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5.1 Loss and Risk

In the supervised learning framework, we are trying to learn a function f : X → Y from an input
space X into an output space Y based on a set of paired examples (x1, y1), . . . (xn, yn) and a given
loss function L. It is assumed that examples (x1, y1), . . . (xn, yn) are i.i.d. samples from an unknown
joint probability distribution PX,Y on X ×Y and the goal of learning is to find the function f which
minimizes the expectation of the loss over PX,Y - called risk.

Empirical Risk Minimisation (ERM)
Loss is any function

L : Y × Y × X → R+. (5.1)

Risk of a function f : X → Y is the expected loss:

R(f) = EX,Y L(Y, f(X), X). (5.2)

For a given dataset (x1, y1), . . . (xn, yn), the empirical risk of f is given by

R̂(f) =
1

n

n∑
i=1

L(yi, f(xi), xi). (5.3)

The Empirical Risk Minimisation is the problem

f̂ = argmin
f∈H

R̂(f),

where H is the given class of functions (hypothesis class).

Remark 5.1. The goal of learning is to minimise the true risk - not the empirical risk, which is
only an estimate of the true risk. But the true risk of any given function is unknown because the
distribution PX,Y is unknown.

Remark 5.2. Loss function typically depend on the input x only through f(x), so that with some
abuse of notation we often write L(y, f(x)) instead of L(y, f(x), x). L(y, f(x)) is usually some
notion of distance between the actual output y and the predicted output f(x).

Examples of hypothesis classes. Hypothesis classes can be very simple, e.g. for X = Rp, we
can consider all linear functions f(x) = w>x+ b, parametrized by w ∈ Rp and b ∈ R, or we could
consider a specific nonlinear feature expansion ϕ : X → RD, and a model linear in those features:
f(x) = w>ϕ(x)+b, but nonlinear in the original inputs X , parametrized by w ∈ RD and b ∈ R. For

example, starting with X = R2, we can consider ϕ

([
xi1
xi2

])
= [xi1, xi2, x

2
i1,
√

2xi1xi2, x
2
i2]
>, such

that the resulting function can depend on quadratic and interaction terms as well. An important



type of hypothesis classes we will consider in the next lecture are Reproducing Kernel Hilbert
Spaces (RKHS), which are also linear in certain feature expansions but those feature expansions
could potentially be infinite-dimensional.

Examples of loss functions. Loss functions come in many different forms. One of the main
considerations for selecting loss functions is the type of outputs we are trying to predict, i.e.,
whether it is real-valued or categorical. Note that even if outputs are categorical, f(x) is typically
real-valued. For example, in binary classification, the common convention is that the two classes
are denoted by −1 and +1. One associates predictions of these classes with sign(f(x)), whereas
the magnitude of f(x) can be thought of as the confidence in those predictions (not necessarily in a
probabilistic sense). The loss can penalize misclassification (wrong sign) as well as the overconfident
misclassification (wrong sign and large magnitude) and even underconfident correct classification
(correct sign but small magnitude). Thus, they can be often expressed as a function of yf(x).
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Figure 1: Loss functions for binary classification

Below are some loss functions commonly used in binary classification and regression.

• Binary classification:

– 0/1 loss L(y, f(x)) = 1{yf(x) ≤ 0},
(also called misclassification loss, optimal solution is called the Bayes classifier and is
given by f(x) = argmaxk∈{0,1} P(Y = k|X = x)),

– hinge loss L(y, f(x)) = (1− yf(x))+
(used in support vector machines - leads to sparse solutions),

– exponential loss L(y, f(x)) = e−yf(x)

(used in boosting algorithms - Adaboost),

– logistic loss L(y, f(x)) = log
(
1 + e−yf(x)

)
(used in logistic regression, associated with a probabilistic model).
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Figure 2: Loss functions for regression

• Regression:

– squared loss: L(y, f(x)) = (y − f(x))2

(least squares regression: optimal f is the conditional mean E[Y |X = x]),

– absolute loss: L(y, f(x)) = |y − f(x)|
(less sensitive to outliers: optimal f is the conditional median med[Y |X = x]),

– τ -pinball loss: L(y, f(x)) = 2 max{τ(y − f(x)), (τ − 1)(y − f(x))} for τ ∈ (0, 1)
(quantile regression: optimal f is the τ -quantile of p(y|X = x)),

– ε-insensitive (Vapnik) loss: L(y, f(x)) =

{
0, if |y − f(x)| ≤ ε,
|y − f(x)| − ε, otherwise.

