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1 Review of Fundamentals

1.1 Unsupervised Learning Basics

Notational remarks

• We will typically assume that we have collected p variables (features/attributes/dimensions)
on n examples (items/observations) which can be represented as an n×p data ma-
trix X = (xij), where xij is the observed value of the j-th variable for the i-th
example:

X =



x11 x12 . . . x1j . . . x1p

x21 x22 . . . x2j . . . x2p
...

...
. . .

...
. . .

...
xi1 xi2 . . . xij . . . xip
...

...
. . .

...
. . .

...
xn1 xn2 . . . xnj . . . xnp


. (1.1)

• We will denote the rows of X as xi ∈ Rp and treat them as column vectors: i.e.,
the i-th item/example/observation xi is the transpose of the i-th row of the data
matrix X:

xi =


xi1
xi2
...
xip

 = [xi1, xi2, . . . , xip]
> , i = 1, . . . , n. (1.2)

• We often assume that x1, . . . , xn are independent and identically distributed (i.i.d.)
samples of a random vector X over Rp. When referring to the j-th dimension of
random vector X, we will write X(j).

Unsupervised learning is a broad and arguably more challenging part of machine learn-
ing. The goal of unsupervised learning is to extract key features of the “unlabelled”
dataset. While in supervised learning our data items {xi}ni=1 come with an extra piece
of information which we are trying to predict, in unsupervised learning we are trying to
understand the process which generated data {xi}ni=1 itself. We will here review two basic
unsupervised learning tasks: dimensionality reduction and clustering. Broadly speaking,
dimensionality reduction aims to, for each data item xi ∈ Rp, find a lower dimensional
representation zi ∈ Rk with k � p such that the map x 7→ z preserves certain interesting
statistical properties in data. Clustering on the other hand, partitions the set of n data
items into K disjoint groups. We will also review two instances of simple algorithms for
each: Principal Components Analysis (PCA) for dimensionality reduction and k-means
algorithm for clustering.
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1.1.1 Dimensionality Reduction with PCA

Principal Components Analysis (PCA) is a dimensionality reduction technique which
aims to preserve variance in the data. PCA is a linear dimensionality reduction tech-
nique: it essentially looks for a new basis to represent a noisy dataset.

For simplicity, we will assume for PCA that our dataset is centred, i.e., that its average
is x̄ = 1

n

∑n
i=1 xi = 0. If not, we can always subtract it from each xi (this is called data

centering). Thus, we can write the sample covariance matrix S as

S = Ĉov(X) =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)> =
1

n− 1

n∑
i=1

xix
>
i =

1

n− 1
X>X. (1.3)

Note that the matrix S is symmetric and positive semi-definite.

PCA recovers an orthonormal basis v1, v2, . . . , vp in Rp – vectors vi are called principal
components (PC) or loading vectors – such that:

• The first principal component (PC) v1 is the direction of greatest variance of data.

• The j-th PC vj is the direction orthogonal to v1, v2, . . . , vj−1 of greatest variance,
for j = 2, . . . , p.

Given this basis, the k-dimensional representation of data item xi is the vector of
projections of xi onto the first k PCs:

zi = V >1:kxi =
[
v>1 xi, . . . , v

>
k xi

]>
∈ Rk,

where V1:k = [v1, . . . , vk] is a p × k matrix. This gives us the transformed data matrix,
also called the scores matrix

Z = XV1:k ∈ Rn×k. (1.4)

Deriving the first principal component

Recall that we model our dataset is an i.i.d. sample {xi}ni=1 of a random vector X =[
X(1) . . . X(p)

]>. Projections to PCs define a linear transformation of X given by Z =
V >1:kX which is a k-dimensional random vector. Dimensions of Z are called derived
variables. Consider the first dimension of Z:

Z(1) = v>1 X = v11X
(1) + v12X

(2) + · · ·+ v1pX
(p). (1.5)

The first PC v1 = [v11, . . . , v1p]
> ∈ Rp is chosen to maximise the sample variance

V̂ar(Z(1)) = v>1 Ĉov(X)v1, i.e. it is defined as the solution to

max
v1

v>1 Sv1

subject to: v>1 v1 = 1.

3



1 Review of Fundamentals

By considering the Lagrangian:

L (v1, λ1) = v>1 Sv1 − λ1

(
v>1 v1 − 1

)
(1.6)

and the corresponding vector of partial derivatives

∂L(v1, λ1)

∂v1
= 2Sv1 − 2λ1v1 (1.7)

we obtain the eigenvector equation Sv1 = λ1v1, i.e. v1 must be an eigenvector of S and
the dual variable λ1 is the corresponding eigenvalue. Since v>1 Sv1 = λ1v

>
1 v1 = λ1, the

first PC must be the eigenvector associated with the largest eigenvalue of S.

Subsequent principal components

Similarly, the second PC maximizes the sample variance V̂ar(Z(2)) = v>2 Ĉov(X)v2 of the
second derived variable among the directions orthogonal to v2, i.e.

max
v2

v>2 Sv2

subject to: v>2 v2 = 1, v>1 v2 = 0.

Lagrangian is

L (v2, λ2, γ2) = v>2 Sv2 − λ2

(
v>2 v2 − 1

)
− γ2v

>
1 v2 (1.8)

and setting the corresponding vector of partial derivatives to zero

∂L(v2, λ2, γ2)

∂v2
= 2Sv2 − 2λ2v2 − γ2v1 = 0. (1.9)

Left-multiplying (1.9) by v>1 gives 2v>1 Sv2 = γ2. However, since S is symmetric and v1

is its eigenvector, we have

γ2 = 2v>1 Sv2 = 2v>2 Sv1 = 2λ1v
>
2 v1 = 0. (1.10)

Hence Sv2 = λ2v2 and similarly as before v2 must be the eigenvector corresponding to
the second largest eigenvalue λ2 of S.
Continuing the process further, we obtain the eigenvalue decomposition of S given by

S = V ΛV > (1.11)

where Λ is a diagonal matrix with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 (1.12)

on the diagonal and V is a p × p orthogonal matrix (i.e. V V > = V >V = I) whose
columns are the p eigenvectors of S, i.e. the principal components v1, . . . , vp.
In summary,
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• Derived scalar variable (projection to the j-th principal component) Z(j) = v>j X
has sample variance λj , for j = 1, . . . , p.

• Derived variables are uncorrelated : Cov(Z(i), Z(j)) ≈ v>i Svj = λjv
>
i vj = 0, for

i 6= j.

• The total sample variance is given by Tr(S) =
∑p

i=1 Sii = λ1 + . . . + λp, so the
proportion of total variance explained by the jth PC is λj

λ1+λ2+...+λp

Reconstruction view of PCA

We can map back to the original p-dimensional space using

x̂i = V1:kV
>

1:kxi. (1.13)

This is a reconstruction of data item xi. It can be shown (problem sheet) that PCA
gives the optimal linear reconstruction based on a k-dimensional compression.

PCA via the Singular Value Decomposition

PCA can also be understood using the Singular Value Decomposition (SVD) of data
matrix X. Recall that any real-valued n × p matrix X can be written as X = UDV >

where

• U is an n× n orthogonal matrix: UU> = U>U = In.

• D is a n × p matrix with decreasing non-negative elements on the diagonal (the
singular values of X) and zero off-diagonal elements.

• V is a p× p orthogonal matrix: V V > = V >V = Ip.

Note that

(n− 1)S = X>X = (UDV >)>(UDV >) = V D>U>UDV > = V D>DV >,

using orthogonality of U . The eigenvalues of S are thus the diagonal entries of Λ =
1

n−1D
>D.

We also have

XX> = (UDV >)(UDV >)> = UDV >V D>U> = UDD>U>,

using orthogonality of V .
The n × n matrix K = XX> with entries Kij = x>i xj is called the Gram matrix of

dataset X. Note that K and (n− 1)S = X>X have the same nonzero eigenvalues, equal
to the non-zero squared singular values of X (non-zero entries on the diagonals of D>D
and DD>).

