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6.1 Feature Maps and Feature Spaces

Kernel methods are a versatile algorithmic framework which allows construction of nonlinear ma-
chine learning algorithms (for a variety of both supervised and unsupervised learning tasks: cluster-
ing, dimensionality reduction, classification, regression) by employing linear tools in a nonlinearly
transformed feature space. Let us first recall the definition of an abstract inner product, which is
central to kernel methods.

Definition 6.1. [Inner product] Let H be a vector space over R. A function 〈·, ·〉H : H×H → R
is said to be an inner product on H if

1. 〈α1f1 + α2f2, g〉H = α1 〈f1, g〉H + α2 〈f2, g〉H

2. 〈f, g〉H = 〈g, f〉H

3. 〈f, f〉H ≥ 0 and 〈f, f〉H = 0 if and only if f = 0.

We can define a norm using the inner product as ‖f‖H :=
√
〈f, f〉H. A Hilbert space is a vector

space on which an inner product is defined, along with an additional technical condition.1 We are
now ready to define the notion of a kernel.

Definition 6.2. Let X be a non-empty set. A function k : X ×X → R is called a kernel if there
exists a Hilbert space and a map ϕ : X → H such that ∀x, x′ ∈ X ,

k(x, x′) :=
〈
ϕ(x), ϕ(x′)

〉
H .

We will call such H of kernel k a feature space and the map ϕ will be called a feature map. Note
that we imposed almost no conditions on X : in particular, we do not require there to be an inner
product defined on the elements of X . The case of text documents is an instructive example: one
cannot take an inner product between two books, but can take an inner product between features
of the text in those books.

Clearly, a single kernel can correspond to multiple pairs of underlying feature maps and feature
spaces. For a simple example, consider X := Rp:

φ1(x) = x and φ2(x) =

[
x1√

2
, · · · , xp√

2
,
x1√

2
, · · · , xp√

2

]>
.

Both φ1 and φ2 are valid feature maps (with feature spaces H1 = Rp and H2 = R2p) of kernel
k(x, x′) = x>x′.

1Specifically, a Hilbert space must be complete, i.e. it must contain the limits of all Cauchy sequences with respect
to the norm defined by its inner product.



6.2 Positive definiteness of an inner product in a Hilbert space

It turns out that all kernel functions (defined as inner products between some features) are positive
definite.

Definition 6.3. [Positive definite functions] A symmetric function k : X × X → R is positive
definite if ∀n ≥ 1, ∀(a1, . . . an) ∈ Rn, ∀(x1, . . . , xn) ∈ X n,

n∑
i=1

n∑
j=1

aiajk(xi, xj) ≥ 0.

The function k(·, ·) is strictly positive definite if for mutually distinct xi, the equality holds only
when all the ai are zero.2

Every inner product is a positive definite function, and more generally:

Lemma 6.1. Let H be any Hilbert space (not necessarily an RKHS), X a non-empty set and
φ : X → H. Then k(x, y) := 〈φ(x), φ(y)〉H is a positive definite function.

Proof.

n∑
i=1

n∑
j=1

aiajk(xi, xj) =

n∑
i=1

n∑
j=1

〈aiφ(xi), ajφ(xj)〉H

=

∥∥∥∥∥
n∑
i=1

aiφ(xi)

∥∥∥∥∥
2

H

≥ 0.

6.3 Reproducing Kernel Hilbert Spaces

We have introduced the notation of feature spaces, and kernels on these feature spaces. What’s
more, we’ve determined that these kernels are positive definite. In this section, we use these kernels
to define functions on X . The space of such functions is known as a reproducing kernel Hilbert
space (RKHS).

Definition 6.4. [Reproducing kernel] Let H be a Hilbert space of functions f : X → R defined on
a non-empty set X . A function k : X × X → R is called a reproducing kernel of H if it satisfies

• ∀x ∈ X , kx = k(·, x) ∈ H,

• ∀x ∈ X , ∀f ∈ H, 〈f, k(·, x)〉H = f(x) (the reproducing property).

If H has a reproducing kernel, it is called a reproducing kernel Hilbert space (RKHS).

