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1.1 Data Matrices and Notation

e We will typically assume that we have collected p variables (features/attributes/dimensions)
on n examples (items/observations) which can be represented as an n x p data matriz X =
(xij), where x;; is the observed value of the j-th variable for the i-th example:

r11 X122 ... xlj 000 xlp
T21 X22 ... XT25 ... Xp
X = (1.1)
Tl Ti2 ... Tij ... Tip
L Tnl Tn2 ... Tpj ... Inp |

e We will denote the rows of X as x; € RP and treat them as column vectors: i.e., x; is the
transpose of the i-th row of the data matrix X.

Ti1
T; = %2 = [l‘il,xiQ,...,xip]T, i=1,...,n. (1.2)

S
e We often assume that z1,...,z, are independent and identically distributed (i.i.d.) samples
of a random wvector X over RP. When referring to the j-th dimension of X, we will write

x )

Broadly speaking, dimensionality reduction aims to, for each data item x; € RP, find a lower
dimensional representation z; € R* with k < p such that the map = — z preserves certain
interesting statistical properties in data.

1.2 Principal Components Analysis

Principal Components Analysis (PCA) is a dimensionality reduction technique which aims to pre-
serve variance in the data. PCA is a linear dimensionality reduction technique: it essentially looks
for a new basis to represent a noisy dataset.

For simplicity, we will assume for PCA that our dataset is centred, i.e., that its average is T =



LS @ = 0. If not, we can always subtract it from each z; (this is called data centering). Thus,
we can write the sample covariance matriz S as

o IR - T IR T 1 T
S =Cov(X) = n_IZ(wi—x)(:Ui—x) :n_Iinxi :mX X. (1.3)
i=1 =1
Matrix S is symmetric and positive semi-definite.
PCA recovers an orthonormal basis v1,va, ..., v, in RP — vectors v; are called principal components

(PC) or loading vectors — such that:

e The first principal component (PC) vy is the direction of greatest variance of data.

e The j-th PC v; is the direction orthogonal to vi,va,...,vj_1 of greatest variance, for j =
2,...,p.

Given this basis, the k-dimensional representation of data item x; is the vector of projections of z;
onto the first £ PCs:

T
R = ‘/1Tkxl = Uirxzﬁ cee 7Ul—crxii| € Rk7
where Vi, = [v1,...,v%] is a p X k matrix. This gives us the transformed data matriz, also called
the scores matrix
Z = XV, € Rk, (1.4)

1.2.1 Deriving the first principal component

Recall that we model our dataset is an i.i.d. sample {z;}!" ; of a random vector X = [X(J) ... X®)] T
Projections to PCs define a linear transformation of X given by Z = VlTkX which is a k-dimensional
random vector. Dimensions of Z are called derived variables. Consider the first dimension of Z:

zW — vlTX = vuX(l) + vng(z) +--- 4+ ’U1pX(p)- (1.5)

The first PC v; = [v11,... ,vlp}T € RP? is chosen to maximise the sample variance \//a\r(Z(l)) =
v] Cov(X)vy, i.e. it is defined as the solution to

max v] Sv|
v1

subject to: UlTvl =1

By considering the Lagrangian:

L (’1)1,)\1) = UlTSvl — )\1 (U;rvl — 1) (1.6)
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and the corresponding vector of partial derivatives

8£(’U1, )\1)
87./1
we obtain the eigenvector equation Sv; = Ajvy, i.e. v; must be an eigenvector of S and the dual

variable \; is the corresponding eigenvalue. Since vlTSvl = AlvlT v1 = A1, the first PC must be the
eigenvector associated with the largest eigenvalue of S.

== 2301 - 2)\1’[)1 (17)

1.2.2 Subsequent principal components

Similarly, the second PC maximizes the sample variance \//'EE(Z @) = v 60\\/()( Jua of the second
derived variable among the directions orthogonal to vs, i.e.

max vy Svg
v2

subject to: ’U;—’Ug =1, v]—vg = 0.