If we consider projections to all principal components, the transformed data matrix is

5



1 Review of Fundamentals

Z = XV = UDV >V = UD, (1.14)

If p ≤ n this means

zi = [Ui1D11, . . . , UipDpp]
> , (1.15)

and if p > n only the first n projections are defined (sample covariance will be at most
rank n):

zi = [Ui1D11, . . . , UinDnn, 0, . . . , 0]> . (1.16)

Thus, Z can be obtained from the eigendecomposition of Gram matrix K. When
p� n, eigendecomposition of K requires much less computation, O(n3), than the eigen-
decomposition of the covariance matrix, O(p3), so is the preferred method for PCA in
that case.

1.1.2 Clustering
Clustering is one of the fundamental and ubiquitous tasks in exploratory data analysis –
a first intuition about the data is often based on identifying meaningful disjoint groups
among the data items. In partition-based clustering, which we consider in this note, one
divides n data items into K clusters C1, . . . , CK where for all k, k′ ∈ {1, . . . ,K},

Ck ⊂ {1, . . . , n} , Ck ∩ Ck′ = ∅ ∀k 6= k′,
K⋃
k=1

Ck = {1, . . . , n} .

Central to the goals of clustering is the notion of similarity/dissimilarity between data
items. There will be many ways to define the notion of similarity, and the choice will
depend on the dataset being analyzed and dictated by domain specific knowledge.
Intuitively, clustering aims to group similar items together and to place separate dis-

similar items into different groups. However, note that these two objectives in many
cases contradict each other (similarity is not a transitive relation, while being in the
same cluster is an equivalence relation). One could imagine a long sequence of items
such that each next item is very similar to the previous one so that they should all be-
long to the same cluster – but that would also mean that the endpoints are potentially
highly dissimilar. Hence, there are also different clustering techniques which emphasize
different aspects of these goals, i.e. whether to keep similar points together or dissimilar
points apart.
There have been several attempts to construct an axiomatic definition of clustering,

but it is surprisingly difficult to put on rigorous footing. Consider the following three
basic properties required of a clustering method F : (D = {xi}ni=1, ρ) 7→ {C1, . . . , CK}
which takes as an input dataset D and a dissimilarity function ρ and returns a partition
of D:

• Scale invariance. For any α > 0, F (D, αρ) = F (D, ρ), i.e. partition should not
depend on units in which dissimilarity is measured.
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• Richness. For any partition C = {C1, . . . , CK} of D, there exists dissimilarity ρ,
such that F (D, ρ) = C, i.e. the outcome is fully controlled by the dissimilarity
function.

• Consistency. If ρ and ρ′ are two dissimilarities such that for all xi, xj ∈ D the
following holds:

xi, xj belong to the same cluster in F (D, ρ) =⇒ ρ′(xi, xj) ≤ ρ(xi, xj)

xi, xj belong to different clusters in F (D, ρ) =⇒ ρ′(xi, xj) ≥ ρ(xi, xj),

then F (D, ρ′) = F (D, ρ). In other words, if the items in the same cluster be-
come more similar and the items already separated become less similar, then the
clustering should not change.

While all three properties appear natural, Kleinberg’s impossibility theorem [15] states
that there exists no clustering method that satisfies all three properties, implying that
every clustering method will have some undesirable properties. For further discussion,
see Section 22.5 in [25].
We will consider here the simplest widely used clustering method: K-means algorithm

(and its extension, DP-means).

K-means algorithm

K-means is the simplest partition-based clustering algorithm. It uses a preassigned
number of clusters and represents each cluster using a prototype or cluster centroid µk.
The idea of K-means is to measure the quality of each cluster using its within-cluster

deviance from the cluster centroids

W (Ck, µk) =
∑
i∈Ck

‖xi − µk‖22.

The overall quality of the clustering is then given by the total within-cluster deviance:

W ({Ck}, {µk}) =
K∑
k=1

W (Ck, µk) =

K∑
k=1

∑
i∈Ck

‖xi − µk‖22 =
n∑
i=1

‖xi − µci‖22,

where ci = k if and only if i ∈ Ck. This is now the overall objective function used to select
both the cluster centroids and the assignment of points to clusters. The joint optimization
over both the partition {Ck} and centroids {µk} is a combinatorial optimization problem
and is computationally hard. However, note that

• Given partition {Ck}, we can easily find the optimal centroids by differentiating
W with respect to µk:

∂W

∂µk
= 2

∑
i∈Ck

(xi − µk) = 0 ⇒ µk =
1

|Ck|
∑
i∈Ck

xi
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Algorithm 1.1 K-means algorithm
Input: dataset D = {xi}ni=1, desired number of clusters K
Output: partition {C1, . . . , CK}

Randomly initialize K cluster centroids µ1, . . . , µK .
while the partition has not converged do

• Cluster assignment: For each i = 1, . . . , n, assign each xi to the cluster with the
nearest centroid,

ci := argmink=1,...,K ‖xi − µk‖22

Set Ck := {i : ci = k} for each k.

• Move centroids: Set µ1, . . . , µK to the averages of the new clusters:

µk :=
1

|Ck|
∑
i∈Ck

xi

return partition {C1, . . . , CK}

• Given prototypes, we can easily find the optimal partition by assigning each data
point to the closest cluster prototype:

ci = argmink ‖xi − µk‖22 .

Thus one can employ an iterative alternating optimization, which is exactly the K-means
algorithm:
K-means is a heuristic search algorithm so it can (and often will) get stuck at local

optima. The result depends on the starting configurations. Typically one performs a
number of runs from different random initial values of centroids, and then chooses the
end result with minimum W . Since each step does not increase the objective function
and the number of possible partitions is finite, the algorithm will converge to a local
optimum. However, note that there could be ties in the cluster assignment, which need
to be broken in a systematic fashion.

K-means++

A simple yet provably effective solution to the problem of initialization of centroids in the
K-means algorithm was proposed by [1]. The method starts with sampling a data item
from D = {xi}ni=1 uniformly at random and making it centroid µ1. We then compute
the squared distances ρ2

i = ‖xi − µ1‖22. Centroid µ2 is then initialized to another data
item sampled using the probability mass function p(i) = ρ2

i /
∑n

j=1 ρ
2
j and the process

continues with the probability mass function being updated at each step, i.e. to initialize
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k-th centroid µk, we compute

ρ2
i = min

{
‖xi − µ1‖22, . . . , ‖xi − µk−1‖22

}
. (1.17)

Remarkably, this method comes with a precise theoretical guarantee. In particular, [1]
show that if clustering {C++

k } is obtained using K-means++ then

E
[
W
(
{C++

k }
)]
≤ 8 (logK + 2)W ∗, (1.18)

where W ∗ is the within-cluster deviance of the globally optimal clustering and the ex-
pectation is taken over the random sampling used in the initialisation.

DP-means

K-means is intuitive and straightforward to implement, but how do we select the number
of clusters K in the first place? Clearly, the objective function is minimized (and equals
zero) if we let K = n, but this is not a meaningful clustering.
One elegant approach is the DP-means algorithm [16] that comes from the interpre-

tation of K-means using small variance asymptotics of the Expectation Maximization
(EM) algorithm for mixture modelling. We will discuss mixture modelling and EM algo-
rithm later in the course. DP-means starts from a single cluster, i.e. K = 1 and modifies
the cluster assignment step as follows:

1. Initialize K = 1 and µ1 = 1
n

∑n
i=1 xi (the global mean).

2. DP-means cluster assignment: For each i = 1, . . . , n,

• if mink=1,...,K ‖xi − µk‖22 > λ, set K ← K + 1, ci ← K, µK ← xi

• otherwise, set ci = argmink=1,...,K ‖xi − µk‖22.