2The corresponding terminology used for matrices is “positive semi-definite” vs “positive definite”.
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In particular, note that for any x, y ∈ X , reproducing kernel satisfies k(x, y) = 〈k (·, y) , k (·, x)〉H =
〈k (·, x) , k (·, y)〉H. Thus, reproducing kernel is clearly a kernel, i.e. an inner product between
features with a feature space H and a feature map φ : x 7→ k (·, x). This way of writing feature
mapping is called the canonical feature map. Note that these features are not specified explicitly
in a vector form, but rather as functions on X .

We have seen that any reproducing kernel is a kernel and that every kernel is a positive definite
function. Remarkably, Moore-Aronszajn theorem [1] shows that for every positive definite function
k, there exists a unique RKHS with kernel k. The theorem is outside of the scope of this course, but
it provides an insight into the structure of the RKHS corresponding to k. It turns out RKHS can
be written as span {k (·, x) : x ∈ X}, i.e. the space of all linear combinations of canonical features,
completed with respect to an inner product on these linear combinations defined as

〈
r∑
i=1

αik (·, xi) ,
s∑
j=1

βjk (·, yj)

〉
:=

r∑
i=1

s∑
j=1

αiβjk (xi, yj) .

Thus, all three notions: (1) reproducing kernel, (2) kernel as inner product between features and
(3) positive definite function, are equivalent. Recall that the feature space of a kernel is not
unique - but RKHS (feature space as a space of functions) is. For example, for the linear kernel
k(x, y) = x>y considered earlier, many possible feature representations exist but the canonical
feature representation that associates to each x the function k(·, x) : y 7→ x>y is what determines
the structure of its RKHS. In particular, linear kernel k(x, y) = x>y corresponds to the space of
all linear functions f(x) = w>x (why?).

6.4 Representer Theorem

Now that we have defined an RKHS, we can consider it as a hypothesis class for empirical risk
minimisation (noneERM). In particular, we are looking for the function f∗ in the RKHS H which
solves the regularised ERM problem

min
f∈H

R̂(f) + Ω
(
‖f‖2H

)
,

for empirical risk R̂(f) = 1
n

∑n
i=1 L(yi, f(xi), xi), a loss function L : Y × Y × X → R+ and any

non-decreasing function Ω.

Theorem 6.1 (Representer Theorem). There is a solution to

min
f∈H

R̂(f) + Ω
(
‖f‖2H

)
(6.1)

that takes the form f∗ =
∑n

i=1 αik(·, xi). If Ω is strictly increasing, all solutions have this form.

Proof. Let f be any minimiser of (6.1). Denote by fs the projection of f onto the subspace

span {k(·, xi) : i = 1, . . . , n}
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such that
f = fs + f⊥,

where fs =
∑n

i=1 αik(·, xi) and f⊥ is orthogonal to span {k(·, xi) : i = 1, . . . , n}.

Since
‖f‖2H = ‖fs‖2H + ‖f⊥‖2H ≥ ‖fs‖

2
H ,

we have
Ω
(
‖f‖2H

)
≥ Ω

(
‖fs‖2H

)
.

On the other hand, the individual terms f(xi) in the loss are given by

f(xi) = 〈f, k(·, xi)〉H = 〈fs + f⊥, k(·, xi)〉H = 〈fs, k(·, xi)〉H = fs(xi),

so
L(yi, f(xi), xi) = L(yi, fs(xi), xi) ∀i = 1, . . . , n.

and thus empirical risks must be the same: R̂(f) = R̂(fs). Thus fs is also a minimiser of (6.1) and
if Ω is strictly increasing, it must be that f⊥ = 0.

We see that the key parts of the theorem are the fact that the empirical risk only depends on the
components of f lying in the subspace spanned by the canonical features and that the regulariser
Ω(. . .) is minimised when f = fs (adding additional orthogonal components to the function makes
it more complex but does not change the empirical risk). Moreover, if Ω is strictly increasing, then
‖f⊥‖H = 0 is required at the minimum.

6.5 Operations with Kernels

Kernels can be combined and modified to get new kernels. For example,

Lemma 6.2. [Sums of kernels are kernels] Given α > 0 and k, k1 and k2 all kernels on X , then αk
and k1 + k2 are kernels on X .