(support vector regression - leads to sparse solutions).

In binary classification, 0/1 is an idealised version of loss which penalizes misclassification regardless
of the magnitude of f(x). However, ERM under 0/1 loss is NP hard1. Therefore, we typically use
convex upper bound surrogate losses (hinge, exponential, logistic2). What is the importance of
the convexity of loss as a function of yf(x) as shown in Fig. 1? Consider the hypothesis class
f(x) = w>ϕ(x), with w ∈ RD (we ignore the intercept to simplify notation) and assume that
L(y, f(x)) = ρ (yf(x)) for a convex differentiable function ρ. Then the empirical risk and its
gradient are given by

R̂(w) =
1

n

n∑
i=1

ρ
(
yiw
>ϕ(xi)

)
,

∂R̂

∂w
=

1

n

n∑
i=1

ρ′
(
yiw
>ϕ(xi)

)
yiϕ(xi).

1It is NP-hard to even approximately minimize the ERM under 0/1 loss - i.e. there is no known polynomial-time
algorithm to obtain a solution which is a small constant worse than the optimum.

2to make it into an upper bound on 0/1, divide the logistic loss by log(2) - rescaling of the loss does not change
the ERM problem
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Furthermore, the Hessian matrix of the empirical risk is given by

∂2R̂

∂w∂w>
=

1

n

n∑
i=1

ρ′′
(
yiw
>ϕ(xi)

)
ϕ(xi)ϕ(xi)

>, (5.4)

using y2i = 1. This Hessian is now a positive semidefinite matrix which can be seen from ρ′′ (t) ≥ 0
∀t and

α>
∂2R̂

∂w∂w>
α =

1

n

n∑
i=1

ρ′′
(
yiw
>ϕ(xi)

)(
α>ϕ(xi)

)2
≥ 0.

for any α ∈ RD. Thus, empirical risk is a convex function of w and thus has a unique minimum.
Typically, there is no closed form solution for w and iterative optimisation techniques like gradient
ascent or Newton-Raphson algorithm are used.

5.2 Regularisation

Recall that we are not after the exact minimizer of the empirical risk but after that of the true
risk. ERM risks overfitting, when the hypothesis class is complex, one can easily find a function
that matches the observed examples exactly but does not generalise to new examples.

The idea behind regularisation is to limit the flexibility of hypothesis class in order to prevent
overfitting. For the hypothesis space H = {fθ : θ ∈ Θ}, this is achieved by adding the term which
penalises the large values of parameters θ to the ERM criterion:

min
θ
R̂(fθ) + λ‖θ‖ρρ = min

θ

1

n

n∑
i=1

L(yi, fθ(xi)) + λ‖θ‖ρρ

where ρ ≥ 1, and ‖θ‖ρ = (
∑p

j=1 |θj |ρ)1/ρ is the Lρ norm of θ (also of interest when ρ ∈ [0, 1),
but this is no longer a norm). These methods are also known as shrinkage methods since their
effect is to shrinking parameters towards 0. Note that we have an additional tuning parameter (or
hyperparameter) λ which controls the amount of regularisation, and resulting complexity of the
model.

The most common forms of regularisation include Ridge regression / Tikhonov regularization: ρ =
2, LASSO penalty: ρ = 1, and elastic net regularization with a mixed L1/L2 penalty:

min
θ

1

n

n∑
i=1

L(yi, fθ(xi)) + λ
[
(1− α)‖θ‖22 + α‖θ‖1

]
.

In some hypothesis classes, it is possible to directly penalise some notion of smoothness of function
f , e.g. for X = R, the regularisation term can consist of the Sobolev norm

‖f‖2W 1 =

∫ +∞

−∞
f(x)2dx+

∫ +∞

−∞
f ′(x)2dx, (5.5)

which penalises functions with large derivative values.
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5.3 Examples of ERM

5.3.1 Regularised Least Squares / Ridge Regression

This corresponds to the squared loss L(y, f(x)) = (y−f(x))2. For linear functions f(x) = w>x+b,
we have

min
w,b

1

n

n∑
i=1

(yi − w>xi − b)2 +
λ

n
‖w‖22. (5.6)

