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3.1 Clustering and Mixture Modelling

K-means and hierarchical clustering are non-probabilistic algorithms — based on the intuitive
notions of clustering “similar” instances together and “dissimilar” instances apart. Their goal is
not to model the probability of the observed data items. In contrast, probabilistic unsupervised
learning constructs a generative model that describes clustering of the items. We assume that
there is some latent / unobserved process that is governing the data generation - and based on the
data, we will try to answer the questions about this generating process.

Mixture models assume that our dataset X was created by sampling iid from K distinct populations
(called mixture components). In other words, data come from a mixture of several sources and
the model for the data can be viewed as a convex combination of several distinct probability
distributions, often modelled with a given parametric family.

Samples in population k can be modelled using a distribution Fµk with density f(x|µk), where µk
is the model parameter for the k-th component. For a concrete example, consider a p-dimensional
multivariate normal density with unknown mean µk and known diagonal covariance σ2I,

f(x|µk) = |2πσ2|−
p
2 exp

(
− 1

2σ2
‖x− µk‖22

)
. (3.1)

Such model corresponds to the following generative model, whereby for each data item i = 1, 2, . . . , n,
we

(i) first determine the assignment variable (independently for each data item i):

Zi
i.i.d.∼ Discrete(π1, . . . , πK) i.e., P(Zi = k) = πk

where for k = 1, . . . ,K, πk ≥ 0, such that
∑K

k=1 πk = 1, are the mixing proportions, additional
model parameters to be inferred;

(ii) then, given the assignment Zi = k of the mixture component, Xi = (X
(1)
i , . . . , X

(p)
i )> is

sampled (independently) from the corresponding k-th component:

Xi|(Zi = k) ∼ f(x|µk).

We observe Xi = xi for each i but do not observe its assignment Zi (latent variables), and would
like to infer the parameters θ = (µ1, . . . , µK , π1, . . . , πK) as well as the latent variables.

Note that the complete log-likelihood in the model



log p(z,X|θ) = log

(
n∏
i=1

πzif(xi|µzi)

)
=

n∑
i=1

(log πzi + log f(xi|µzi)) (3.2)

is not available as zi is not observed. We can consider marginalising over the latent variables

p(X|θ) =
K∑

z1=1

. . .
K∑

zn=1

n∏
i=1

πzif(xi|µzi) =
n∏
i=1

(
K∑
k=1

πkf(xi|µk)

)
. (3.3)

giving the marginal log-likelihood of the observations,

`(θ) = log p(X|θ) =

n∑
i=1

log

K∑
k=1

πkf(xi|µk).

However, direct maximisation is not feasible and the marginal log-likelihood will often have many
local optima. Fortunately, there is a simple local marginal log-likelihood maximisation algorithm
called Expectation Maximisation (EM), which we will describe in Section 3.3.

3.2 KL Divergence and Gibbs’ Inequality

Before we describe the EM algorithm, we will review the notion of Kullback-Leibler (KL) divergence
or relative entropy between probability distributions P and Q.

KL divergence.

• Let P and Q be two absolutely continuous probability distributions on X ⊆ Rd with densities
p and q respectively. Then the KL divergence from Q to P is defined as

DKL (P ‖ Q) =

∫
X
p(x) log

p(x)

q(x)
dx. (3.4)

• Let P and Q be two discrete probability distributions with probability mass functions p and
q respectively. Then the KL divergence from Q to P is defined as

DKL (P ‖ Q) =
∑
i

p(xi) log
p(xi)

q(xi)
. (3.5)

In both cases, we can write

DKL (P ‖ Q) = Ep
[
log

p(X)

q(X)

]
, (3.6)

where Ep denotes that expectation is taken over p. By convexity of f(x) = − log(x) and Jensen’s
inequality (3.8), we have that

DKL (P ‖ Q) = Ep
[
− log

q(X)

p(X)

]
≥ − logEp

q(X)

p(X)
= 0, (3.7)
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where in the last step we used that
∫
X q(x)dx = 1 in continuous case and

∑
i q(xi) = 1 in discrete

case.

