
Collaborative Filtering
SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017

Dino Sejdinovic

4.1 Ratings and Recommendations

Collaborative Filtering (CF) is a collective name for a range of techniques that tackle the problem
of making predictions about the preferences of a set of users on a set of items, based on the user’s
ratings on other items and based on the ratings of other users. Typical example concerns predicting
movie preferences based on the ratings of previously watched movies – popularized by the 2006
Netflix competition.

movie \ user Alice Bob Chuck Dan Eve

Happy Gilmore ? 2 5 1 4

Click 1 ? 4 ? ?

Ex Machina ? 4 ? ? 2

Blade Runner 5 ? 1 ? ?

The Matrix 5 5 ? ? 4

In a typical setup, we have a partially observed matrix Y ∈ Rn1×n2 where yi,j is the rating (e.g.
between 1 and 5) of movie i by user j, assuming we have n1 movies and n2 users1. Most entries will
be missing/unknown since most users will not have rated most movies. We will also introduce a
matrix of exposure indicators E where ei,j = 1 if the user j has rated movie i and ei,j = 0 otherwise.

4.2 Content-Based Recommendations and Alternating Linear Regressions

In the case where additional attributes about users or about the movies are observed, the problem
can be treated in a supervised learning fashion. Assume that for each movie i we also have access
to a feature vector φi = [φi1, . . . , φik]

> ∈ Rk (for example, φi1 may indicate whether a movie i is a
romantic comedy, φi2 whether it is based on a comic book etc). Then we could simply formulate
the problem as n2 separate linear models2 for each user j:

min
ψj

∑
i : ei,j=1

(yi,j − φ>i ψj)2 + λψ‖ψj‖22, j = 1, . . . , n2. (4.1)

Here, ψj is the corresponding vector of coefficients in the linear model, and we have included the
L2-regularization term (which becomes important if some users have rated only a small number of
movies). This model is called content-based recommendation system since it depends on specific

1note the departure from our usual n× p convention – indeed, we will consider that both users and movies have
some underlying set of variables – but that these are not necessarily observed

2in the typical case of integer ratings, a generalised linear model is more appropriate, as linear model can make
predictions outside of the range of valid rating values, but we are keeping things simple

http://netflixprize.com/
http://netflixprize.com/

features of the movies. Note that content-based recommendations are not “collaborative” in the
sense that recommendations made to a user do not make use of the information across the entire
user-base.

We often do not have appropriate features for movies and even if we do, it is not clear if those
specific features are relevant for ratings prediction. Notice that ψj = [ψj1, . . . , ψjk]

> ∈ Rk in (4.1)
can be treated as a preference vector for each user j (e.g. ψj1 tells us whether the user j likes
romantic comedies, ψj2 whether the user j likes movies based on comic books etc), so let us assume
for the moment that we have access to these user preferences but not to the actual feature vectors
φi for the movies. Because of the symmetry in the model, we can now infer those feature vectors,
based on the preferences:

min
φi

∑
j : ei,j=1

(yi,j − φ>i ψj)2 + λφ‖φi‖22, i = 1, . . . , n1. (4.2)

Thus, we see that it is possible to formulate the predictions not based on features of the movies
nor based on the preferences of the users (either of which may or may not be observed), but
merely on the ratings matrix: we randomly initialise movie feature vectors φi, and then perform
an iterative minimization alternating between the updates (4.1) and (4.2). This may result in
features/preferences that do not have an easily understandable meaning, but are capturing salient
movie/user properties that result in the ratings we observe. Moreover, by optimizing over both
movie features and user preferences, predictions for each user can potentially depend on ratings of
all other users (i.e. they are “collaborative”).