Note the rescaling of the regularisation term and that the bias term b is not included in the
regularisation. This is important as otherwise the predictions would depend on the origin for the
response variables y (i.e. adding a constant c to each target would result in different predictions
from simply shifting the original predictions by c). Fortunately, when using centred inputs, i.e.,∑n

i=1 xi = 0, b can be estimated by ȳ = 1
n

∑n
i=1 yi, so we can also assume that the responses are

centred and remove the intercept from the model. We obtain the problem

min
w
‖y −Xw‖22 + λ‖w‖22. (5.7)

Differentiating and setting to zero gives the closed form solution

w =
(
X>X + λI

)−1
X>y. (5.8)

5.3.2 Support Vector Machines

Support Vector Machines (SVMs) for classification use hinge loss, L(y, f(x)) = max{0, 1− yf(x)}.
Thus, for a linear classifier f(x) = w>x+ b, we obtain

min
w,b

1

n

n∑
i=1

max{0, 1− yi(w>xi + b)}+
λ

n
‖w‖22. (5.9)

This no longer has a closed form solution and requires numerical optimisation. Eq. (5.9) is not
how you would typically see an SVM written in the literature. Rather, we introduce a substitution
ξi = max{0, 1 − yi(w

>xi + b)}, which implies that ξi ≥ 0, yi(w
>xi + b) ≥ 1 − ξi and with a

reparametrisation of the regularisation parameter C = 1/2λ obtain the equivalent form, called
C-SVM:

min
w,b,ξ

(
1

2
‖w‖2 + C

n∑
i=1

ξi

)
, (5.10)

subject to ξi ≥ 0, yi

(
w>xi + b

)
≥ 1− ξi.

SVMs have the following nice property: the normal vector w of the hyperplane determining the
classification rule can be written as w =

∑n
i=1 αiyixi where a large number of α-coefficients is

typically zero. Thus, only a small number of datapoints (support vectors, those with a non-zero α)
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determine the learned classification rule. α-coefficients are called the dual coefficients. They can
be obtained as a solution to the following dual C-SVM problem

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj , (5.11)

subject to 0 ≤ αi ≤ C,
n∑
i=1

yiαi = 0.

5.3.3 Logistic Regression

Logistic regression uses the logistic loss L(y, f(x)) = log
(
1 + e−yf(x)

)
. Hence, again for a linear

classifier f(x) = w>x+ b,

min
w,b

1

n

n∑
i=1

log
(

1 + e−yi(w
>xi+b)

)
+
λ

n
‖w‖22. (5.12)

Unlike SVMs, logistic regression can also be associated to the probabilistic model. Namely, assume
that the function of interest f(x) = w>x+ b models the log-odds ratio:

log
p(yi = +1|w, b, xi)
p(yi = −1|w, b, xi)

= w>xi + b. (5.13)

Then the conditional distribution of Y |X is given by

p(yi = +1|w, b, xi) =
1

1 + e−(w>xi+b)
= σ(w>xi + b), (5.14)

p(yi = −1|w, b, xi) =
1

1 + ew>xi+b
= σ(−w>xi − b), (5.15)

where we denoted by σ(t) = 1/(1 + e−t) the logistic function which maps the real line to (0, 1)
interval. Note that the logistic function satisfies σ(−t) = 1 − σ(t). Thus, we can write (5.14) and
(5.15) as p(yi|w, b, xi) = σ(yi(w

>xi+ b)) and the conditional log-likelihood of the outputs given the
inputs is

log p(y|w, b,X) = log
n∏
i=1

σ(yi(w
>xi + b)) = −

n∑
i=1

log
(

1 + e−yi(w
>xi+b)

)
.

Thus finding the parameters w and b that maximise the conditional log-likelihood is equivalent to
minimising the empirical risk corresponding to the logistic loss, which is the negative log-likelihood
of the linear log-odds model. Moreover, the regularisation term can be interpreted as a normal prior
on w in Bayesian logistic regression. Again, there is no closed form solution in logistic regression,
but the objective is convex and differentiable and the optimisation using gradient ascent or Newton-
Raphson algorithm can be used.

The connection between maximisation of the log-likelihood and minimisation of the empirical risk
extends beyond logistic regression. Indeed, in the context of classification, whenever p(yi|xi, θ) is
a log-concave function of yifθ(xi), we can define a convex loss ρ(yfθ(x)) = − log p(yi|xi, θ). But
the converse is not true, e.g. hinge loss does not correspond to a negative log-likelihood in any
probabilistic model (unless additional artificial classes are introduced).
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