The rest of the algorithm is exactly the same as K-means. Tuning parameter λ controls
the tradeoff between the traditional K-means objective and the number of clusters. DP-
means can be shown to locally minimize the objective

Wλ({Ck}, {µk},K) =

K∑
k=1

∑
i∈Ck

‖xi − µk‖22 + λK. (1.19)

Indeed, just like in K-means algorithm, the “move centroids" step can only decrease the
objective, whereas for every data item i = 1, . . . , n, its assignment to the nearest centroid
if closer than λ will not increase the objective and if the nearest centroid is at a distance
larger than λ we can create another cluster and pay a penalty λ while still decreasing
the overall objective (1.19).
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1.2 Supervised Learning Basics
1.2.1 Loss and Risk

In the supervised learning framework, we are trying to learn a function f : X → Y
from an input space X into an output space Y based on a set of paired examples
(x1, y1), . . . (xn, yn) and a given loss function L measuring discrepancy between predicted
output values f(xi) and the true output values yi at the inputs xi. It is assumed that
examples (x1, y1), . . . (xn, yn) are i.i.d. samples from an unknown joint probability distri-
bution PX,Y on X ×Y and the goal of learning is to find the function f which minimizes
the expectation of the loss over PX,Y - which is called risk.

Empirical Risk Minimisation (ERM) Loss is any function

L : Y × Y × X → R+. (1.20)

Risk of a function f : X → Y is the expected loss:

R(f) = EX,Y L(Y, f(X), X). (1.21)

For a given dataset (x1, y1), . . . (xn, yn), the empirical risk of f is given by

R̂(f) =
1

n

n∑
i=1

L(yi, f(xi), xi). (1.22)

The Empirical Risk Minimisation is the problem

f̂ = argminf∈HR̂(f),

where H is a given class of functions (hypothesis class).

Remark 1. The ultimate goal of learning is to minimise the true risk - not the empirical
risk, which is only an estimate of the true risk. But the true risk of any given function
is unknown because the distribution PX,Y is unknown.

Remark 2. Loss function typically depend on the input x only through f(x), so that with
some abuse of notation we often write L(y, f(x)) instead of L(y, f(x), x). L(y, f(x)) is
usually some notion of distance between the true output y and the predicted output f(x).

Examples of hypothesis classes. Hypothesis classes can be very simple, e.g. for X =
Rp, we can consider all linear functions f(x) = w>x + b, parametrized by w ∈ Rp and
b ∈ R, or we could consider a specific nonlinear feature expansion ϕ : X → RD, and a
model linear in those features: f(x) = w>ϕ(x) + b, but nonlinear in the original inputs
X , parametrized by w ∈ RD and b ∈ R. For example, starting with X = R2, we can

consider ϕ
([
xi1
xi2

])
= [xi1, xi2, x

2
i1,
√

2xi1xi2, x
2
i2]>, such that the resulting function can
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depend on quadratic and interaction terms as well. An important type of hypothesis
classes we will consider in this course are Reproducing Kernel Hilbert Spaces (RKHS),
which are also linear in certain feature expansions but those feature expansions could
potentially be infinite-dimensional.

Examples of loss functions. Loss functions come in many different forms. One of the
main considerations for selecting loss functions is the type of outputs we are trying to
predict, i.e., whether it is real-valued or discrete/categorical. Note that even if outputs
are discrete, the function f(x) we are trying to learn is typically real-valued. For example,
in binary classification, the common convention is that the two classes are denoted by
−1 and +1. One associates predictions of these classes with sign(f(x)), whereas the
magnitude of f(x) can be thought of as the confidence in those predictions (not necessarily
in a probabilistic sense). The loss can penalize misclassification (wrong sign) as well as the
overconfident misclassification (wrong sign and large magnitude) and even underconfident
correct classification (correct sign but small magnitude). Thus, the loss functions can
often be expressed as a function of yf(x).

−4 −3 −2 −1 0 1 2 3 4

yf (x)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

L
(y
,f

(x
))

0/1 loss

hinge loss

exponential loss

logistic loss

Figure 1.1: Loss functions for binary classification

Below are some loss functions commonly used in binary classification and regression.

• Binary classification:

– 0/1 loss L(y, f(x)) = 1{yf(x) ≤ 0},
(also called misclassification loss, optimal solution is called the Bayes classifier
and is given by f(x) = argmaxk∈{0,1}P(Y = k|X = x)),

– hinge loss L(y, f(x)) = (1− yf(x))+

(used in support vector machines - leads to sparse solutions),
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−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

y − f (x)

0.0

0.5

1.0

1.5

L
(y
,f

(x
))

squared loss

absolute loss

ε-insensitive loss, ε = 0.2

τ -pinball loss, τ = 0.25

Figure 1.2: Loss functions for regression

– exponential loss L(y, f(x)) = e−yf(x)

(used in boosting algorithms - Adaboost),

– logistic loss L(y, f(x)) = log
(
1 + e−yf(x)

)
(used in logistic regression, and associated with a linear log-odds probabilistic
model).

• Regression:

– squared loss: L(y, f(x)) = (y − f(x))2

(least squares regression: optimal f is the conditional mean E[Y |X = x]),

– absolute loss: L(y, f(x)) = |y − f(x)|
(least absolute deviations regression, which is less sensitive to outliers: optimal
f is the conditional median med[Y |X = x]),

– τ -pinball loss: L(y, f(x)) = 2 max{τ(y−f(x)), (τ−1)(y−f(x))} for τ ∈ (0, 1)
(quantile regression: optimal f is the τ -quantile of p(y|X = x)),

– ε-insensitive (Vapnik) loss: L(y, f(x)) =

{
0, if |y − f(x)| ≤ ε,
|y − f(x)| − ε, otherwise.

(support vector regression, which leads to sparse solutions).

In binary classification, 0/1 is an idealised version of loss which penalizes misclassifica-
tion regardless of the magnitude of f(x). However, ERM under 0/1 loss is NP hard1.
Therefore, we typically use convex upper bound surrogate losses (hinge, exponential, lo-

1It is NP-hard to even approximately minimize the ERM under 0/1 loss - i.e. there is no known
polynomial-time algorithm to obtain a solution which is a small constant worse than the optimum.
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gistic2). What is the importance of the convexity of loss as a function of yf(x) as shown
in Fig. 1.1? Consider the hypothesis class f(x) = w>ϕ(x), with w ∈ RD (we ignore
the intercept to simplify notation) and assume that L(y, f(x)) = ρ (yf(x)) for a convex
differentiable function ρ. Then the empirical risk and its gradient are given by

R̂(w) =
1

n

n∑
i=1

ρ
(
yiw
>ϕ(xi)

)
,

∂R̂

∂w
=

1

n

n∑
i=1

ρ′
(
yiw
>ϕ(xi)

)
yiϕ(xi).

Furthermore, the Hessian matrix of the empirical risk is given by

∂2R̂

∂w∂w>
=

1

n

n∑
i=1

ρ′′
(
yiw
>ϕ(xi)

)
ϕ(xi)ϕ(xi)

>, (1.23)

using y2
i = 1. This Hessian is now a positive semidefinite matrix which can be seen from

ρ′′ (t) ≥ 0 ∀t and

α>
∂2R̂

∂w∂w>
α =

1

n

n∑
i=1

ρ′′
(
yiw
>ϕ(xi)

)(
α>ϕ(xi)

)2
≥ 0.

for any α ∈ RD. Thus, empirical risk is a convex function of w and thus has a unique
minimum. Typically, there is no closed form solution for w and iterative optimisation
techniques like gradient ascent or Newton-Raphson algorithm are used.