While alternating linear regressions can be solved in closed form, due to very large numbers n1

and n2 of movies and users, in practice one often uses stochastic gradient descent (SGD) updates,
where when we observe a new rating yi,j , we only update the feature vector φi of movie i and the
preference vector ψj of user j:

φi ← (1− εtλφ)φi + εtψj(yij − φ>i ψj), (4.3)

ψj ← (1− εtλψ)ψj + εtφi(yij − φ>i ψj). (4.4)

4.3 Low-Rank Matrix Factorization

The method of alternating linear regressions can be understood as low-rank matrix factorization
of the ratings matrix Y. Indeed, the ratings matrix is being approximated as a product of two
low-rank matrices, Φ ∈ Rn1×k, Ψ ∈ Rn2×k, where typically k � min(n1, n2), such that Y ≈ ΦΨ>.
The columns φ(1), . . . , φ(k) of Φ can be interpreted as learned attributes of movies, whereas columns
ψ(1), . . . , ψ(k) of Ψ can be interpreted as learned attributes of users.

If Y was fully observed then the best low-rank approximation is given by SVD, i.e. from SVD

Y = UDV > we can set Φ = U1:n1,1:kD
1/2
1:k,1:k and Ψ = V1:n2,1:kD

1/2
1:k,1:k and this is a solution3 of

3not unique as D can be distributed arbitrarily between Φ and Ψ - compare to the discussion of different versions
of scaled biplots

2

min
Φ,Ψ

n1∑
i=1

n2∑
j=1

(yi,j − φ>i ψj)2

︸ ︷︷ ︸
=‖Y−ΦΨ>‖2F

. (4.5)

However, as most entries in Y are missing, we have the optimization problem given by

min
Φ,Ψ

∑
ei,j=1

(yi,j − φ>i ψj)2. (4.6)

This seemingly minor modification results in a difficult optimization problem which cannot be solved
using standard SVD techniques. Moreover, it is typically needed to add regularization terms due
to a large number of missing entries in Y, which results exactly in the objective of the alternating
linear regressions:

min
Φ,Ψ

∑
ei,j=1

(yi,j − φ>i ψj)2 + λφ‖Φ‖2F + λψ‖Ψ‖2F . (4.7)

4.4 Probabilistic Matrix Factorization

Introduced in [2], the generative model corresponding to CF can be described as follows:

• For each movie i = 1, . . . , n1, sample independently the latent vector of features φi ∼
N (0, σ2

φIk) from a k-dimensional normal distribution,

• For each user j = 1, . . . , n2, sample independently the latent vector of preferences ψj ∼
N (0, σ2

ψIk) from a k-dimensional normal distribution,

• For each movie-user pair (i, j), sample ei,j ∼ Bernoulli(p) independently and if ei,j = 1,
sample yi,j |φi, ψj ∼ N (φ>i ψj , σ

2
y).

The (hyper)parameter vector here is given by θ = (σ2
φ, σ

2
ψ, σ

2
y). We can write the joint probability

density of the observations and the latent variables as

3

p(Y,Φ,Ψ|θ) =

n1∏
i=1

1

(2πσ2
φ)k/2

exp

(
− 1

2σ2
φ

‖φi‖22

)

·
n2∏
j=1

1

(2πσ2
ψ)k/2

exp

(
− 1

2σ2
ψ

‖ψj‖22

)

·
∏
ei,j=1

1

(2πσ2
y)

1/2
exp

(
1

2σ2
y

(yi,j − φ>i ψj)2

)

∝ exp

− 1

2σ2
φ

‖Φ‖2F −
1

2σ2
ψ

‖Ψ‖2F −
1

2σ2
y

∑
ei,j=1

(yi,j − φ>i ψj)2

 . (4.8)

Maximizing log p(Φ,Ψ|Y, θ) in this model thus corresponds exactly to (4.7) with regularization pa-
rameters given by λφ = σ2

y/σ
2
φ, λψ = σ2

y/σ
2
ψ. Since we now have a full probabilistic model, however,

it is possible to consider joint inference of Φ, Ψ and θ as well as to consider more sophisticated
model construction.

4.5 User-based and Item-based Collaborative Filtering

There is also a range of model-free (also called memory-based) methods for collaborative filtering,
which are typically based on some notion of user-user similarity or item-item similarity.

