# Dimensionality Reduction

SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017

Dino Sejdinovic

# 1.1 Data Matrices and Notation

• We will typically assume that we have collected  $p$  variables (features/attributes/dimensions) on *n* examples (items/observations) which can be represented as an  $n \times p$  data matrix  $X =$  $(x_{ij})$ , where  $x_{ij}$  is the observed value of the j-th variable for the *i*-th example:

$$
\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1j} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2j} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{i1} & x_{i2} & \dots & x_{ij} & \dots & x_{ip} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nj} & \dots & x_{np} \end{bmatrix} .
$$
 (1.1)

• We will denote the rows of **X** as  $x_i \in \mathbb{R}^p$  and treat them as *column vectors*: i.e.,  $x_i$  is the transpose of the  $i$ -th row of the data matrix  $X$ .

$$
x_i = \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ip} \end{bmatrix} = [x_{i1}, x_{i2}, \dots, x_{ip}]^\top, \quad i = 1, \dots, n. \tag{1.2}
$$

• We often assume that  $x_1, \ldots, x_n$  are independent and identically distributed (i.i.d.) samples of a random vector X over  $\mathbb{R}^p$ . When referring to the j-th dimension of X, we will write  $X^{(j)}$ .

Broadly speaking, dimensionality reduction aims to, for each data item  $x_i \in \mathbb{R}^p$ , find a lower dimensional representation  $z_i \in \mathbb{R}^k$  with  $k \ll p$  such that the map  $x \mapsto z$  preserves certain interesting statistical properties in data.

## 1.2 Principal Components Analysis

Principal Components Analysis (PCA) is a dimensionality reduction technique which aims to preserve *variance* in the data. PCA is a *linear* dimensionality reduction technique: it essentially looks for a new basis to represent a noisy dataset.

For simplicity, we will assume for PCA that our dataset is *centred*, i.e., that its average is  $\bar{x}$  =

1  $\frac{1}{n}\sum_{i=1}^{n}x_i=0$ . If not, we can always subtract it from each  $x_i$  (this is called *data centering*). Thus, we can write the sample covariance matrix S as

$$
S = \widehat{\text{Cov}}(X) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^{\top} = \frac{1}{n-1} \sum_{i=1}^{n} x_i x_i^{\top} = \frac{1}{n-1} \mathbf{X}^{\top} \mathbf{X}.
$$
 (1.3)

Matrix  $S$  is symmetric and positive semi-definite.

PCA recovers an orthonormal basis  $v_1, v_2, \ldots, v_p$  in  $\mathbb{R}^p$  – vectors  $v_i$  are called principal components  $(PC)$  or loading vectors – such that:

- The first principal component  $(PC)$   $v_1$  is the *direction of greatest variance* of data.
- The j-th PC  $v_i$  is the direction orthogonal to  $v_1, v_2, \ldots, v_{i-1}$  of greatest variance, for j =  $2, \ldots, p.$

Given this basis, the k-dimensional representation of data item  $x_i$  is the vector of projections of  $x_i$ onto the first  $k$  PCs:

$$
z_i = V_{1:k}^{\top} x_i = \left[ v_1^{\top} x_i, \dots, v_k^{\top} x_i \right]^{\top} \in \mathbb{R}^k,
$$

where  $V_{1:k} = [v_1, \ldots, v_k]$  is a  $p \times k$  matrix. This gives us the transformed data matrix, also called the scores matrix

$$
\mathbf{Z} = \mathbf{X} V_{1:k} \in \mathbb{R}^{n \times k}.
$$
\n
$$
(1.4)
$$

#### 1.2.1 Deriving the first principal component

Recall that we model our dataset is an i.i.d. sample  ${x_i}_{i=1}^n$  of a random vector  $X = [X^{(1)} \dots X^{(p)}]^\top$ . Projections to PCs define a linear transformation of X given by  $Z = V_{1:k}^{\top} X$  which is a k-dimensional random vector. Dimensions of  $Z$  are called *derived variables*. Consider the first dimension of  $Z$ :

$$
Z^{(1)} = v_1^{\top} X = v_{11} X^{(1)} + v_{12} X^{(2)} + \dots + v_{1p} X^{(p)}.
$$
\n(1.5)

The first PC  $v_1 = [v_{11}, \ldots, v_{1p}]^\top \in \mathbb{R}^p$  is chosen to maximise the sample variance  $\widehat{\text{Var}}(Z^{(1)}) =$  $v_1^{\top} \widehat{\text{Cov}}(X)v_1$ , i.e. it is defined as the solution to

$$
\max_{v_1} v_1^\top Sv_1
$$
  
subject to:  $v_1^\top v_1 = 1$ .