To prove the above, just check positive definiteness. Note that a difference between two kernels
need not be a kernel: if k1(x, x)−k2(x, x) < 0, then condition 3 of inner product definition 6.1 may
be violated.

Lemma 6.3. [Mappings between spaces] Let X and X̃ be non-empty sets, and define a map
A : X → X̃ . Define the kernel k on X̃ . Then k(A(x), A(x′)) is a kernel on X .

Lemma 6.4. [Products of kernels are kernels] Given k on X and l on Y, then

κ
(
(x, y) ,

(
x′, y′

))
= k

(
x, x′

)
l
(
y, y′

)
is a kernel on X × Y. Moreover, if X = Y, then
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κ
(
x, x′

)
= k

(
x, x′

)
l
(
x, x′

)
is a kernel on X .

The general proof would require some technical details about Hilbert space tensor products, but
the main idea can be understood with some simple linear algebra. We consider the case where
H corresponding to k is RM , and G corresponding to l is RN . Write k (x, x′) = ϕ(x)>ϕ(x′) and
l (y, y′) = ψ(y)>ψ(y′). We will use that a notion of inner product between matrices A ∈ RM×N
and B ∈ RM×N is given by

〈A,B〉 = trace(A>B). (6.2)

Then

k
(
x, x′

)
l
(
y, y′

)
= ϕ(x)>ϕ(x′)ψ(y′)>ψ(y)

= tr(ψ(y)ϕ(x)>ϕ(x′)ψ(y′)>)

=
〈
ϕ(x)ψ(y)>, ϕ(x′)ψ(y′)>

〉
,

thus we can define features A(x, y) = ϕ(x)ψ(y)> of the product kernel.

The sum and product rules allow us to define a huge variety of kernels.

Lemma 6.5. [Polynomial kernels] Let x, x′ ∈ Rp for p ≥ 1, and let m ≥ 1 be an integer and c ≥ 0.
Then

k(x, x′) :=
(〈
x, x′

〉
+ c
)m

is a valid kernel.

To prove: expand out this expression into a sum (with non-negative scalars) of kernels 〈x, x′〉 raised
to integer powers. These individual terms are valid kernels by the product rule.

Can we extend this combination of sum and product rule to sums with infinitely many terms?
Consider for example the exponential function applied to an inner product k(x, x′) = exp (〈x, x′〉).
Since addition and multiplication preserve positive definiteness and since all the coefficients in the

Taylor series expansion of the exponential function are nonnegative, km(x, x′) =
∑m

r=1
〈x,x′〉r
r! is a

valid kernel ∀m ∈ N. Fix some {αi} and {xi}. Then Am =
∑

i,j αiαjkm(xi, xj) ≥ 0 ∀m since km
is positive definite. But Am →

∑
i,j αiαj exp (〈xi, xj〉) as m → ∞, so

∑
i,j αiαj exp (〈xi, xj〉) ≥ 0

as well. Thus, exp (〈x, x′〉) is also a valid kernel (it is called exponential kernel). We may combine
all the results above (exercise) to show that the following in practice widely used kernel, known
under various names: Gaussian, Gaussian RBF, squared exponential or exponentiated quadratic is
a valid kernel on Rp:

k(x, x′) := exp

(
− 1

2σ2
∥∥x− x′∥∥2) .

The RKHS of this kernel is infinite-dimensional.
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6.6 Kernel PCA

Kernel PCA is a popular nonlinear dimensionality reduction technique [2]. Assume we have a
dataset {xi}ni=1, where xi ∈ Rp. Consider an explicit feature transformation x 7→ ϕ(x) ∈ H, and
assume that we are interested in performing PCA in the feature space H. Assume that the features
{ϕ(xi)}ni=1 are centred. Assume for the moment that the feature space is finite-dimensional, i.e.
H = RM . Then the M ×M sample covariance matrix in the feature space is given by

S =
1

n− 1

n∑
i=1

ϕ(xi)ϕ(xi)
> =

1

n− 1
Φ>Φ,

where Φ ∈ Rn×M is the feature representation of the data. To perform PCA, recall that we are
interested in solving the eigenvalue problem Svm = λmvm, m = 1, . . . ,M , and we need the top

k � min {n,M} eigenvectors vm, m = 1, . . . , k, to construct the PC projections z
(m)
i = v>mϕ (xi).