User-based CF (UBCF) starts with a notion of user-user similarity computed based on the ratings,
and then predicts ratings by aggregating those of similar users. Generally, it proceeds in the
following three steps:

1. Assign a weight to all users with respect to similarity with the current user.

2. Select k users that have the highest similarity with the current user – commonly called the
neighbourhood.

3. Compute a prediction using a weighted combination of the neighbours’ ratings.

An example similarity κ is given by

κj,j′ =

∑
i∈Ijj′

(yij − ȳj)(yij′ − ȳj
′
)√∑

i∈Ijj′
(yij − ȳj)2

√∑
i∈Ijj′

(yij′ − ȳj′)2
, (4.9)

where ȳj = avgi : eij=1{yij} denotes the average rating given by user j and Ijj′ =
∑n1

i=1 eijeij′ is the
set of movies rated by both users j and j′. Thus, this similarity is simply the Pearson correlation
between the ratings columns restricted to movies rated by both users. Now to make a prediction for

4

a new movie-user pair (i, j), we can simply aggregate predictions over the neighbourhood Uk(i, j)
of user j: the k users most similar to j who rated movie i, for example:

ŷi,j = ȳj +

∑
j′∈Uk(i,j) κj,j′(yi,j′ − ȳj

′
)∑

j′∈Uk(i,j) |κj,j′ |
. (4.10)

Item-based CF (IBCF) works analogously by aggregating predictions the user has made on similar
movies. There is a large number of different variants of these algorithms, which consider different
similarity measures and different aggregation strategies. See [1] for further details and references.

4.6 Biclustering

Also known as coclustering, this is a method for clustering both rows (items) and columns (users)
in the observed data matrix. This can be a ratings matrix in CF, but can also correspond to a more
general data matrix – for example, biclustering is often used in analysing gene expression data.

The intuition behind biclustering is as follows: even if the two users have a similar movie taste, it
is extremely unlikely that the two have watched (and rated) the same movies (the overlap could in
fact be very small). Thus, identifying similar users solely based on the similarity of their ratings
may not be sufficient. Moreover, a group of users may have similar ratings across a certain group of
movies, i.e. Alice and Bob both like science fiction, but have very different ratings across another
type of movies, i.e. Alice also likes horrors but Bob hates them. Instead, we wish to simultaneously
find groups of similar users and groups of similar movies.

In the biclustering method, we associate to each row i a latent indicator ri ∈ {1, . . . ,Kr} and to
each column j a latent indicator cj ∈ {1, . . . ,Kc}. Based on the cluster membership, matrix Y is
partitioned into blocks, with yij belonging to the same block as yi′j′ iff (ri, cj) = (r′i, c

′
j). Further,

we assume that the matrix entries are i.i.d. within each block (ri, cj), i.e.

p(Y | r, c, θ) =
∏
eij=1

p(yij |ri, cj , θ) =
∏
eij=1

p(yij |θri,cj),

for some parametric probability distribution p(yij |θri,cj). For example, we can obtain a model simi-
lar to matrix factorization by letting θri,cj = (φri , ψcj) for movie-group-level feature vectors φri ∈ Rk
and user-group-level preference vectors ψcj ∈ Rk and p(yij |θri,cj) = 1√

2πσ2
exp

(
− 1

2σ2 (yij − φ>riψcj)
2
)
.

Inference can then proceed similarly as in the EM algorithm.

References

[1] Prem Melville and Vikas Sindhwani. Recommender systems. In Claude Sammut and Geoffrey I.
Webb, editors, Encyclopedia of Machine Learning, pages 829–838. Springer US, Boston, MA,
2010.

[2] Ruslan Salakhutdinov and Andriy Mnih. Probabilistic Matrix Factorization. In Advances in
Neural Information Processing Systems 20. MIT Press, 2008.

5

	Ratings and Recommendations
	Content-Based Recommendations and Alternating Linear Regressions
	Low-Rank Matrix Factorization
	Probabilistic Matrix Factorization
	User-based and Item-based Collaborative Filtering
	Biclustering