Lagrangian is
L (v2, Ao, y2) = vg Svg — Mg (v;@ — 1) — Y901 Uy (1.8)
and setting the corresponding vector of partial derivatives to zero

8[’(027 )\25 72)

8’[)2 = 251)2 - 2/\21)2 — Y2U1 = 0. (19)

Left-multiplying (T.9) by v gives 2v] Sva = ~2. However, since S is symmetric and v; is its
eigenvector, we have
Yo = 2v{ Svy = 20y Sv; = 2\ jvg v1 = 0. (1.10)

Hence Svo = Aowo and similarly as before vs must be the eigenvector corresponding to the second
largest eigenvalue Ay of S.

Continuing the process further, we obtain the eigenvalue decomposition of S given by
S=VAVT (1.11)
where A is a diagonal matrix with eigenvalues
AM>A>--2>)X,2>0 (1.12)

on the diagonal and V is a p x p orthogonal matrix (i.e. VVT = VTV = I) whose columns are the
p eigenvectors of S, i.e. the principal components vy, ..., vp.

In summary,

e Derived scalar variable (projection to the j-th principal component) Z ) = vaX has sample
variance \j, for j =1,...,p.

e Derived variables are uncorrelated: Cov(Z®, Z0)) = v Sv; = \jv[v; =0, for i # j.
e The total sample variance is given by Tr(S) = Y8 | Si; = A\ + ...+ Ay, so the proportion of

total variance explained by the j** PC is m
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1.2.3 Reconstruction view of PCA

We can map back to the original p-dimensional space using

Zi = ViV, (1.13)

This is a reconstruction of data item z;. It can be shown (problem sheet) that PCA gives the
optimal linear reconstruction based on a k-dimensional compression.

1.2.4 PCA via the Singular Value Decomposition

PCA can also be understood using the Singular Value Decomposition (SVD) of data matrix X.
Recall that any real-valued n x p matrix X can be written as X = UDV T where

e U is an n x n orthogonal matrix: UU =U"U = I,,.

e D is anxp matrix with decreasing non-negative elements on the diagonal (the singular values
of X) and zero off-diagonal elements.

e Vis a p x p orthogonal matrix: VVI =V TV = I,

Note that
(n-1)S=X"X=WpvH)"wUbDv")=vD'UTUDVT =vD DV,
. . . . . 1 T
using orthogonality of U. The eigenvalues of S are thus the diagonal entries of A = =5 D" D.

We also have
XX = WwpvTywpvH)T =upvTvDTUT =UDDTUT,

using orthogonality of V.

The n x n matrix B = XX T with entries B;; = xiij is called the Gram matriz of dataset X. Note
that B and (n — 1)S = XX have the same nonzero eigenvalues, equal to the non-zero squared
singular values of X (non-zero entries on the diagonals of DT D and DDT).

If we consider projections to all principal components, the transformed data matrix is

Z=XV=UDV'V =UD, (1.14)

If p < n this means

z; = [UilDlh ceey Uiprp]T , (1‘15)



and if p > n only the first n projections are defined (sample covariance will be at most rank n):

Z; = [UﬂDH,...,UinDTm,O,...,O]T. (116)

Thus, Z can be obtained from the eigendecomposition of Gram matrix B. When p > n, eigen-
decomposition of B requires much less computation, O(n?), than the eigendecomposition of the
covariance matrix, O(p?), so is the preferred method for PCA in that case.

1.3 Biplots

Denote e; = [0,...,0,1,0...,0] € RP with 1 at the j-th dimension. This the unit vector pointing
in the direction of the original variable X ). Let us write

v eRP =VTe; = [Vj1,...,Vjp]"

for the j-th row of V' (should not be confused with v; which is the j-th column of V', and the j-th
principal component). Thus v; is the projection of e; to principal components and as such indicates
the weighting each PC gives to the original variable X ).

Unscaled biplots plot first two dimensions of each vj, j = 1,...,p - this visualises the original
variables in the first two principal components directions.

By SVD, we have that the individual entries in the data matrix are given by

min{n,p}
vy = Y UuDuVj =z v;. (1.17)
=1

Scaled biplots consider a set of projections different than (1.15]), which is given by (assuming p < n
for simplicity):

s, . l—« . 1—al '

Zi=[UnDi %, ..., UpDy ], (1.18)

for some « € [0, 1], i.e. the case av = 0 recovers the regular projections, i.e., the unscaled biplot.

The case a = 1, i.e., Z = Ut.n,1:p, is particularly interesting as the sample covariance of the
transformed data is ) )

Coo [ 7 T

Cov (Z) = mUlzn,I:pUliT%liP = mIZN

which means that the derived variables are uncorrelated and have equal variance.