1.2.2 Regularisation

Recall that we are not ultimately interested in the exact minimizer of the empirical risk
but in that of the true risk. ERM thus risks overfitting : when the hypothesis class is
complex, one can easily find a function that matches the observed examples exactly but
does not generalise to the new examples.
The idea behind regularisation is to limit the flexibility of hypothesis class in order

to prevent overfitting. For the hypothesis space H = {fθ : θ ∈ Θ}, this is achieved by
adding the term which penalises the large values of parameters θ to the ERM criterion:

min
θ
R̂(fθ) + λ‖θ‖ρρ = min

θ

1

n

n∑
i=1

L(yi, fθ(xi)) + λ‖θ‖ρρ

where ρ ≥ 1, and ‖θ‖ρ = (
∑p

j=1 |θj |ρ)1/ρ is the Lρ norm of θ (also of interest when
ρ ∈ [0, 1), but this is no longer a norm). These methods are also known as shrinkage
methods since their effect is to shrink parameter estimates towards 0. Note that we
have an additional tuning parameter (or hyperparameter) λ which controls the amount
of regularisation, and, as a result, also controls the complexity of the model.

2to make it into an upper bound on 0/1, divide the logistic loss by log(2) - rescaling of the loss does
not change the ERM problem
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The most common forms of regularisation include Ridge regression / Tikhonov regu-
larization: ρ = 2, LASSO penalty: ρ = 1, and elastic net regularization with a mixed
L1/L2 penalty:

min
θ

1

n

n∑
i=1

L(yi, fθ(xi)) + λ
[
(1− α)‖θ‖22 + α‖θ‖1

]
.

In some hypothesis classes, it is possible to directly penalise some notion of smoothness
of the function f we are trying to learn, e.g. for X = R, the regularisation term can
consist of the Sobolev norm

‖f‖2W 1 =

∫ +∞

−∞
f(x)2dx+

∫ +∞

−∞
f ′(x)2dx, (1.24)

which penalises functions with large derivative values.

1.2.3 Examples of ERM

Regularised Least Squares / Ridge Regression

This corresponds to the squared loss L(y, f(x)) = (y − f(x))2. For linear functions
f(x) = w>x+ b, we have

min
w,b

1

n

n∑
i=1

(yi − w>xi − b)2 +
λ

n
‖w‖22. (1.25)

Note the rescaling of the regularisation term and that the bias term b is not included in
the regularisation. This is important as otherwise the predictions would depend on the
origin for the response variables y (i.e. adding a constant c to each target would result
in different predictions from simply shifting the original predictions by c). Fortunately,
when using centred inputs, i.e.,

∑n
i=1 xi = 0, b can be estimated by ȳ = 1

n

∑n
i=1 yi, so we

can also assume that the responses are centred and remove the intercept from the model.
We obtain the problem

min
w
‖y −Xw‖22 + λ‖w‖22. (1.26)

Differentiating and setting to zero gives the closed form solution

w =
(
X>X + λI

)−1
X>y. (1.27)

Logistic Regression

Despite the name, logistic regression is a method for classification. It uses the logistic
loss L(y, f(x)) = log

(
1 + e−yf(x)

)
. Hence, again for a linear classifier f(x) = w>x+ b,

min
w,b

1

n

n∑
i=1

log
(

1 + e−yi(w
>xi+b)

)
+
λ

n
‖w‖22. (1.28)
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1 Review of Fundamentals

Logistic regression can also be associated to a probabilistic model. Namely, assume that
the function of interest f(x) = w>x+ b models the log-odds ratio:

log
p(yi = +1|w, b, xi)
p(yi = −1|w, b, xi)

= w>xi + b. (1.29)

Then the conditional distribution of Y |X is given by

p(yi = +1|w, b, xi) =
1

1 + e−(w>xi+b)
= σ(w>xi + b), (1.30)

p(yi = −1|w, b, xi) =
1

1 + ew>xi+b
= σ(−w>xi − b), (1.31)

where we denoted by σ(t) = 1/(1 + e−t) the logistic function which maps the real line
to (0, 1) interval. Note that the logistic function satisfies σ(−t) = 1 − σ(t). Thus,
we can write (1.30) and (1.31) as p(yi|w, b, xi) = σ(yi(w

>xi + b)) and the conditional
log-likelihood of the outputs given the inputs is

log p(y|w, b,X) = log

n∏
i=1

σ(yi(w
>xi + b)) = −

n∑
i=1

log
(

1 + e−yi(w
>xi+b)

)
.

Thus finding the parameters w and b that maximise the conditional log-likelihood is
equivalent to minimising the empirical risk corresponding to the logistic loss, which is
the negative log-likelihood of the linear log-odds model. Moreover, the regularisation
term can be interpreted as a normal prior on w in Bayesian logistic regression. Again,
there is no closed form solution for logistic regression, but the objective is convex and
differentiable and the numerical optimisation via gradient ascent or Newton-Raphson
algorithm can be used.
The connection between maximisation of the log-likelihood and minimisation of the

empirical risk extends beyond logistic regression. Indeed, in the context of classification,
whenever p(yi|xi, θ) is a log-concave function of yifθ(xi), we can define a convex loss
ρ(yfθ(x)) = − log p(yi|xi, θ). But the converse is not true, e.g. hinge loss used in the
SVMs below does not correspond to a negative log-likelihood in any probabilistic model
(unless additional artificial classes are introduced).

Support Vector Machines

Support Vector Machines (SVMs) for classification use hinge loss, L(y, f(x)) = max{0, 1−
yf(x)}. Thus, for a linear classifier f(x) = w>x+ b, we obtain

min
w,b

1

n

n∑
i=1

max{0, 1− yi(w>xi + b)}+
λ

n
‖w‖22. (1.32)

This does not have a closed form solution and requires numerical optimisation. Eq.
(1.32) is not how you would typically see an SVM written in the literature, though.
Rather, we introduce a substitution ξi = max{0, 1 − yi(w>xi + b)}, which implies that

15
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ξi ≥ 0, yi(w>xi+b) ≥ 1−ξi and with a reparametrisation of the regularisation parameter
C = 1/2λ obtain the following equivalent form, called C-SVM:

min
w,b,ξ

(
1

2
‖w‖2 + C

n∑
i=1

ξi

)
, (1.33)

subject to ξi ≥ 0, yi

(
w>xi + b

)
≥ 1− ξi.

SVMs have the following nice property: the normal vector w of the hyperplane deter-
mining the classification rule can be written as w =

∑n
i=1 αiyixi where a large number of

α-coefficients (so called dual coefficients) is typically zero. Thus, only a small number of
datapoints (support vectors, those with a non-zero α) determine the learned classification
rule. In the next chapter, we will make a deep dive into SVMs, introducing it from a
completely different perspective, that of maximum margin classification.
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2 Support Vector Machines

These notes are a revised version of lecture notes from the UCL course “Reproducing
Kernel Hilbert Spaces in Machine Learning” [12], reproduced here by courtesy of Arthur
Gretton.

2.1 Duality in Convex Optimization

We will need some basic results from duality in convex optimization in order to study
support vector machines, one of the fundamental techniques for classification. This review
covers the material from [6, Sections 5.1-5.5].

2.1.1 The Lagrangian

Consider a constrained optimization problem of an objective function f0 : Rn → R, with
m inequality and r equality constraints:

minimize f0(x)

subject to fi(x) ≤ 0 i = 1, . . . ,m (2.1)
hj(x) = 0 j = 1, . . . r.

We denote D :=
⋂m
i=0 domfi ∩

⋂r
j=1 domhj , and require the domain D ⊆ Rn where the

objective function f0 and the constraint functions f1, . . . , fm, h1, . . . , hr are all defined to
be nonempty. We will refer to (2.1) as the primal problem and denote by p∗ = f0 (x∗)
its optimal value. Any point x̃ ∈ D for which constraints are satisfied , i.e. fi(x̃) ≤ 0,
hj(x̃) = 0, is called a primal feasible point.
The Lagrangian L : Rn × Rm × Rr → R associated with problem (2.1) is given by

L(x, λ, ν) := f0(x) +

m∑
i=1

λifi(x) +

p∑
j=1

νjhj(x).