By considering the Lagrangian:

$$
\mathcal{L}(v_1, \lambda_1) = v_1^\top S v_1 - \lambda_1 \left( v_1^\top v_1 - 1 \right) \tag{1.6}
$$

and the corresponding vector of partial derivatives

$$
\frac{\partial \mathcal{L}(v_1, \lambda_1)}{\partial v_1} = 2Sv_1 - 2\lambda_1 v_1 \tag{1.7}
$$

we obtain the eigenvector equation  $Sv_1 = \lambda_1v_1$ , i.e.  $v_1$  must be an eigenvector of S and the dual variable  $\lambda_1$  is the corresponding eigenvalue. Since  $v_1^\top Sv_1 = \lambda_1 v_1^\top v_1 = \lambda_1$ , the first PC must be the eigenvector associated with the largest eigenvalue of S.

#### 1.2.2 Subsequent principal components

Similarly, the second PC maximizes the sample variance  $\widehat{\text{Var}}(Z^{(2)}) = v_2^{\top} \widehat{\text{Cov}}(X) v_2$  of the second derived variable among the directions orthogonal to  $v_2$ , i.e.

$$
\max_{v_2} v_2^{\top} S v_2
$$
  
subject to:  $v_2^{\top} v_2 = 1$ ,  $v_1^{\top} v_2 = 0$ .

Lagrangian is

$$
\mathcal{L}(v_2, \lambda_2, \gamma_2) = v_2^\top S v_2 - \lambda_2 \left( v_2^\top v_2 - 1 \right) - \gamma_2 v_1^\top v_2 \tag{1.8}
$$

and setting the corresponding vector of partial derivatives to zero

<span id="page-2-0"></span>
$$
\frac{\partial \mathcal{L}(v_2, \lambda_2, \gamma_2)}{\partial v_2} = 2Sv_2 - 2\lambda_2v_2 - \gamma_2v_1 = 0.
$$
\n(1.9)

Left-multiplying [\(1.9\)](#page-2-0) by  $v_1^{\top}$  gives  $2v_1^{\top}Sv_2 = \gamma_2$ . However, since S is symmetric and  $v_1$  is its eigenvector, we have

$$
\gamma_2 = 2v_1^\top Sv_2 = 2v_2^\top Sv_1 = 2\lambda_1 v_2^\top v_1 = 0. \tag{1.10}
$$

Hence  $Sv_2 = \lambda_2v_2$  and similarly as before  $v_2$  must be the eigenvector corresponding to the second largest eigenvalue  $\lambda_2$  of S.

Continuing the process further, we obtain the eigenvalue decomposition of S given by

$$
S = V\Lambda V^{\top}
$$
\n<sup>(1.11)</sup>

where  $\Lambda$  is a diagonal matrix with eigenvalues

$$
\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_p \ge 0 \tag{1.12}
$$

on the diagonal and V is a  $p \times p$  orthogonal matrix (i.e.  $VV^{\top} = V^{\top}V = I$ ) whose *columns* are the p eigenvectors of S, i.e. the principal components  $v_1, \ldots, v_p$ .