A property analogous to the representer theorem holds here: whenever λm > 0, the eigenvectors
lie in the linear span of feature vectors span {ϕ(xi) : i = 1, . . . , n}, i.e.

vm =
n∑
i=1

amiϕ(xi) (6.3)

for some scalars ami. To see this, note that

λmvm = Svm =
1

n− 1

n∑
i=1

ϕ(xi)
(
ϕ(xi)

>vm

)
and since λm > 0, it suffices to take ami = 1

λm(n−1)
(
ϕ(xi)

>vm
)

and clearly vm has form (6.3).
Thus eigenvectors can also be recovered in the dual space. Consider now the n×n kernel matrix K
with Kij = k(xi, xj) = ϕ(xi)

>ϕ(xj). By substituting vm =
∑n

i=1 amiϕ(xi) back into the eigenvalue
problem, we have:

Svm =
1

n− 1

n∑
i=1

ϕ(xi)
n∑
`=1

am`k(xi, x`) = λm

n∑
i=1

amiϕ(xi).

To express the above in terms of the kernel matrix, we project both sides onto ϕ(xj), for each
j = 1, . . . , n. This gives

1

n− 1

n∑
i=1

k(xj , xi)

n∑
`=1

am`k(xi, x`) = λm

n∑
i=1

amik(xj , xi), j = 1, . . . , n,

which in matrix notation can be written as

K2am = λm(n− 1)Kam.

Assuming that K is invertible, am vectors can be found as the eigenvectors of the kernel matrix K
with corresponding eigenvalues given by λm(n− 1).

But if we simply perform the eigendecomposition of K, we will obtain n-dimensional eigenvectors
of unit norm, and we are after the M -dimensional eigenvectors vm of S which have unit norm. We
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see that 1 = v>mvm = a>mKam = λm(n − 1)a>mam. Thus, if um denotes the m-th eigenvector of
K with unit norm, to ensure that vm has unit norm, we need to rescale am = um/

√
λm(n− 1).

Now, we have an implicit representation of eigenvectors in terms of their dual coefficients. The PC
projections are

z
(m)
i = v>mϕ (xi) =

 n∑
j=1

amjϕ(xj)

> ϕ(xi) =
n∑
j=1

amjk(xj , xi),

or equivalently, the m-th dimension of the PC projections is given by

z(m) = Kam = λm(n− 1)am =
√
λm(n− 1)um. (6.4)

We have seen this before! Note that PC projections can be discovered from the SVD Φ = UDV >

as either Z = ΦV or Z = UD. The latter expression is exactly (6.4), since um are the eigenvectors
of kernel matrix K (i.e. the left singular vectors of the feature matrix Φ) and Dmm =

√
λm(n− 1)

(why?). But note that the eigendecomposition of K and these projections do not require explicit
feature transformations - thus, all the computation is happening in the dual representation and
ϕ(xi) need not be computed, only the kernel matrix K with Kij = k(xi, xj). The kernel formalism
also allows us to compute the projection v>mϕ(x̃) of a new (previously unseen) data vector x̃ ∈ Rp
to the m-th kernel principal component using(

n∑
i=1

amiϕ(xi)

)>
ϕ(x̃) =

n∑
i=1

amik(xi, x̃) = a>mkx̃,

where kx̃ = [k(x1, x̃), . . . , k(xn, x̃)]>, so again no explicit feature transformations are needed.

Recall that the above all assumes that the features are centred, i.e. that 1
n

∑n
i=1 ϕ(xi) = 0, but

if we are just given a kernel function k(x, x′), there is no reason to believe that the features
would be centred. Fortunately, it is straightforward to transform any kernel matrix into a centred
form. Recall that the squared distance matrix in the feature space, i.e. matrix D for which
Dij = ‖ϕ(xi)− ϕ(xj)‖2H can be recovered from the Gram/kernel matrix (Notes 1, page 6). But
distances are invariant to centering and the Gram matrix corresponding to centred features can
then be recovered from the distance matrix (Q6 on Problem Sheet 1).
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