The vectors λ ∈ Rm and ν ∈ Rr are called Lagrange multipliers or dual variables.
The Lagrange dual function (or just “dual function”) is written

g(λ, ν) = inf
x∈D

L(x, λ, ν).

The domain of g, domg, is the set of values (λ, µ) for which the Lagrangian is bounded
from below, i.e. g > −∞. The dual function is a pointwise infimum of affine1 functions
of (λ, ν), hence it is concave in (λ, ν) [6, p. 83]. A dual feasible pair (λ, ν) is a pair for
which λ � 0 and (λ, ν) ∈ domg.

1A function f : Rn → Rm is affine if it takes the form f(x) = Ax+ b.
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2 Support Vector Machines

λ

g(λ)

Figure 2.1: Example: Lagrangian with one inequality constraint, L(x, λ) = f0(x) +
λf1(x), where x here can take one of four values for ease of illustration.
The infimum of the resulting set of four affine functions is concave in λ.

Proposition 3. When λ � 0, then for all ν we have

g(λ, ν) ≤ p∗. (2.2)

Proof. Assume x̃ ∈ D is feasible, i.e. fi(x̃) ≤ 0, hj(x̃) = 0, and assume λ � 0. Then
m∑
i=1

λifi(x̃) +
r∑
j=1

νjhj(x̃) ≤ 0

and so

g(λ, ν) := inf
x∈D

f0(x) +

m∑
i=1

λifi(x) +

r∑
j=1

νjhj(x)


≤ f0(x̃) +

m∑
i=1

λifi(x̃) +

r∑
j=1

νjhj(x̃)

≤ f0(x̃).

This holds for every feasible x̃, and thus also for x∗, hence (2.2) holds.

Lagrangian can be interpreted as a lower bound on the original optimization problem.
Idealy we would write the problem (2.1) as the unconstrained problem

minimize f0(x) +
m∑
i=1

I− (fi(x)) +
r∑
j=1

I0 (hj(x)) ,
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fi(x)

I−(·)
I0(·)

hi(x)

Figure 2.2: Linear lower bounds on indicator functions. Blue functions represent linear
lower bounds for different slopes λ and ν, for the inequality and equality
constraints, respectively.

where

I−(u) =

{
0 u ≤ 0

∞ u > 0,
I0(u) =

{
0 u = 0

∞ u 6= 0,

i.e. giving an infinite penalty when any constraint is violated. Instead of these infinite
penalty constraints (which are hard to optimize), we replace the constraints with a set
of soft linear constraints, as shown in Fig. 2.2. It is now clear why λ must be positive
for the inequality constraint: a negative λ would not yield a lower bound. Note also that
as well as being penalized for fi > 0, the linear lower bounds reward us for achieving
fi < 0. This is illustrated in Fig. 2.3.

2.1.2 The dual problem

The dual problem attempts to find the best lower bound g(λ, ν) on the optimal solution
p∗ of (2.1). This results in the Lagrange dual problem

maximize g(λ, ν)

subject to λ � 0. (2.3)

Denote by (λ∗, ν∗) the arguments optimizing (2.3) and by d∗ the optimal value of the dual
problem. Note that (2.3) is always a convex optimization problem, since the function
being maximized is concave and the constraint set is convex. The property of weak
duality is immediate:

d∗ ≤ p∗.
The difference p∗ − d∗ is called the optimal duality gap. If the duality gap is zero,
then strong duality holds:

d∗ = p∗.
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f0

f1

f0 + λf1

p∗

f1 ≤ 0

Figure 2.3: Illustration of the Lagrangian on a simple problem with one inequality con-
straint (from [6, Fig. 5.1]).

Conditions under which strong duality holds are called constraint qualifications. As
an important case: strong duality holds if the primal problem is convex,2 i.e. of the form

minimize f0(x)

subject to fi(x) ≤ 0 i = 1, . . . , n (2.4)
Ax = b

for convex f0, . . . , fm, and if Slater’s condition holds: there exists some strictly feasible
point3 x̃ ∈ relint(D) such that

fi(x̃) < 0 i = 1, . . . ,m Ax̃ = b.

A weaker version of Slater’s condition is sufficient for strong convexity when some of the
constraint functions f1, . . . , fk are affine (note the inequality constraints are no longer
strict):

fi(x̃) ≤ 0 i = 1, . . . , k fi(x̃) < 0 i = k + 1, . . . ,m Ax̃ = b.

A proof of this result is given in [6, Section 5.3.2].

2Strong duality can also hold for non-convex problems: see e.g. [6, p. 229].
3We denote by relint(D) the relative interior of the set D. This looks like the interior of the set, but
is non-empty even when the set is a subspace of a larger space. See [6, Section 2.1.3] for the formal
defintion.
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2 Support Vector Machines

2.1.3 A saddlepoint/game characterization of weak and strong duality

In this section, we ignore equality constraints for ease of discussion. We write the solution
to the primal problem as an optimization

sup
λ�0

L(x, λ) = sup
λ�0

(
f0(x) +

m∑
i=1

λifi(x)

)

=

{
f0(x) fi(x) ≤ 0, i = 1, . . . ,m

∞ otherwise.

In other words, we recover the primal problem when the inequality constraint holds, and
get infinity otherwise. We can therefore write

p∗ = inf
x

sup
λ�0

L(x, λ).

We already know
d∗ = sup

λ�0
inf
x
L(x, λ).

Weak duality therefore corresponds to the max-min inequality:

sup
λ�0

inf
x
L(x, λ) ≤ inf

x
sup
λ�0

L(x, λ). (2.5)

which holds for general functions, and not just L(x, λ). Strong duality occurs at a
saddlepoint, and the inequality becomes an equality.
There is also a game interpretation: L(x, λ) is a sum that must be paid by the person

adjusting x to the person adjusting λ. On the right hand side of (2.5), player x plays
first. Knowing that player 2 (λ) will maximize their return, player 1 (x) chooses their
setting to give player 2 the worst possible options over all λ. The max-min inequality
says that whoever plays second has the advantage.

2.1.4 Optimality conditions

If the primal is equal to the dual, we can make some interesting observations about the
duality constraints. Denote by x∗ the optimum solution of the original problem (the
minimum of f0 under its constraints), and by (λ∗, ν∗) the solutions to the dual. Then

f0(x∗) = g(λ∗, ν∗)

=
(a)

inf
x∈D

(
f0(x) +

m∑
i=1

λ∗i fi(x) +
r∑
i=1

ν∗i hi(x)

)

≤
(b)

f0(x∗) +
m∑
i=1

λ∗i fi(x
∗) +

r∑
i=1

ν∗i hi(x
∗)

≤ f0(x∗),
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where in (a) we use the definition of g, in (b) we use that infx∈D of the expression in the
parentheses is necessarily no greater than its value at x∗, and the last line we use that
at (x∗, λ∗, ν∗) we have λ∗ � 0, fi(x∗) ≤ 0, and hi(x∗) = 0. From this chain of reasoning,
it follows that

m∑
i=1

λ∗i fi(x
∗) = 0, (2.6)

which is the condition of complementary slackness. This means

λ∗i > 0 =⇒ fi(x
∗) = 0,

fi(x
∗) < 0 =⇒ λ∗i = 0.

Consider now the case where the functions fi, hi are differentiable, and the duality gap
is zero. Since x∗ minimizes L(x, λ∗, ν∗), the derivative at x∗ should be zero,

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +
r∑
i=1

ν∗i∇hi(x∗) = 0.

We now gather the various conditions for optimality we have discussed. The KKT
conditions for the primal and dual variables (x, λ, ν) are

fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , r,

λi ≥ 0, i = 1, . . . ,m,

λifi(x) = 0, i = 1, . . . ,m,

∇f0(x) +
m∑
i=1

λi∇fi(x) +
r∑
i=1

νi∇hi(x) = 0.