In summary,

- Derived scalar variable (projection to the j-th principal component)  $Z^{(j)} = v_j^{\top} X$  has sample variance  $\lambda_j$ , for  $j = 1, \ldots, p$ .
- Derived variables are uncorrelated:  $Cov(Z^{(i)}, Z^{(j)}) \approx v_i^{\top} S v_j = \lambda_j v_i^{\top} v_j = 0$ , for  $i \neq j$ .
- The total sample variance is given by  $\text{Tr}(S) = \sum_{i=1}^{p} S_{ii} = \lambda_1 + \ldots + \lambda_p$ , so the proportion of total variance explained by the j<sup>th</sup> PC is  $\frac{\lambda_j}{\lambda_1 + \lambda_2 + \dots + \lambda_p}$

### 1.2.3 Reconstruction view of PCA

We can map back to the original  $p$ -dimensional space using

$$
\hat{x}_i = V_{1:k} V_{1:k}^\top x_i. \tag{1.13}
$$

This is a reconstruction of data item  $x_i$ . It can be shown (problem sheet) that PCA gives the optimal linear reconstruction based on a k-dimensional compression.

#### 1.2.4 PCA via the Singular Value Decomposition

PCA can also be understood using the Singular Value Decomposition (SVD) of data matrix X. Recall that any real-valued  $n \times p$  matrix **X** can be written as  $\mathbf{X} = U D V^{\top}$  where

- U is an  $n \times n$  orthogonal matrix:  $UU^{\top} = U^{\top}U = I_n$ .
- D is a  $n \times p$  matrix with decreasing non-negative elements on the diagonal (the singular values of  $X$ ) and zero off-diagonal elements.
- *V* is a  $p \times p$  orthogonal matrix:  $VV^{\top} = V^{\top}V = I_p$ .

Note that

$$
(n-1)S = \mathbf{X}^{\top}\mathbf{X} = (UDV^{\top})^{\top}(UDV^{\top}) = VD^{\top}U^{\top}UDV^{\top} = VD^{\top}DV^{\top},
$$

using orthogonality of U. The eigenvalues of S are thus the diagonal entries of  $\Lambda = \frac{1}{n-1}D^{\top}D$ .

We also have

$$
\mathbf{X} \mathbf{X}^{\top} = (U D V^{\top}) (U D V^{\top})^{\top} = U D V^{\top} V D^{\top} U^{\top} = U D D^{\top} U^{\top},
$$

using orthogonality of  $V$ .

The  $n \times n$  matrix  $\mathbf{B} = \mathbf{XX}^\top$  with entries  $\mathbf{B}_{ij} = x_i^\top x_j$  is called the *Gram matrix* of dataset **X**. Note that **B** and  $(n-1)S = \mathbf{X}^\top \mathbf{X}$  have the same nonzero eigenvalues, equal to the non-zero squared singular values of **X** (non-zero entries on the diagonals of  $D^{\top}D$  and  $DD^{\top}$ ).

If we consider projections to all principal components, the transformed data matrix is

$$
\mathbf{Z} = \mathbf{X}V = UDV^{\top}V = UD,
$$
\n(1.14)

If  $p \leq n$  this means

<span id="page-3-0"></span>
$$
z_i = [U_{i1}D_{11}, \dots, U_{ip}D_{pp}]^\top , \qquad (1.15)
$$

and if  $p > n$  only the first n projections are defined (sample covariance will be at most rank n):

$$
z_i = [U_{i1}D_{11}, \dots, U_{in}D_{nn}, 0, \dots, 0]^\top.
$$
\n(1.16)

Thus, **Z** can be obtained from the eigendecomposition of Gram matrix **B**. When  $p \gg n$ , eigendecomposition of **B** requires much less computation,  $O(n^3)$ , than the eigendecomposition of the covariance matrix,  $O(p^3)$ , so is the preferred method for PCA in that case.

## 1.3 Biplots

Denote  $\mathbf{e}_j = [0, \ldots, 0, 1, 0, \ldots, 0] \in \mathbb{R}^p$  with 1 at the j-th dimension. This the unit vector pointing in the direction of the original variable  $X^{(j)}$ . Let us write

$$
\nu_j \in \mathbb{R}^p = V^\top \mathbf{e}_j = [V_{j1}, \dots, V_{jp}]^\top
$$

for the j-th row of V (should not be confused with  $v_j$  which is the j-th column of V, and the j-th principal component). Thus  $\nu_i$  is the projection of  $\mathbf{e}_i$  to principal components and as such indicates the weighting each PC gives to the original variable  $X^{(j)}$ .

