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1.1 Data Matrices and Notation

• We will typically assume that we have collected p variables (features/attributes/dimensions)
on n examples (items/observations) which can be represented as an n × p data matrix X =
(xij), where xij is the observed value of the j-th variable for the i-th example:

X =



x11 x12 . . . x1j . . . x1p
x21 x22 . . . x2j . . . x2p

...
...

. . .
...

. . .
...

xi1 xi2 . . . xij . . . xip
...

...
. . .

...
. . .

...
xn1 xn2 . . . xnj . . . xnp


. (1.1)

• We will denote the rows of X as xi ∈ Rp and treat them as column vectors: i.e., xi is the
transpose of the i-th row of the data matrix X.

xi =


xi1
xi2
...
xip

 = [xi1, xi2, . . . , xip]
> , i = 1, . . . , n. (1.2)

• We often assume that x1, . . . , xn are independent and identically distributed (i.i.d.) samples
of a random vector X over Rp. When referring to the j-th dimension of X, we will write
X(j).

Broadly speaking, dimensionality reduction aims to, for each data item xi ∈ Rp, find a lower
dimensional representation zi ∈ Rk with k � p such that the map x 7→ z preserves certain
interesting statistical properties in data.

1.2 Principal Components Analysis

Principal Components Analysis (PCA) is a dimensionality reduction technique which aims to pre-
serve variance in the data. PCA is a linear dimensionality reduction technique: it essentially looks
for a new basis to represent a noisy dataset.

For simplicity, we will assume for PCA that our dataset is centred, i.e., that its average is x̄ =



1
n

∑n
i=1 xi = 0. If not, we can always subtract it from each xi (this is called data centering). Thus,

we can write the sample covariance matrix S as

S = Ĉov(X) =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)> =
1

n− 1

n∑
i=1

xix
>
i =

1

n− 1
X>X. (1.3)

Matrix S is symmetric and positive semi-definite.

PCA recovers an orthonormal basis v1, v2, . . . , vp in Rp – vectors vi are called principal components
(PC) or loading vectors – such that:

• The first principal component (PC) v1 is the direction of greatest variance of data.

• The j-th PC vj is the direction orthogonal to v1, v2, . . . , vj−1 of greatest variance, for j =
2, . . . , p.

Given this basis, the k-dimensional representation of data item xi is the vector of projections of xi
onto the first k PCs:

zi = V >1:kxi =
[
v>1 xi, . . . , v

>
k xi

]>
∈ Rk,

where V1:k = [v1, . . . , vk] is a p × k matrix. This gives us the transformed data matrix, also called
the scores matrix

Z = XV1:k ∈ Rn×k. (1.4)

1.2.1 Deriving the first principal component

Recall that we model our dataset is an i.i.d. sample {xi}ni=1 of a random vectorX =
[
X(1) . . . X(p)

]>
.

Projections to PCs define a linear transformation of X given by Z = V >1:kX which is a k-dimensional
random vector. Dimensions of Z are called derived variables. Consider the first dimension of Z:

Z(1) = v>1 X = v11X
(1) + v12X

(2) + · · ·+ v1pX
(p). (1.5)

The first PC v1 = [v11, . . . , v1p]
> ∈ Rp is chosen to maximise the sample variance V̂ar(Z(1)) =

v>1 Ĉov(X)v1, i.e. it is defined as the solution to

max
v1

v>1 Sv1

subject to: v>1 v1 = 1.

By considering the Lagrangian:

L (v1, λ1) = v>1 Sv1 − λ1
(
v>1 v1 − 1

)
(1.6)
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and the corresponding vector of partial derivatives

∂L(v1, λ1)

∂v1
= 2Sv1 − 2λ1v1 (1.7)

we obtain the eigenvector equation Sv1 = λ1v1, i.e. v1 must be an eigenvector of S and the dual
variable λ1 is the corresponding eigenvalue. Since v>1 Sv1 = λ1v

>
1 v1 = λ1, the first PC must be the

eigenvector associated with the largest eigenvalue of S.

1.2.2 Subsequent principal components

Similarly, the second PC maximizes the sample variance V̂ar(Z(2)) = v>2 Ĉov(X)v2 of the second
derived variable among the directions orthogonal to v2, i.e.

max
v2

v>2 Sv2

subject to: v>2 v2 = 1, v>1 v2 = 0.