If a convex optimization problem with differentiable objective and constraint functions
satisfies Slater’s conditions, then the KKT conditions are necessary and sufficient for
global optimality.

2.2 Support vector classification

2.2.1 The linearly separable case

We first consider problem of classifying two clouds of points, where there exists a hyper-
plane which linearly separates one cloud from the other without error. This is illustrated
in Fig. (2.4) for a 2-dimensional classification problem. As can be seen, there are in-
finitely many possible hyperplanes that solve this problem: the question is then: which
one to choose? The principle behind support vector machines is that we choose the one
which has the largest margin: i.e. the smallest distance from each class to the separating
hyperplane is maximized.
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yi = +1

yi = −1

2/‖w‖

w

yi = +1

yi = −1

Figure 2.4: The linearly separable case. There are many linear separating hyperplanes,
but only one maximum margin separating hyperplane.

This problem can be expressed as follows:4

max
w,b

(margin) = max
w,b

(
2

‖w‖

)
(2.8)

subject to {
min

(
w>xi + b

)
= 1 i : yi = +1,

max
(
w>xi + b

)
= −1 i : yi = −1.

(2.9)

The resulting classifier is
y = sign(w>x+ b),

where sign takes value +1 for a positive argument, and −1 for a negative argument
(its value at zero is not important, since for non-pathological cases we will not need to
evaluate it there). We can rewrite to obtain

max
w,b

1

‖w‖ or min
w,b
‖w‖2

subject to
yi(w

>xi + b) ≥ 1. (2.10)
4It’s easy to see why the equation below is the margin (the distance between the positive and negative
classes): consider two points exactly opposite each other and located on the margins, such that
(xi − xj) = βw for some scalar β (where we recall w is orthogonal to the decision boundary, hence
aligned with xi − xj). Then the distance between them (which is the width of the margin) is

‖xi − xj‖ = (xi − xj)>
(xi − xj)
‖xi − xj‖

= (xi − xj)>
w

‖w‖ (2.7)

Subtracting the two equations in the constraints (2.9) from each other, we get

w>(xi − xj) = 2.

Substituting this into (2.7) proves the result.
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α

I(α < 0)

(1 − α)+

Figure 2.5: The hinge loss is an upper bound on the 0/1 loss.

2.2.2 When no linear separator exists (or we want a larger margin)

If the classes are not linearly separable, we may wish to allow a certain number of errors
in the classifier (points within the margin, or even on the wrong side of the decision
boudary). We therefore want to trade off such “margin errors” vs maximising the margin.
Ideally, we would optimise

min
w,b

(
1

2
‖w‖2 + C

n∑
i=1

1
{
yi

(
w>xi + b

)
< 1
})

,

where C controls the tradeoff between maximum margin and loss (the factor of 1/2 is to
simplify the algebra later, and is not important: we can adjust C accordingly). This is
a combinatorial optimization problem, which would be very expensive to solve. Instead,
we replace the indicator function with a convex upper bound,

min
w,b

(
1

2
‖w‖2 + C

n∑
i=1

h
(
yi

(
w>xi + b

)))
.

We use the hinge loss,

h(α) = (1− α)+ =

{
1− α 1− α > 0

0 otherwise.

although obviously other choices are possible (e.g. a quadratic upper bound). See Figure
2.5.
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2/‖w‖

w

yi = +1

yi = −1

ξ/‖w‖

Figure 2.6: The nonseparable case. Note the red point which is a distance ξ/‖w‖ from
the margin.

Substituting in the hinge loss, we get

min
w,b

(
1

2
‖w‖2 + C

n∑
i=1

h
(
yi

(
w>xi + b

)))
.

or equivalently the constrained problem

min
w,b,ξ

(
1

2
‖w‖2 + C

n∑
i=1

ξi

)
(2.11)

subject to5

ξi ≥ 0 yi

(
w>xi + b

)
≥ 1− ξi

(compare with (2.10)). See Figure 2.6.
Now let’s write the Lagrangian for this problem, and solve it.

L(w, b, ξ, α, λ) =
1

2
‖w‖2+C

n∑
i=1

ξi+

n∑
i=1

αi

(
1− yi

(
w>xi + b

)
− ξi

)
+

n∑
i=1

λi(−ξi) (2.12)

with dual variable constraints
αi ≥ 0, λi ≥ 0.

We minimize wrt the primal variables w, b, and ξ.

5To see this, we can write it as ξi ≥ 1 − yi
(
w>xi + b

)
. Thus either ξi = 0, and yi

(
w>xi + b

)
≥ 1 as

before, or ξi > 0, in which case to minimize (2.11), we’d use the smallest possible ξi satisfying the
inequality, and we’d have ξi = 1− yi

(
w>xi + b

)
.
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Derivative wrt w:

∂L

∂w
= w −

n∑
i=1

αiyixi = 0 w =
n∑
i=1

αiyixi. (2.13)

Derivative wrt b:
∂L

∂b
=
∑
i

yiαi = 0. (2.14)

Derivative wrt ξi:
∂L

∂ξi
= C − αi − λi = 0 αi = C − λi. (2.15)

We can replace the final constraint by noting λi ≥ 0, hence

αi ≤ C.

Before writing the dual, we look at what these conditions imply about the scalars αi that
define the solution (2.13) due to complementary slackness.
Non-margin SVs: αi = C > 0:

1. We immediately have 1− ξi = yi
(
w>xi + b

)
.

2. Also, from condition αi = C − λi, we have λi = 0, hence ξi ≥ 0.

Margin SVs: 0 < αi < C:

1. We again have 1− ξi = yi
(
w>xi + b

)
2. This time, from αi = C − λi, we have λi > 0, hence ξi = 0.

Non-SVs: αi = 0

1. This time we have: yi
(
w>xi + b

)
≥ 1− ξi

2. From αi = C − λi, we have λi > 0, hence ξi = 0.

This means that the solution is sparse: all the points which are not either on the margin,
or “margin errors”, contribute nothing to the solution. In other words, only those points
on the decision boundary, or which are margin errors, contribute. Furthermore, the
influence of the non-margin SVs is bounded, since their weight cannot exceed C: thus,
severe outliers will not overwhelm the solution.
We now write the dual function, by substituting equations (2.13), (2.14), and (2.15)

into (2.12), to get
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g(α, λ) =
1

2
‖w‖2 + C

n∑
i=1

ξi +
n∑
i=1

αi

(
1− yi

(
w>xi + b

)
− ξi

)
+

n∑
i=1

λi(−ξi)

=
1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
>
i xj + C

m∑
i=1

ξi −
m∑
i=1

m∑
j=1

αiαjyiyjx
>
i xj − b

m∑
i=1

αiyi︸ ︷︷ ︸
0

+
m∑
i=1

αi −
m∑
i=1

αiξi −
m∑
i=1

(C − αi)ξi

=
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
>
i xj .

Thus, our goal is to maximize the dual,

g(α) =
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
>
i xj ,

subject to the constraints

0 ≤ αi ≤ C,
n∑
i=1

yiαi = 0.

So far we have defined the solution for w, but not for the offset b. This is simple
to compute: for the margin SVs, i.e., those xi for which 0 < αi < C, we have 1 =
yi
(
w>xi + b

)
. Thus, we can obtain b from any of these, or take an average for greater

numerical stability.

2.2.3 The ν-SVM

It can be hard to interpret C. Therefore we modify the formulation to get a more intuitive
parameter. Again, we drop b for simplicity. Solve

min
w,ρ,ξ

(
1

2
‖w‖2 − νρ+

1

n

n∑
i=1

ξi

)

subject to

ρ ≥ 0

ξi ≥ 0

yiw
>xi ≥ ρ− ξi,

where we see that we now optimize the margin width ρ. Thus, rather than choosing
C, we now choose ν as a hyperparameter; the meaning of the latter will become clear
shortly.
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The Lagrangian is

1

2
‖w‖2H +

1

n

n∑
i=1

ξi − νρ+
n∑
i=1

αi

(
ρ− yiw>xi − ξi

)
+

n∑
i=1

βi(−ξi) + γ(−ρ)

for αi ≥ 0, βi ≥ 0, and γ ≥ 0. Differentiating wrt each of the primal variables w, ξ, ρ,
and setting to zero, we get

w =
n∑
i=1

αiyixi

αi + βi =
1

n
(2.16)

ν =
n∑
i=1

αi − γ (2.17)

From βi ≥ 0, equation (2.16) implies

0 ≤ αi ≤ n−1.