Jensen’s inequality. Let f be a convex function and X be a random variable. Then

E [f(X)] ≥ f (EX) . (3.8)

If f is strictly convex, then equality holds if and only if X is almost surely a constant.

Thus, we conclude that KL-divergence is always non-negative. This consequence of Jensen’s in-
equality is called Gibbs’ inequality. Moreover, since f(x) = − log(x) is strictly convex on x > 0,
the equality holds if and only if p(x) = q(x) almost everywhere, i.e. P = Q. Note that in general
KL-divergence is not symmetric: DKL (P ‖ Q) 6= DKL (Q ‖ P ).

3.3 EM Algorithm

EM algorithm is a general purpose iterative strategy for local maximisation of the likelihood under
missing data/hidden variables. The method has been proposed many times for specific models– it
was given its name and studied as a general framework by [1].

Let (X, z) be a pair of observed variables X, and latent variables z. Our probabilistic model is
given by p(X, z|θ), but we have no access to z. Therefore, we would like to maximise the observed
data log-likelihood (marginal log-likelihood) `(θ) = log p(X|θ) = log

∫
p(X, z|θ)dz over θ. However,

marginalisation of latent variables typically results in an intractable optimization problem and we
need to resort to approximations.

Now, assume for a moment that we have access to another objective function F(θ, q), where q(z)
is a certain distribution on latent variables z, which we are free to choose and will call variational
distribution. Moreover, assume that F satisfies

F(θ, q) ≤ `(θ) for all θ, q, (3.9)

max
q
F(θ, q) = `(θ), (3.10)

i.e. F(θ, q) is a lower bound on the log-likelihood for any variational distribution q (3.9), which also
matches the log-likelihood at a particular choice of q (3.10).

Given these two properites, we can construct an alternating maximisation: coordinate ascent algo-
rithm as follows:

Coordinate ascent on the lower bound. For t = 1, 2 . . . until convergence:

q(t) := argmax
q
F(θ(t−1), q)

θ(t) := argmax
θ
F(θ, q(t)).
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Theorem 3.1. Assuming (3.9) and (3.10), coordinate ascent on the lower bound F(θ, q) does not
decrease the log likelihood `(θ).

Proof. `(θ(t−1)) = F(θ(t−1), q(t)) ≤ F(θ(t), q(t)) ≤ F(θ(t), q(t+1)) = `(θ(t)).

Additional assumption, that ∇2
θF(θ(t), q(t)) are negative definite with eigenvalues < −ε < 0, implies

that θ(t) → θ∗ where θ∗ is a local MLE.

But how to find such lower bound F? It is given by the so called variational free energy, which we
define next.

Definition 3.1. Variational free energy in a latent variable model p(X, z|θ) is defined as

F(θ, q) = Eq[log p(X, z|θ)− log q(z)], (3.11)

where q is any probability density/mass function over the latent variables z.

Consider the KL divergence between q(z) and the true conditional based on our model p(z|X, θ) =
p(X, z|θ)/p(X|θ) for the observations X and a fixed parameter vector θ. Since KL is non-negative,

0 ≤ DKL [q(z) ‖ p(z|X, θ)] = Ez∼q log
q(z)

p(z|X, θ)

= log p(X|θ) + Ez∼q log
q(z)

p(X, z|θ)
.

Thus, we have obtained a lower bound on the marginal log-likelihood which holds true for any
parameter value θ and any choice of the variational distribution q:

`(θ) = log p(X|θ) ≥ Ez∼q log
p(X, z|θ)
q(z)

= Ez∼q log p(X, z|θ)︸ ︷︷ ︸
energy

entropy︷ ︸︸ ︷
−Ez∼q log q(z) . (3.12)

The right hand side in (3.12) is precisely the variational free energy - we see it decomposes in
two terms. The first term is usually referred to as energy using the physics terminology, more
precisely it is the expected complete data log-likelihood (if we observed z, we would just maximise
the complete data log-likelihood log p(X, z|θ), but since z is not observed we need to integrate it out
- but recall that q here is any distribution over latent variables). The second term is the Shannon
entropy H(q) = −Eq log q(z) of the variational distribution q(z), and does not depend on θ (it can
be thought of as the complexity penalty on q).