Unscaled biplots plot first two dimensions of each  $\nu_j$ ,  $j = 1, \ldots, p$  - this visualises the original variables in the first two principal components directions.

By SVD, we have that the individual entries in the data matrix are given by

<span id="page-4-0"></span>
$$
x_{ij} = \sum_{\ell=1}^{\min\{n,p\}} U_{i\ell} D_{\ell\ell} V_{j\ell} = z_i^{\top} \nu_j.
$$
 (1.17)

Scaled biplots consider a set of projections different than [\(1.15\)](#page-3-0), which is given by (assuming  $p \leq n$ for simplicity):

$$
\tilde{z}_i = \left[ U_{i1} D_{11}^{1-\alpha}, \dots, U_{ip} D_{pp}^{1-\alpha} \right]^\top,\tag{1.18}
$$

for some  $\alpha \in [0, 1]$ , i.e. the case  $\alpha = 0$  recovers the regular projections, i.e., the unscaled biplot.

The case  $\alpha = 1$ , i.e.,  $\tilde{Z} = U_{1:n,1:p}$ , is particularly interesting as the sample covariance of the transformed data is

$$
\widehat{\text{Cov}}\left(\tilde{Z}\right) = \frac{1}{n-1} U_{1:n,1:p}^{\top} U_{1:n,1:p} = \frac{1}{n-1} I_p,
$$

which means that the derived variables are uncorrelated and have equal variance.

To visualise the original variables in this space, we plot the first two dimensions of each

$$
\tilde{\nu}_j = [D_{11}^{\alpha}V_{j1},\ldots,D_{pp}^{\alpha}V_{jp}]^{\top}.
$$

Note that by SVD, we have  $x_{ij} = \tilde{z}_i^{\top} \tilde{\nu}_j$  as in [\(1.17\)](#page-4-0).

Again, for the case  $\alpha = 1$ , the scaled biplot has a nice property: since the sample covariance between  $X^{(i)}$  and  $X^{(j)}$  is

$$
\widehat{\mathrm{Cov}}(X^{(i)}X^{(j)}) = S_{ij} = \frac{1}{n-1} \left( V D^{\top} D V^{\top} \right)_{i,j} = \frac{1}{n-1} \tilde{\nu}_i^{\top} \tilde{\nu}_j,
$$

we can inspect the angle between the projected variables in the biplot and interpret it as the correlation between the original variables.



Figure 1: Left. Unscaled biplot of Crabs data: the first principal component explains most of the variance. Right. Scaled biplot of Crabs data: projections have equal variance and all original variables are strongly correlated.

#### 1.4 Multidimensional Scaling

Suppose there are n points **X** in  $\mathbb{R}^p$ , but we are only given the  $n \times n$  matrix **D** of squared Euclidean inter-point distances. Can we reconstruct  $X$ ? Rigid transformations (translations, rotations and reflections) do not change inter-point distances so we certainly cannot recover  $X$  exactly. However, as we will see, it is possible to recover  $X$  up to these transformations.

Let  $\mathbf{D}_{ij} = ||x_i - x_j||_2^2$  be the squared distance between points  $x_i$  and  $x_j$ . Then:

$$
\mathbf{D}_{ij} = (x_i - x_j)^\top (x_i - x_j) \n= x_i^\top x_i + x_j^\top x_j - 2x_i^\top x_j.
$$

Let  $\mathbf{B} = \mathbf{X} \mathbf{X}^{\top}$  be the  $n \times n$  Gram matrix of dot-products,  $\mathbf{B}_{ij} = x_i^{\top} x_j$ . The above shows that  $\mathbf{D}$ can be computed from B. In matrix form,

$$
\mathbf{D} = \text{diag}(\mathbf{B}) \mathbf{1}^{\top} + \mathbf{1} \text{diag}(\mathbf{B})^{\top} - 2\mathbf{B}.
$$

**Exercise 1.1.** Show that **B** can be recovered from **D** if we assume centred data, i.e.  $\sum_{i=1}^{n} x_i = 0$ .