From γ ≥ 0 and (2.17), we get

ν ≤
n∑
i=1

αi.

We typically have ρ > 0 at the global solution (i.e. non-zero margin) and hence γ = 0,
and (2.17) becomes

n∑
i=1

αi = ν. (2.18)

Complementary slackness conditions now lead to a very convenient interpretation of
parameter ν. In particular, if we denote by N(α) the set of non-margin support vectors,
i.e. margin errors, and by M(α) the set of margin support vectors, then (exercise):

|N(α)|
n

≤ ν ≤ |N(α)|+ |M(α)|
n

.

Thus ν corresponds to an upper bound on the proportion of margin errors and a lower
bound on the proportion of the overall number of support vectors - tuning ν is hence
much more interpretable than tuning C.

Substituting into the Lagrangian, we can also obtain the dual formulation of ν-SVM,
i.e.

1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
>
i xj +

1

n

n∑
i=1

ξi − ρν −
m∑
i=1

m∑
j=1

αiαjyiyjx
>
i xj +

n∑
i=1

αiρ−
n∑
i=1

αiξi

−
n∑
i=1

(
1

n
− αi

)
ξi − ρ

(
n∑
i=1

αi − ν
)

=− 1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
>
i xj
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2 Support Vector Machines

Thus, we must maximize

g(α) = −1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
>
i xj ,

subject to
n∑
i=1

αi ≥ ν 0 ≤ αi ≤
1

n
.
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3 Kernel Methods

3.1 Feature Maps and Feature Spaces

Kernel methods are a versatile algorithmic framework which allows construction of non-
linear machine learning algorithms (for a variety of both supervised and unsupervised
learning tasks: clustering, dimensionality reduction, classification, regression) by em-
ploying linear tools in a nonlinearly transformed feature space. Let us first recall the
definition of an abstract inner product, which is central to kernel methods.

Definition 4. [Inner product] Let H be a vector space over R. A function 〈·, ·〉H :
H×H → R is said to be an inner product on H if

1. 〈α1f1 + α2f2, g〉H = α1 〈f1, g〉H + α2 〈f2, g〉H
2. 〈f, g〉H = 〈g, f〉H
3. 〈f, f〉H ≥ 0 and 〈f, f〉H = 0 if and only if f = 0.

We can define a norm using the inner product as ‖f‖H :=
√
〈f, f〉H. A Hilbert space is

a vector space on which an inner product is defined, along with an additional technical
condition.1 We are now ready to define the notion of a kernel.

Definition 5. Let X be a non-empty set. A function k : X ×X → R is called a kernel
if there exists a Hilbert space and a map ϕ : X → H such that ∀x, x′ ∈ X ,

k(x, x′) :=
〈
ϕ(x), ϕ(x′)

〉
H .

We will call such H of kernel k a feature space and the map ϕ will be called a feature
map. Note that we imposed almost no conditions on X : in particular, we do not require
there to be an inner product defined on the elements of X . The case of text documents
is an instructive example: one cannot take an inner product between two books, but can
take an inner product between features of the text in those books.
Clearly, a single kernel can correspond to multiple pairs of underlying feature maps

and feature spaces. For a simple example, consider X := Rp:

φ1(x) = x and φ2(x) =

[
x1√

2
, · · · , xp√

2
,
x1√

2
, · · · , xp√

2

]>
.

1Specifically, a Hilbert space must be complete, i.e. it must contain the limits of all Cauchy sequences
with respect to the norm defined by its inner product.
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3 Kernel Methods

Both φ1 and φ2 are valid feature maps (with feature spaces H1 = Rp and H2 = R2p) of
kernel k(x, x′) = x>x′.
It turns out that all kernel functions (defined as inner products between some features)

are positive definite.

Definition 6. [Positive definite functions] A symmetric function k : X × X → R is
positive definite if ∀n ≥ 1, ∀(a1, . . . an) ∈ Rn, ∀(x1, . . . , xn) ∈ X n,

n∑
i=1

n∑
j=1

aiajk(xi, xj) ≥ 0.

The function k(·, ·) is strictly positive definite if for mutually distinct xi, the equality
holds only when all the ai are zero.2

Every inner product is a positive definite function, and so is every inner product
between feature maps.

Lemma 7. Let H be any Hilbert space, X a non-empty set and φ : X → H. Then
k(x, y) := 〈φ(x), φ(y)〉H is a positive definite function.

Proof.

n∑
i=1

n∑
j=1

aiajk(xi, xj) =
n∑
i=1

n∑
j=1

〈aiφ(xi), ajφ(xj)〉H

=

∥∥∥∥∥
n∑
i=1

aiφ(xi)

∥∥∥∥∥
2

H

≥ 0.

3.2 Reproducing Kernel Hilbert Spaces

We have introduced the notation of feature spaces, and kernels on these feature spaces.
What’s more, we’ve determined that these kernels are positive definite. In this section,
we use these kernels to define functions on X . The space of such functions is known as
a reproducing kernel Hilbert space (RKHS).

Definition 8. [Reproducing kernel] Let H be a Hilbert space of functions f : X → R
defined on a non-empty set X . A function k : X ×X → R is called a reproducing kernel
of H if it satisfies

• ∀x ∈ X , kx = k(·, x) ∈ H,

• ∀x ∈ X , ∀f ∈ H, 〈f, k(·, x)〉H = f(x) (the reproducing property).

2The corresponding terminology used for matrices is “positive semi-definite” vs “positive definite”.
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If H has a reproducing kernel, it is called a reproducing kernel Hilbert space (RKHS).
In particular, note that for any x, y ∈ X , reproducing kernel satisfies k(x, y) =
〈k (·, y) , k (·, x)〉H = 〈k (·, x) , k (·, y)〉H. Thus, reproducing kernel is clearly a kernel,
i.e. an inner product between features with a feature space H and a feature map
φ : x 7→ k (·, x). This way of writing feature mapping is called the canonical feature
map. Note that these features are not specified explicitly in a vector form, but rather as
functions on X .
We have seen that any reproducing kernel is a kernel and that every kernel is a positive

definite function. Remarkably, Moore-Aronszajn theorem [4] shows that for every positive
definite function k, there exists a unique RKHS with kernel k. The theorem is outside
of the scope of this course, but it provides an insight into the structure of the RKHS
corresponding to k. It turns out RKHS can be written as span {k (·, x) : x ∈ X}, i.e. the
space of all linear combinations of canonical features, completed with respect to an inner
product on these linear combinations defined as〈

r∑
i=1

αik (·, xi) ,
s∑
j=1

βjk (·, yj)
〉

:=
r∑
i=1

s∑
j=1

αiβjk (xi, yj) .

Thus, all three notions: (1) reproducing kernel, (2) kernel as inner product between
features and (3) positive definite function, are equivalent. Recall that the feature space
of a kernel is not unique - but its RKHS (feature space as a space of functions) is - we
will henceforth denote the RKHS of kernel k by Hk. For example, for the linear kernel
k(x, y) = x>y considered earlier, many possible feature representations exist but the
canonical feature representation that associates to each x the function k(·, x) : y 7→ x>y
is what determines the structure of its RKHS. In particular, linear kernel k(x, y) = x>y
corresponds to the RKHS Hk which is the space of all linear functions f(x) = w>x
(why?).