The inequality becomes an equality when KL divergence is zero, i.e. when q(z) = p(z|X, θ) which
means that the optimal choice of variational distribution q for fixed parameter value θ is the true
conditional of the latent variables given the observations and that θ.

Thus, we have proved the following lemma:
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Lemma 3.1. Let F be the variational free energy in a latent variable model p(X, z|θ). Then

• F(θ, q) ≤ `(θ) for all q and for all θ, and

• For any θ, F(θ, q) = `(θ) iff q(z) = p(z|x, θ).

Thus, properties (3.9) and (3.10) are satisfied and we can recast the alternating maximisation of
the variational free energy into iterative updates of q (E-step, via the plug-in full conditional of z
using the current estimate of θ) and the updates of θ (M-step, by maximising the ’energy’ for the
current estimate of q). Provided that both E-step and M-step can be solved exactly, EM Algorithm
converges to the local maximum likelihood solution.

EM Algorithm. Initialize θ(0). At time t ≥ 1:

• E-step: Set q(t)(z) = p(z|X, θ(t−1))

• M-step: Set θ(t) = arg maxθ Ez∼q(t) log p(X, z|θ).

3.4 EM Algorithm for Mixtures

Consider again our mixture model from Section 3.1 with

p(z,X|θ) =
n∏
i=1

πzif(xi|µzi).

Recall that our latent variables z are discrete (they correspond to cluster assignments) so q is a
probability mass function over z := (zi)

n
i=1. Using the expression (3.2), we can write the variational

free energy as

F(θ, q) =Eq[log p(X, z|θ)− log q(z)]

=Eq

[(
n∑
i=1

K∑
k=1

1(zi = k) (log πk + log f(xi|µk))

)
− log q(z)

]

=
∑
z

q(z)

[(
n∑
i=1

K∑
k=1

1(zi = k) (log πk + log f(xi|µk))

)
− log q(z)

]

=
n∑
i=1

K∑
k=1

q(zi = k) (log πk + log f(xi|µk)) +H(q).

We will denote Qik = q(zi = k), which is called responsibility of cluster k for data item i.

5



Now, the E-step simplifies because

p(z|X, θ) =
p(X, z|θ)
p(X|θ)

=

∏n
i=1 πzif(xi|µzi)∑

z′
∏n
i=1 πz′if(xi|µz′i)

=
n∏
i=1

πzif(xi|µzi)∑
k πkf(xi|µk)

=
n∏
i=1

p(zi|xi, θ).

Thus, for a fixed θ(t−1) = (µ
(t−1)
1 , . . . , µ

(t−1)
K , π

(t−1)
1 , . . . , π

(t−1)
K ) we can set

Q
(t)
ik = p(zi = k|xi, θ(t−1)) =

π
(t−1)
k f(xi|µ(t−1)k )∑K

j=1 π
(t−1)
j f(xi|µ(t−1)j )

. (3.13)

Now, consider the M-step. For mixing proportions we have a constraint that
∑K

j=1 πj = 1, so we
introduce the Lagrange multiplier and obtain

∇πk
(
F(θ, q)− λ(

∑K
j=1 πj − 1)

)
=

n∑
i=1

Qik
πk
− λ = 0 ⇒ πk ∝

n∑
i=1

Qik.

