
Clustering
SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017

Dino Sejdinovic

Clustering is one of the fundamental and ubiquitous tasks in exploratory data analysis – a first
intuition about the data is often based on identifying meaningful disjoint groups among the data
items. In partition-based clustering, which we consider in this note, one divides n data items into
K clusters C1, . . . , CK where for all k, k′ ∈ {1, . . . ,K},

Ck ⊂ {1, . . . , n} , Ck ∩ Ck′ = ∅ ∀k 6= k′,
K⋃
k=1

Ck = {1, . . . , n} .

Central to the goals of clustering is the notion of similarity/dissimilarity between data items. There
will be many ways to define the notion of similarity, and the choice will depend on the dataset being
analyzed and dictated by domain specific knowledge.

Intuitively, clustering aims to group similar items together and to place separate dissimilar items
into different groups. However, note that these two objectives in many cases contradict each
other (similarity is not a transitive relation, while being in the same cluster is an equivalence
relation). One could imagine a long sequence of items such that each next item is very similar to
the previous one so that they should all belong to the same cluster – but that would also mean that
the endpoints are potentially highly dissimilar. Hence, there are also different clustering techniques
which emphasize different aspects of these goals, i.e. whether to keep similar points together or
dissimilar points apart.

There have been several attempts to construct an axiomatic definition of clustering, but it is
surprisingly difficult to put on rigorous footing. Consider the following three basic properties
required of a clustering method F : (D = {xi}ni=1, ρ) 7→ {C1, . . . , CK} which takes as an input
dataset D and a dissimilarity function ρ and returns a partition of D:

• Scale invariance. For any α > 0, F (D, αρ) = F (D, ρ), i.e. partition should not depend on
units in which dissimilarity is measured.

• Richness. For any partition C = {C1, . . . , CK} of D, there exists dissimilarity ρ, such that
F (D, ρ) = C, i.e. the outcome is fully controlled by the dissimilarity function.

• Consistency. If ρ and ρ′ are two dissimilarities such that for all xi, xj ∈ D the following
holds:

xi, xj belong to the same cluster in F (D, ρ) =⇒ ρ′(xi, xj) ≤ ρ(xi, xj)

xi, xj belong to different clusters in F (D, ρ) =⇒ ρ′(xi, xj) ≥ ρ(xi, xj),

then F (D, ρ′) = F (D, ρ). In other words, if the items in the same cluster become more
similar and the items already separated become less similar, then the clustering should not
change.

While all three properties appear natural, Kleinberg’s impossibility theorem [1] states that there
exists no clustering method that satisfies all three properties, implying that every clustering method
will have some undesirable properties. For further discussion, see Section 22.5 in [4].

We will consider three widely used clustering methods: K-means algorithm (and its extension,
DP-means), spectral clustering and hierarchical clustering.

2.1 K-means algorithm

K-means is the simplest partition-based clustering algorithm. It uses a preassigned number of
clusters and represents each cluster using a prototype or cluster centroid µk.

The idea of K-means is to measure the quality of each cluster using its within-cluster deviance from
the cluster centroids

W (Ck, µk) =
∑
i∈Ck

‖xi − µk‖22.

The overall quality of the clustering is then given by the total within-cluster deviance:

W ({Ck}, {µk}) =
K∑
k=1

W (Ck, µk) =
K∑
k=1

∑
i∈Ck

‖xi − µk‖22 =
n∑
i=1

‖xi − µci‖22,

where ci = k if and only if i ∈ Ck. This is now the overall objective function used to select both
the cluster centroids and the assignment of points to clusters. The joint optimization over both the
partition {Ck} and centroids {µk} is a combinatorial optimization problem and is computationally
hard. However, note that

• Given partition {Ck}, we can easily find the optimal centroids by differentiating W with
respect to µk:

∂W

∂µk
= 2

∑
i∈Ck

(xi − µk) = 0 ⇒ µk =
1

|Ck|
∑
i∈Ck

xi

• Given prototypes, we can easily find the optimal partition by assigning each data point to
the closest cluster prototype:

ci = argmin
k
‖xi − µk‖22 .

Thus one can employ an iterative alternating optimization, which is exactly the K-means algorithm:

K-means algorithm.