Now recall that if we knew **X**, we can compute the SVD<sup>[1](#page-6-0)</sup> **X** =  $UDV^{\top}$ .

Also recall the eigendecomposition of B:

$$
\mathbf{B} = \mathbf{X} \mathbf{X}^{\top} = U D D^{\top} U^{\top} = U \Lambda U^{\top}.
$$

As **X** has rank at most  $r = \min(n, p)$ , we have at most r non-zero singular values in D. Let  $\tilde{x}_i^{\top} = U_i \Lambda^{\frac{1}{2}} \in \mathbb{R}^r$ . If  $r < p$ , pad  $\tilde{x}_i$  with 0s so that it has length p. Then,

$$
\tilde{x}_i^\top \tilde{x}_j = U_i \Lambda U_j^\top = \mathbf{B}_{ij} = x_i^\top x_j
$$

and we have found a set of vectors in  $\mathbb{R}^p$  with dot-products given by **B**, and hence their distances are given by D, as desired. But note that this eigendecomposition can be obtained from B without the knowledge of **X**. The vectors  $\tilde{x}_i$  differ from  $x_i$  only via the orthogonal matrix  $V^{\top}$  (recall that  $x_i^{\top} = U_i D V^{\top} = \tilde{x}_i^{\top} V^{\top}$  so are equivalent up to rotation and reflections.

Now, we can use only the largest  $k < \min(n, p)$  eigenvalues and eigenvectors in the reconstruction, giving the 'best' k-dimensional view of the data. This is called classical Multidimensional Scaling (*MDS*) and it is equivalent to PCA, but as we have seen the original data matrix  $\bf{X}$  need not even be observed directly – instead we observe the distance matrix D, i.e. data items are observed only through their dissimilarities from other data items.

More generally, MDS is a class of dimensionality reduction techniques which constructs a  $z_1, \ldots, z_n \in$  $\mathbb{R}^k$  which (approximately) preserves the inter-item dissimilarities  $\mathbf{D}_{ij} = \rho(x_i, x_j)$  (we can use Euclidean distances but other dissimilarities are possible) according to a suitable criterion, with

$$
||z_i - z_j||_2 \approx \rho(x_i, x_j) = \mathbf{D}_{ij},
$$

and differences in dissimilarities measured by the appropriate loss  $\Delta(\mathbf{D}_{ij}, ||z_i-z_j||_2)$ . The objective is to find Z which minimizes the stress function

$$
S(\mathbf{Z}) = \sum_{i \neq j} \Delta(\mathbf{D}_{ij}, ||z_i - z_j||_2).
$$

Choices of (dis)similarities and (stress) functions lead to different algorithms:

• Classical/Torgerson: preserves inner products instead - strain function (cmdscale in R)

$$
S(\mathbf{Z}) = \sum_{i \neq j} (\mathbf{B}_{ij} - \langle z_i - \bar{z}, z_j - \bar{z} \rangle)^2
$$

• Metric Shephard-Kruskal: preserves distances w.r.t. squared stress

$$
S(\mathbf{Z}) = \sum_{i \neq j} (\mathbf{D}_{ij} - ||z_i - z_j||_2)^2
$$

• Sammon: preserves shorter distances more (sammon)

$$
S(\mathbf{Z}) = \sum_{i \neq j} \frac{(\mathbf{D}_{ij} - ||z_i - z_j||_2)^2}{\mathbf{D}_{ij}}
$$

<span id="page-6-0"></span><sup>&</sup>lt;sup>1</sup>do not confuse D (the matrix with singular values on the diagonal and zeros off-diagonal) with  $\bf{D}$  (the distance matrix)

• Non-Metric Shephard-Kruskal: ignores actual distance values, only preserves ranks (isoMDS), which alternates between minimizing stress over z's using gradient descent and over an increasing function  $g$  using isotonic regression.

$$
S(\mathbf{Z}) = \min_{g \text{ increasing}} \frac{\sum_{i \neq j} (g(\mathbf{D}_{ij}) - ||z_i - z_j||_2)^2}{\sum_{i \neq j} ||z_i - z_j||_2^2}.
$$