Since
K∑
k=1

n∑
i=1

Qik =
n∑
i=1

K∑
k=1

Qik︸ ︷︷ ︸
=1

= n,

the M-step update for mixing proportions is

π
(t)
k =

∑n
i=1Q

(t)
ik

n
, (3.14)

i.e., they are simply given by the total responsibility of each cluster. Note that this update holds
regardless of the form of the parametric family f(·|µk) used for mixture components.

Setting derivative with respect to µk to 0, we obtain

∇µkF(θ, q) =

n∑
i=1

Qik∇µk log f(xi|µk) = 0. (3.15)

This equation can be solved quite easily for mixture of normals in (3.1), giving the M-step update

µ
(t)
k =

∑n
i=1Q

(t)
ik xi∑n

i=1Q
(t)
ik

, (3.16)
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which implies that the k-th cluster mean estimate is simply a weighted average of all the data
items, where the weights correspond to the responsibilities of cluster k for these points.

Put together, the EM for normal mixture model with known (fixed) covariance is very similar to
K-means algorithm where cluster assignments are soft, i.e. rather than assigning each data item
xi to a single cluster at each iteration, we carry forward a responsibility vector (Qi1, . . . , QiK)
giving probabilities of xi belonging to each cluster. Indeed, K-means algorithm can be undestood
as EM where σ2 → 0, such that E-step will assign exactly one entry in (Qi1, . . . , QiK) to one
(corresponding to the nearest mean vector) and the rest to zero.

EM for Normal Mixtures (known covariance) – “Soft K-means”

1. Initialize K cluster means µ1, . . . , µK and mixing proportions π1, . . . , πK .

2. Update responsibilites (E-step): For each i = 1, . . . , n, k = 1, . . . ,K:

Qik =
πk exp

(
− 1

2σ2 ‖xi − µk‖22
)∑K

j=1 πj exp
(
− 1

2σ2 ‖xi − µj‖22
) (3.17)

3. Update parameters (M-step): Set µ1, . . . , µK and π1, . . . , πK and based on the new cluster
responsibilities:

πk =

∑n
i=1Qik
n

, µk =

∑n
i=1Qikxi∑n
i=1Qik

. (3.18)

4. Repeat steps 2-3 until convergence.

5. Return the responsibilites {Qik} and parameters µ1, . . . , µK , π1, . . . , πK .

In some cases, depending on the form of the parametric family f(·|µk) the M-step update for
mixtures cannot be solved exactly. In these cases, we can use gradient ascent algorithm inside the
M-step:

µ
(r+1)
k = µ

(r)
k + α

n∑
i=1

Qik∇µk log f(xi|µ(r)k ).

This leads to generalized EM algorithm.

3.5 Probabilistic PCA

So far, we have considered the application of EM to clustering, but it can be applied to latent
variable models more broadly. Here, we will derive EM for Probabilistic PCA [3], a latent variable
model for probabilistic dimensionality reduction. Just like in PCA, we try to model a collection
of n p-dimensional vectors using a k-dimensional representation with k < p. Probabilistic PCA
corresponds to the following generative model.

For each data item i = 1, 2, . . . , n:
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• Let Yi be a (latent) k-dimensional normally distributed random vector with mean 0 and
identity covariance:

Yi ∼ N (0, Ik),

• Given Yi, the distribution of the i-th data item is a p-dimensional normal:

Xi ∼ N (µ+ LYi, σ
2I)

where the parameters θ = (µ,L, σ2) correspond to a vector µ ∈ Rp, a matrix L ∈ Rp×k and
σ2 > 0.

Note that unlike in clustering, the latent variables Y1, . . . , Yn are now continuous.

From an equivalent representation Xi = µ + LYi + ε, where ε ∼ N (0, σ2Ip) and is independent of
Y , we see that the marginal model on Xi’s is

f(x|θ) = N
(
x;µ,LL> + σ2I

)
,

where parameters are denoted θ =
(
µ,L, σ2

)
. From here it is clear that the maximum marginal

likelihood estimator of µ is available directly as µ̂ = 1
n

∑n
i=1Xi and thus, we do not require EM to

estimate µ. We will henceforth assume that the data is centred, to simplify notation and remove µ
from the parameters.