1. Randomly initialize K cluster centroids µ1, . . . , µK .

2. Cluster assignment: For each i = 1, . . . , n, assign each xi to the cluster with the nearest
centroid,

ci := argmin
k=1,...,K

‖xi − µk‖22

Set Ck := {i : ci = k} for each k.

2

3. Move centroids: Set µ1, . . . , µK to the averages of the new clusters:

µk :=
1

|Ck|
∑
i∈Ck

xi

4. Repeat steps 2-3 until convergence.

5. Return the partition {C1, . . . , CK} and means µ1, . . . , µK .

K-means is a heuristic search algorithm so it can (and often will) get stuck at local optima. The
result depends on the starting configurations. Typically one performs a number of runs from
different random initial values of centroids, and then chooses the end result with minimum W .
Since each step does not increase the objective function and the number of possible partitions is
finite, the algorithm will converge to a local optimum. However, note that there could be ties in
the cluster assignment, which need to be broken in a systematic fashion.

2.2 DP-means

K-means is intuitive and straightforward to implement, but how do we select the number of clusters
K in the first place? Clearly, the objective function is minimized (and equals zero) if we let K = n,
but this is not a meaningful clustering.

One elegant approach is the DP-means algorithm [2] that comes from the interpretation of K-means
using small variance asymptotics of the Expectation Maximization (EM) algorithm for mixture
modelling. We will discuss mixture modelling and EM algorithm later in the course. DP-means
starts from a single cluster, i.e. K = 1 and modifies the cluster assignment step as follows:

1. Initialize K = 1 and µ1 = 1
n

∑n
i=1 xi (the global mean).

2. DP-means cluster assignment: For each i = 1, . . . , n,

• if mink=1,...,K ‖xi − µk‖22 > λ, set K ← K + 1, ci ← K, µK ← xi

• otherwise, set ci = argmink=1,...,K ‖xi − µk‖
2
2.

The rest of the algorithm is exactly the same as K-means. Tuning parameter λ controls the tradeoff
between the traditional K-means objective and the number of clusters. DP-means can be shown
to locally minimize the objective

Wλ({Ck}, {µk},K) =
K∑
k=1

∑
i∈Ck

‖xi − µk‖22 + λK. (2.1)

Indeed, just like in K-means algorithm, the “move centroids” step can only decrease the objective,
whereas for every data item i = 1, . . . , n, its assignment to the nearest centroid if closer than λ will
not increase the objective and if the nearest centroid is at a distance larger than λ we can create
another cluster and pay a penalty λ while still decreasing the overall objective (2.1).

3

2.3 Spectral Clustering

2.3.1 Clustering and Graph Cuts

K-means algorithm will often fail when applied to data with elongated or non-convex cluster struc-
tures. An alternative approach to clustering is to use graph cuts on a weighted undirected sim-
ilarity graph G = ({1, . . . , n},W) induced by the dataset consisting of n observations {xi}ni=1.
The n vertices represent the observations and pairs of vertices are connected by an edge if their
similarity exceeds some threshold. This is based on a similarity (affinity/kernel) matrix W (e.g.,
a non-negative kernel k(xi, xj) can be used as the graph weight wij , or one could consider nearest
neighbour graphs leading to sparse similarity matrices). We wish to partition the dataset into K
clusters, which can be thought of as a partition C1, C2, . . . , CK of the vertex set {1, . . . , n}. The
overall graph cut across clusters is given by

cut (C1, . . . , CK) =

K∑
k=1

cut(Ck, C̄k),

where C̄k is the complement of Ck and cut(A,B) =
∑

i∈A,j∈B wij is the sum of the weights sepa-
rating vertex subset A from the vertex subset B, where A and B are disjoint.

The result of cut minimization, however, results with very small cluster sizes (i.e. it would typically
split a single datapoint from the rest), so one needs to balance the cuts by the cluster sizes in the
partition. One approach is to consider the notion of “ratio cut”

ratio-cut (C1, . . . , CK) =
K∑
k=1

cut(Ck, C̄k)

|Ck|
.

Unfortunately, minimizing this criterion is computationally hard to solve. Spectral clustering algo-
rithm uses a relaxation of the problem of minimizing the ratio cut.

2.3.2 Graph Laplacian

Definition 2.1. The (unnormalized) Laplacian of a graph G = ({1, . . . , n},W) is an n×n matrix
given by

L = D−W,

where D is a diagonal matrix with Dii = deg(i), and deg(i) denotes the degree of vertex i defined
as

deg(i) =

n∑
j=1

wij .