To visualise the original variables in this space, we plot the first two dimensions of each

I;j - [Dlalvjlv s 7Dpapvjp]T'

Note that by SVD, we have x;; = Z;rﬂj as in (1.17)).

Again, for the case @ = 1, the scaled biplot has a nice property: since the sample covariance
between X @ and XU is

— ) ) 1 1

Cov(XOxW) = 8 = —— (VDTDVT) - s

n—1 ij n—1"




we can inspect the angle between the projected variables in the biplot and interpret it as the

correlation between the original variables.

> biplot(Crabs.pca,scale=0)
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Figure 1: Left.
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Unscaled biplot of Crabs data: the first principal component explains most of

the variance. Right. Scaled biplot of Crabs data: projections have equal variance and all original

variables are strongly correlated.

1.4 Multidimensional Scaling

Suppose there are n points X in RP, but we are only given the n x n matrix D of squared Fuclidean
inter-point distances. Can we reconstruct X? Rigid transformations (translations, rotations and
reflections) do not change inter-point distances so we certainly cannot recover X exactly. However,
as we will see, it is possible to recover X up to these transformations.

Let Dij = ||[L‘l

(@i — 25) T (s

T T
T; Ty +X;Tj—

)

— 2|3 be the squared distance between points x; and x;. Then:

T
2z; .

Let B = XX be the n x n Gram matrix of dot-products, B;; = I;r.CU] The above shows that D

can be computed from B. In matrix form,

D = diag (B)1' + 1diag (B)' — 2B.

Exercise 1.1. Show that B can be recovered from D if we assume centred data, i.e. Y ;" z; = 0.



Now recall that if we knew X, we can compute the SV[ﬂ X=UDVT.

Also recall the eigendecomposition of B:
B=XX'=UDD'U" =UAU".
As X has rank at most r = min(n,p), we have at most r non-zero singular values in D. Let
QEZT = UiA% e R". If r < p, pad Z; with Os so that it has length p. Then,
@) &; = UAU] =Bjj =z a;

and we have found a set of vectors in RP with dot-products given by B, and hence their distances
are given by D, as desired. But note that this eigendecomposition can be obtained from B without
the knowledge of X. The vectors &; differ from x; only via the orthogonal matrix V' (recall that
sz =U,DV' = JNZZTVT) so are equivalent up to rotation and reflections.

Now, we can use only the largest k£ < min(n, p) eigenvalues and eigenvectors in the reconstruction,
giving the ‘best’ k-dimensional view of the data. This is called classical Multidimensional Scaling
(MDS) and it is equivalent to PCA, but as we have seen the original data matrix X need not even
be observed directly — instead we observe the distance matrix D, i.e. data items are observed only
through their dissimilarities from other data items.

More generally, MDS is a class of dimensionality reduction techniques which constructs a z1,..., 2, €
R¥ which (approximately) preserves the inter-item dissimilarities D;; = p(;, ;) (We can use Eu-
clidean distances but other dissimilarities are possible) according to a suitable criterion, with

lzi = 2zjll2 = p(xi, 2;) = Dyj,

and differences in dissimilarities measured by the appropriate loss A(D;j, ||z; — z;]|2). The objective
is to find Z which minimizes the stress function

S(Z) = ADy, |z — 22)-
i#]

Choices of (dis)similarities and (stress) functions lead to different algorithms:

e Classical/Torgerson: preserves inner products instead - strain function (cmdscale in R)
S(Z) =) By — (2 — 2,2 — 7))
i#j
e Metric Shephard-Kruskal: preserves distances w.r.t. squared stress
2
S(Z) =Y Dy — ||z — z]l2)
i#]
e Sammon: preserves shorter distances more (sammon)
D, — llz: — 2:115)2
sz =y Po—p sl
. Dzy
7]

'do not confuse D (the matrix with singular values on the diagonal and zeros off-diagonal) with D (the distance
matrix)




e Non-Metric Shephard-Kruskal: ignores actual distance values, only preserves ranks (isoMDS),
which alternates between minimizing stress over z’s using gradient descent and over an in-
creasing function ¢ using isotonic regression.

S(Z) = min Yizil9(Di) — llzi — zll2)”

g increasing Zi#j ”ZZ —Zj ”%
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