On the other hand, maximum marginal likelihood solution for L is unique only up to orthonormal
transformations, which is why a certain form of L is usually enforced (e.g. lower-triangular, or-
thogonal columns). [3] shows that the MLE for PPCA has the following form. Let λ1 ≥ · · · ≥ λp
be the eigenvalues of the sample covariance and V1:k ∈ Rp×k the top k eigenvectors as before. Let
Q ∈ Rk×k be any orthogonal matrix. Then we have:

µMLE = x̄ (σ2)MLE = 1
p−k

∑p
j=k+1 λj

LMLE = V1:k diag((λ1 − (σ2)MLE)
1
2 , . . . , (λk − (σ2)MLE)

1
2 )Q.

We note that the standard PCA is recovered when σ2 → 0. However, the EM algorithm we derive
below can be faster than eigendecomposition, can be implemented online, can handle missing data
and can be extended to more complicated models. We will now proceed by deriving the EM
algorithm.

E-step. By Gaussian conditioning (exercise),

q(yi) = p(yi|xi, θ) = N (yi|bi, R) ,

where

bi =
(
L>L+ σ2I

)−1
L>xi, (3.19)

R = σ2
(
L>L+ σ2I

)−1
. (3.20)
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M-step. Recall that the parameters of interest are θ =
(
L, σ2

)
(since the marginal maximum

likelihood estimate of the mean parameter µ is directly available). We would like to maximise the
variational free energy given by:

F (θ, q) = Ey∼q

[
n∑
i=1

log p(xi, yi|θ)

]
+ const.

By ignoring terms that do not depend on θ and denoting =c to mean “equal up to a constant
independent on θ”

log p(xi, yi|θ) =c −
p

2
log σ2 − 1

2σ2
(xi − Lyi)> (xi − Lyi)

=c −
p

2
log σ2 − 1

2σ2

{
x>i xi − 2x>i Lyi + y>i L

>Lyi

}
=c −

p

2
log σ2 − 1

2σ2

{
x>i xi − 2x>i Lyi + Tr

[
L>Lyiy

>
i

]}
.

Taking expectation over q(yi) = N (yi|bi, R) gives

Eyi∼q (log p(xi, yi|θ)) =c −
p

2
log σ2 − 1

2σ2

{
x>i xi − 2x>i Lbi + Tr

[
L>L

(
bib
>
i +R

)]}
.

It remains to sum over all observations to get

F (θ, q) =c −
np

2
log σ2

− 1

2σ2

{
n∑
i=1

x>i xi − 2

n∑
i=1

x>i Lbi + Tr

[
L>L

(
n∑
i=1

bib
>
i + nR

)]}
.

Now, we have

∂F
∂L

=
1

σ2

{
n∑
i=1

xib
>
i − L

(
n∑
i=1

bib
>
i + nR

)}
,

which by setting to 0 gives the update rule

L(new) =

(
n∑
i=1

xib
>
i

)(
n∑
i=1

bib
>
i + nR

)−1
. (3.21)

Letting τ = σ−2, we have:

∂F
∂τ

=
np

2

1

τ
− 1

2

{
n∑
i=1

x>i xi − 2

n∑
i=1

x>i Lbi + Tr

[
L>L

(
n∑
i=1

bib
>
i + nR

)]}
,

and thus(
σ2
)(new)

=
1

np

{
n∑
i=1

x>i xi − 2

n∑
i=1

x>i L
(new)bi + Tr

[
L(new)>L(new)

(
n∑
i=1

bib
>
i + nR

)]}
. (3.22)

Both Probabilistic PCA and normal mixtures are examples of linear Gaussian models, all of which
have the corresponding learning algorithms based on EM. For a unifying review of these and a
number of other models from the same family, including factor analysis and hidden Markov models,
cf. [2].
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