p(D) is
intractable since it suffices to maximise p(θ|D) ∝ p(θ,D) = p(D|θ)p(θ). Then, we can use a Taylor
expansion of log p(θ|D) around the mode θ̂MAP:

log p(θ|D) = log p(θ̂MAP|D) +
∂ log p(θ|D)

∂θ

∣∣∣∣∣
θ=θ̂MAP

(
θ − θ̂MAP

)

+
∂2 log p(θ|D)

∂θ2

∣∣∣∣∣
θ=θ̂MAP

(
θ − θ̂MAP

)2

2
+O

((
θ − θ̂MAP

)3
)
.

By ignoring the third and higher order terms and noticing that the the first derivative at the mode
must be zero, we have an approximation:

log p(θ|D) ≈ log p(θ̂MAP|D)− τ

2

(
θ − θ̂MAP

)2
, (7.1)

where we write τ = −∂2 log p(θ|D)
∂θ2

≥ 0. But recall that logN
(
θ|µ, σ2

)
= log

((
2πσ2

)−1/2
)
−

1
2σ2 (θ − µ)2, so this second order Taylor approximation has exactly the form of a normal log-

density with mean µ = θ̂MAP and variance σ2 = τ−1 so we can approximate the posterior with

N
(
θ̂MAP,

(
−∂2 log p(θ|D)

∂θ2

)−1
)

.

This idea easily extends to multivariate densities. In particular, the Laplace approximation of

p(θ|D) is a multivariate Gaussian N
(
θ̂MAP,Σ

)
, where the inverse covariance matrix is given by

the negative Hessian of the log-posterior evaluated at the posterior mode:

Σ−1 = −∂
2 log p(θ|D)

∂θ∂θ>

∣∣∣∣∣
θ=θ̂MAP

.
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Since log p(θ|D) agrees with log p(θ,D) up to a constant, they have the same derivatives, so often
we work with the energy function J(θ) = − log p(θ,D), which is the negative logarithm of the
unnormalised posterior. Then we can write

Σ−1 =
∂2J(θ)

∂θ∂θ>

∣∣∣∣∣
θ=θ̂MAP

.

7.4 Variational Bayes

Assume that we are taking a Bayesian approach to inference in a latent variable model p(X, z|θ)
with observations X, latent variables z and parameters θ. Now, our treatment of latent variables
and parameters is exactly the same. We can now consider some joint distribution q(z, θ) of latent
variables and parameters, called variational distribution (like in EM, but note that it was not
allowed to place a distribution over θ in EM!). We claim that the quantity

F(q) = Eq [log p(X, z, θ)] +H(q) (7.2)

is a lower bound on log-evidence log p(X). We can write

F(q) = Eq [log p(X, z, θ)]− Eq[log q(z, θ)]

= Eq [log p(z, θ|X)] + log p(X)− Eq[log q(z, θ)]

= −KL (q(z, θ)||p(z, θ|X)) + log p(X),

which is by Gibbs inequality maximised (and equal to log-evidence) when KL is zero, i.e. when
q(z, θ) = p(z, θ|X). Thus, for any variational distribution q, F(q) ≤ log p(x). Expression 7.2 is
called the evidence lower bound (ELBO).

To reason about all the unknowns in the model, we would simply need to compute the joint
posterior p(z, θ|X), but this is almost always intractable. Hence, the variational Bayesian infer-
ence approximates the posterior by starting with a family Q of tractable variational distributions
q(z, θ) (e.g. q(z, θ|η) where η are the variational parameters), and aims to minimise the divergence
KL (q(z, θ)||p(z, θ|X)) over Q or, equivalently, maximise the ELBO, i.e. find the tightest lower
bound on the log-evidence.

Consider family of variational distributions which factorise: q(z, θ) = qZ (z) qΘ (θ). For a fixed qΘ,
we can solve for qZ which maximises ELBO (exercise):

qZ (z) ∝ exp

(∫
log p(X, z, θ)qΘ (θ) dθ

)
,

and by symmetry, for a fixed qZ, we can solve for qΘ which maximises ELBO:

qΘ (θ) ∝ exp

(∫
log p(X, z, θ)qZ (z) dz

)
.

Now, one can formulate an algorithm similar to EM, which alternates between optimising qZ and qΘ,
such that each iteration increases ELBO and thus decreases the KL divergence from the posterior.
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7.5 Bayesian Model Selection

Consider a situation where we do not have one Bayesian model but several. Each model M has a
set of parameters θM, likelihood p(D|θM) and the prior distribution p(θM). Within each model,
the posterior distribution is

p(θM|D,M) =
p(D|θM,M)p(θM|M)

p(D|M)

where the normalising constant is the marginal probability of the data under model M (Bayesian
model evidence):

p(D|M) =

∫
Θ
p(D|θM,M)p(θM|M)dθ

In Bayesian model selection, one compares models using their Bayes factors p(D|M)
p(D|M′) .

Considering Bayesian model evidence can be interpreted as a Bayesian version of Occam’s Razor : of
two explanations adequate to explain the same set of observations, the simpler should be preferred.
Namely, note that the model evidence p(D|M) is the probability that a set of randomly selected
parameter values (under the prior) inside the model would generate dataset D. In that case, models
that are too simple are unlikely to generate the observed dataset. On the other hand, models that
are too complex can generate many possible datasets, so again, they are unlikely to generate that
particular dataset at random.

6


	Bayesian Inference
	Predictive distributions
	Laplace Approximation
	Variational Bayes
	Bayesian Model Selection