Lagrangian is

L (v2, λ2, γ2) = v>2 Sv2 − λ2
(
v>2 v2 − 1

)
− γ2v>1 v2 (1.8)

and setting the corresponding vector of partial derivatives to zero

∂L(v2, λ2, γ2)

∂v2
= 2Sv2 − 2λ2v2 − γ2v1 = 0. (1.9)

Left-multiplying (1.9) by v>1 gives 2v>1 Sv2 = γ2. However, since S is symmetric and v1 is its
eigenvector, we have

γ2 = 2v>1 Sv2 = 2v>2 Sv1 = 2λ1v
>
2 v1 = 0. (1.10)

Hence Sv2 = λ2v2 and similarly as before v2 must be the eigenvector corresponding to the second
largest eigenvalue λ2 of S.

Continuing the process further, we obtain the eigenvalue decomposition of S given by

S = V ΛV > (1.11)

where Λ is a diagonal matrix with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 (1.12)

on the diagonal and V is a p× p orthogonal matrix (i.e. V V > = V >V = I) whose columns are the
p eigenvectors of S, i.e. the principal components v1, . . . , vp.

In summary,

• Derived scalar variable (projection to the j-th principal component) Z(j) = v>j X has sample
variance λj , for j = 1, . . . , p.

• Derived variables are uncorrelated : Cov(Z(i), Z(j)) ≈ v>i Svj = λjv
>
i vj = 0, for i 6= j.

• The total sample variance is given by Tr(S) =
∑p

i=1 Sii = λ1 + . . .+ λp, so the proportion of

total variance explained by the jth PC is
λj

λ1+λ2+...+λp
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1.2.3 Reconstruction view of PCA

We can map back to the original p-dimensional space using

x̂i = V1:kV
>
1:kxi. (1.13)

This is a reconstruction of data item xi. It can be shown (problem sheet) that PCA gives the
optimal linear reconstruction based on a k-dimensional compression.

1.2.4 PCA via the Singular Value Decomposition

PCA can also be understood using the Singular Value Decomposition (SVD) of data matrix X.
Recall that any real-valued n× p matrix X can be written as X = UDV > where

• U is an n× n orthogonal matrix: UU> = U>U = In.

• D is a n×p matrix with decreasing non-negative elements on the diagonal (the singular values
of X) and zero off-diagonal elements.

• V is a p× p orthogonal matrix: V V > = V >V = Ip.

Note that

(n− 1)S = X>X = (UDV >)>(UDV >) = V D>U>UDV > = V D>DV >,

using orthogonality of U . The eigenvalues of S are thus the diagonal entries of Λ = 1
n−1D

>D.

We also have
XX> = (UDV >)(UDV >)> = UDV >V D>U> = UDD>U>,

using orthogonality of V .

The n×n matrix B = XX> with entries Bij = x>i xj is called the Gram matrix of dataset X. Note
that B and (n − 1)S = X>X have the same nonzero eigenvalues, equal to the non-zero squared
singular values of X (non-zero entries on the diagonals of D>D and DD>).

If we consider projections to all principal components, the transformed data matrix is

Z = XV = UDV >V = UD, (1.14)

If p ≤ n this means

zi = [Ui1D11, . . . , UipDpp]
> , (1.15)
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and if p > n only the first n projections are defined (sample covariance will be at most rank n):

zi = [Ui1D11, . . . , UinDnn, 0, . . . , 0]> . (1.16)

Thus, Z can be obtained from the eigendecomposition of Gram matrix B. When p � n, eigen-
decomposition of B requires much less computation, O(n3), than the eigendecomposition of the
covariance matrix, O(p3), so is the preferred method for PCA in that case.

1.3 Biplots

Denote ej = [0, . . . , 0, 1, 0 . . . , 0] ∈ Rp with 1 at the j-th dimension. This the unit vector pointing
in the direction of the original variable X(j). Let us write

νj ∈ Rp = V >ej = [Vj1, . . . , Vjp]
>

for the j-th row of V (should not be confused with vj which is the j-th column of V , and the j-th
principal component). Thus νj is the projection of ej to principal components and as such indicates
the weighting each PC gives to the original variable X(j).

Unscaled biplots plot first two dimensions of each νj , j = 1, . . . , p - this visualises the original
variables in the first two principal components directions.

By SVD, we have that the individual entries in the data matrix are given by

xij =

min{n,p}∑
`=1

Ui`D``Vj` = z>i νj . (1.17)

Scaled biplots consider a set of projections different than (1.15), which is given by (assuming p ≤ n
for simplicity):

z̃i =
[
Ui1D

1−α
11 , . . . , UipD

1−α
pp

]>
, (1.18)

for some α ∈ [0, 1], i.e. the case α = 0 recovers the regular projections, i.e., the unscaled biplot.

The case α = 1, i.e., Z̃ = U1:n,1:p, is particularly interesting as the sample covariance of the
transformed data is

Ĉov
(
Z̃
)

=
1

n− 1
U>1:n,1:pU1:n,1:p =

1

n− 1
Ip,

which means that the derived variables are uncorrelated and have equal variance.