Note that the Laplacian always has the column vector 1 as an eigenvector with eigenvalue 0 (since
all rows sum to zero).

4

Exercise 2.1. For all a ∈ Rn

a>La =
1

2

∑
i,j

wij (ai − aj)2 ≥ 0,

which means that the Laplacian is a positive semi-definite matrix, and all the eigenvalues are
non-negative.

2.3.3 Laplacian and Ratio Cuts

The relationship between the ratio cuts and the graph Laplacian is given in the following:

Lemma 2.1. For a given partition C1, C2, . . . , CK define the column vectors hk ∈ Rn as

hk,i =
1√
|Ck|

1{i∈Ck}.

Then

ratio-cut (C1, . . . , CK) =

K∑
k=1

h>k Lhk. (2.2)

Note that the vectors hk are orthonormal by construction. Thus, to minimize the ratio cut exactly,
we can search for orthonormal vectors hk with entries either 0 or 1/

√
|Ck| which minimize the RHS

in (2.2). This is equivalent to integer programming so it is computationally hard. Thus, we instead
look for any collection of orthonormal vectors hk that minimize RHS in (2.2) – which corresponds
to the eigendecomposition of the Laplacian.

If the original graph is disconnected, in addition to 1, there would be other 0-eigenvectors of L,
corresponding to the indicators of the connected components of the graph (see Theorem 25.4.1 in
[3]). The idea of spectral clustering is to assume that the graph we end up with based on the
dataset, while possibly not disconnected, is a “small perturbation” of a disconnected graph, and
we are trying to recover connected components, i.e., clusters based on a noisy version of the true
Laplacian of the underlying disconnected graph.

The algorithm proceeds by eigendecomposing L and taking the K eigenvectors corresponding to
the K smallest eigenvalues – this gives a new ”data representation”

Z = [u1, . . . , uK] ∈ Rn×K

on which we can apply a more conventional clustering algorithm, such as K-means.

Remark 2.1. A number of normalized graph Laplacians have also been proposed, which are based
on slightly different “balancing” formulation of cuts, including the “random walk” matrix I−D−1W
and I−D−1/2WD−1/2.

[5] provides an in-depth overview of spectral clustering.

5

2.4 Hierarchical Clustering

Hierarchical clustering is an iterative procedure that constructs a hierarchy of clusters, starting
with individual data points and merging them into clusters when their dissimilarity is below a
given threshold and then merging lower level clusters into higher level clusters. This process can
be visualised by a tree/dendrogram. Dendrograms depict cluster assignments with respect to in-
creasing values of dissimilarity threshold. Cutting a dendrogram horizontally at a particular height
partitions the data into disjoint clusters which are represented by the vertical lines it intersects.

To join clusters Ci and Cj into a higher level cluster, we need a way to measure the dissimilarity
D(Ci, Cj) between them based on the dissimilarity d between the individual data items. There are
several approaches:

(a) Single Linkage: elongated, loosely connected clusters

D(Ci, Cj) = min
x,y

(d(x, y)|x ∈ Ci, y ∈ Cj) ,

(b) Complete Linkage: compact clusters, relatively similar objects can remain separated at high
levels

D(Ci, Cj) = max
x,y

(d(x, y)|x ∈ Ci, y ∈ Cj) ,

(c) Average Linkage: tries to balance the two above, but affected by the scale of dissimilarities

D(Ci, Cj) = avgx,y (d(x, y)|x ∈ Ci, y ∈ Cj) .

References

[1] Jon M. Kleinberg. An impossibility theorem for clustering. In Advances in Neural Information
Processing Systems 15, pages 463–470. MIT Press, 2003.

[2] Brian Kulis and Michael I. Jordan. Revisiting k-means: New Algorithms via Bayesian Nonpara-
metrics. In Proceedings of the International Conference on Machine Learning (ICML), pages
513–520, 2012.

[3] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

[4] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, New York, NY, USA, 2014.

[5] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416,
December 2007.

6

	K-means algorithm
	DP-means
	Spectral Clustering
	Clustering and Graph Cuts
	Graph Laplacian
	Laplacian and Ratio Cuts

	Hierarchical Clustering