To visualise the original variables in this space, we plot the first two dimensions of each

ν̃j = [Dα
11Vj1, . . . , D

α
ppVjp]

>.

Note that by SVD, we have xij = z̃>i ν̃j as in (1.17).

Again, for the case α = 1, the scaled biplot has a nice property: since the sample covariance
between X(i) and X(j) is

Ĉov(X(i)X(j)) = Sij =
1

n− 1

(
V D>DV >

)
i,j

=
1

n− 1
ν̃>i ν̃j ,
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we can inspect the angle between the projected variables in the biplot and interpret it as the
correlation between the original variables.

> biplot(Crabs.pca,scale=0) > biplot(Crabs.pca,scale=1)
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Figure 1: Left. Unscaled biplot of Crabs data: the first principal component explains most of
the variance. Right. Scaled biplot of Crabs data: projections have equal variance and all original
variables are strongly correlated.

1.4 Multidimensional Scaling

Suppose there are n points X in Rp, but we are only given the n×n matrix D of squared Euclidean
inter-point distances. Can we reconstruct X? Rigid transformations (translations, rotations and
reflections) do not change inter-point distances so we certainly cannot recover X exactly. However,
as we will see, it is possible to recover X up to these transformations.

Let Dij = ‖xi − xj‖22 be the squared distance between points xi and xj . Then:

Dij = (xi − xj)>(xi − xj)
= x>i xi + x>j xj − 2x>i xj .

Let B = XX> be the n × n Gram matrix of dot-products, Bij = x>i xj . The above shows that D
can be computed from B. In matrix form,

D = diag (B) 1> + 1diag (B)> − 2B.

Exercise 1.1. Show that B can be recovered from D if we assume centred data, i.e.
∑n

i=1 xi = 0.
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Now recall that if we knew X, we can compute the SVD1 X = UDV >.

Also recall the eigendecomposition of B:

B = XX> = UDD>U> = UΛU>.

As X has rank at most r = min(n, p), we have at most r non-zero singular values in D. Let

x̃>i = UiΛ
1
2 ∈ Rr. If r < p, pad x̃i with 0s so that it has length p. Then,

x̃>i x̃j = UiΛU
>
j = Bij = x>i xj

and we have found a set of vectors in Rp with dot-products given by B, and hence their distances
are given by D, as desired. But note that this eigendecomposition can be obtained from B without
the knowledge of X. The vectors x̃i differ from xi only via the orthogonal matrix V > (recall that
x>i = UiDV

> = x̃>i V
>) so are equivalent up to rotation and reflections.

Now, we can use only the largest k < min(n, p) eigenvalues and eigenvectors in the reconstruction,
giving the ‘best’ k-dimensional view of the data. This is called classical Multidimensional Scaling
(MDS) and it is equivalent to PCA, but as we have seen the original data matrix X need not even
be observed directly – instead we observe the distance matrix D, i.e. data items are observed only
through their dissimilarities from other data items.

More generally, MDS is a class of dimensionality reduction techniques which constructs a z1, . . . , zn ∈
Rk which (approximately) preserves the inter-item dissimilarities Dij = ρ(xi, xj) (we can use Eu-
clidean distances but other dissimilarities are possible) according to a suitable criterion, with

‖zi − zj‖2 ≈ ρ(xi, xj) = Dij ,

and differences in dissimilarities measured by the appropriate loss ∆(Dij , ‖zi−zj‖2). The objective
is to find Z which minimizes the stress function

S(Z) =
∑
i 6=j

∆(Dij , ‖zi − zj‖2).

Choices of (dis)similarities and (stress) functions lead to different algorithms:

• Classical/Torgerson: preserves inner products instead - strain function (cmdscale in R)

S(Z) =
∑
i 6=j

(Bij − 〈zi − z̄, zj − z̄〉)2

• Metric Shephard-Kruskal : preserves distances w.r.t. squared stress

S(Z) =
∑
i 6=j

(Dij − ‖zi − zj‖2)2

• Sammon: preserves shorter distances more (sammon)

S(Z) =
∑
i 6=j

(Dij − ‖zi − zj‖2)2

Dij

1do not confuse D (the matrix with singular values on the diagonal and zeros off-diagonal) with D (the distance
matrix)
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• Non-Metric Shephard-Kruskal : ignores actual distance values, only preserves ranks (isoMDS),
which alternates between minimizing stress over z’s using gradient descent and over an in-
creasing function g using isotonic regression.

S(Z) = min
g increasing

∑
i 6=j(g(Dij)− ‖zi − zj‖2)2∑

i 6=j ‖zi − zj‖22
.
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