3.3 Representer Theorem

Now that we have defined an RKHS, we can consider it as a hypothesis class for empirical
risk minimisation (ERM). In particular, we are looking for the function f∗ in the RKHS
Hk which solves the regularised ERM problem

min
f∈Hk

R̂(f) + Ω
(
‖f‖2Hk

)
,

for empirical risk R̂(f) = 1
n

∑n
i=1 L(yi, f(xi), xi), a loss function L : Y × Y × X → R+

and any non-decreasing function Ω.

Theorem 9. There is a solution to

min
f∈Hk

R̂(f) + Ω
(
‖f‖2Hk

)
(3.1)

that takes the form f∗ =
∑n

i=1 αik(·, xi). If Ω is strictly increasing, all solutions have
this form.
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3 Kernel Methods

Proof. Let f be any minimiser of (3.1). Denote by fs the projection of f onto the
subspace

span {k(·, xi) : i = 1, . . . , n}
such that

f = fs + f⊥,

where fs =
∑n

i=1 αik(·, xi) and f⊥ is orthogonal to the subspace span {k(·, xi) : i = 1, . . . , n}.
Since

‖f‖2Hk = ‖fs‖2Hk + ‖f⊥‖2Hk ≥ ‖fs‖
2
Hk ,

we have
Ω
(
‖f‖2Hk

)
≥ Ω

(
‖fs‖2Hk

)
.

On the other hand, the individual terms f(xi) in the loss are given by

f(xi) = 〈f, k(·, xi)〉Hk = 〈fs + f⊥, k(·, xi)〉Hk = 〈fs, k(·, xi)〉Hk = fs(xi),

so
L(yi, f(xi), xi) = L(yi, fs(xi), xi) ∀i = 1, . . . , n.

and thus empirical risks must be the same: R̂(f) = R̂(fs). Thus fs is also a minimiser
of (3.1) and if Ω is strictly increasing, it must be that f⊥ = 0.

We see that the key parts of the theorem are the fact that the empirical risk only
depends on the components of f lying in the subspace spanned by the canonical features
and that the regulariser Ω(·) is minimised when f = fs (adding additional orthogonal
components to the function makes it more complex but does not change the empirical
risk). Moreover, if Ω is strictly increasing, then ‖f⊥‖Hk = 0 is required at the minimum.

3.4 Operations with Kernels

Kernels can be combined and modified to get new kernels. For example,

Lemma 10. [Sums of kernels are kernels] Given α > 0 and k, k1 and k2 all kernels on
X , then αk and k1 + k2 are kernels on X .
To prove the above, just check positive definiteness. Note that a difference between

two kernels need not be a kernel: if k1(x, x) − k2(x, x) < 0, then condition 3 of inner
product definition 4 may be violated.

Lemma 11. [Mappings between spaces] Let X and X̃ be non-empty sets, and define a
map A : X → X̃ . Define the kernel k on X̃ . Then k(A(x), A(x′)) is a kernel on X .

Lemma 12. [Products of kernels are kernels] Given k on X and l on Y, then

κ
(
(x, y) ,

(
x′, y′

))
= k

(
x, x′

)
l
(
y, y′

)
is a kernel on X × Y. Moreover, if X = Y, then
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κ
(
x, x′

)
= k

(
x, x′

)
l
(
x, x′

)
is a kernel on X .

The general proof would require some technical details about Hilbert space tensor
products, but the main idea can be understood with some simple linear algebra. We
consider the case where H corresponding to k is RM , and G corresponding to l is RN .
Write k (x, x′) = ϕ(x)>ϕ(x′) and l (y, y′) = ψ(y)>ψ(y′). We will use that a notion of
inner product between matrices A ∈ RM×N and B ∈ RM×N is given by

〈A,B〉 = trace(A>B). (3.2)

Then

k
(
x, x′

)
l
(
y, y′

)
= ϕ(x)>ϕ(x′)ψ(y′)>ψ(y)

= tr(ψ(y)ϕ(x)>ϕ(x′)ψ(y′)>)

=
〈
ϕ(x)ψ(y)>, ϕ(x′)ψ(y′)>

〉
,

thus we can define features A(x, y) = ϕ(x)ψ(y)> of the product kernel.
The sum and product rules allow us to define a huge variety of kernels.

Lemma 13. [Polynomial kernels] Let x, x′ ∈ Rp for p ≥ 1, and let m ≥ 1 be an integer
and c ≥ 0. Then

k(x, x′) :=
(〈
x, x′

〉
+ c
)m

is a valid kernel.

To prove: expand out this expression into a sum (with non-negative scalars) of kernels
〈x, x′〉 raised to integer powers. These individual terms are valid kernels by the product
rule.
Can we extend this combination of sum and product rule to sums with infinitely

many terms? Consider for example the exponential function applied to an inner product
k(x, x′) = exp (〈x, x′〉). Since addition and multiplication preserve positive definiteness
and since all the coefficients in the Taylor series expansion of the exponential function
are nonnegative, km(x, x′) =

∑m
r=1

〈x,x′〉r
r! is a valid kernel ∀m ∈ N. Fix some {αi}

and {xi}. Then Am =
∑

i,j αiαjkm(xi, xj) ≥ 0 ∀m since km is positive definite. But
Am →

∑
i,j αiαj exp (〈xi, xj〉) as m → ∞, so

∑
i,j αiαj exp (〈xi, xj〉) ≥ 0 as well. Thus,

exp (〈x, x′〉) is also a valid kernel (it is called exponential kernel). We may combine
all the results above (exercise) to show that the following kernel, in practice widely
used and known under various names: Gaussian, Gaussian RBF, squared exponential or
exponentiated quadratic, is valid on Rp:

k(x, x′) := exp

(
− 1

2γ2

∥∥x− x′∥∥2
)
.

The RKHS of this kernel is infinite-dimensional. Moreover, if the domain X is a compact
subset of Rp, its RKHS is dense in the space of all bounded continuous functions with
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respect to the uniform norm. Despite that, since all functions in its RKHS are infinitely
differentiable, Gaussian kernel is often considered to be excessively smooth. A less smooth
alternative is the Matérn family, given by

k(x, x′) =
21−ν

Γ(ν)

(√
2ν

γ

∥∥x− x′∥∥)ν Kν

(√
2ν

γ

∥∥x− x′∥∥) , ν > 0, γ > 0,

where Kν is the modified Bessel function of the second kind of order ν. The Matérn
kernels corresponding to the values ν = s+ 1

2 for non-negative integers s take a simpler
form, in particular:

• ν = 1/2: k(x, x′) = exp
(
− 1
γ ‖x− x′‖

)
,

• ν = 3/2: k(x, x′) =
(

1 +
√

3
γ ‖x− x′‖

)
exp

(
−
√

3
γ ‖x− x′‖

)
,

• ν = 5/2: k(x, x′) =
(

1 +
√

5
γ ‖x− x′‖+ 5

3γ2
‖x− x′‖2

)
exp

(
−
√

5
γ ‖x− x′‖

)
.

For ν = s + 1
2 , its RKHS consists of s + 1 times differentiable functions with square

integrable derivatives of order up to s+ 1. Moreover, the RKHS norms directly penalize
the derivatives of f , e.g. for ν = 3/2 and in one dimension, it can be shown that

‖f‖2Hk ∝
∫
f ′′(x)2dx+

6

γ2

∫
f ′(x)2dx+

9

γ4

∫
f(x)2dx.

As ν →∞, Matérn kernel converges to the Gaussian RBF, i.e. k(x, x′) = exp
(
− 1

2γ2
‖x− x′‖2

)
.

Another popular choice of a kernel is rational quadratic which arises as a scale mixture
of Gaussian kernels. In particular, consider Gaussian RBF parametrisation kθ(x, x′) =

exp
(
−θ ‖x− x′‖2

)
and a Gamma density placed on θ, i.e. p(θ) = βα

Γ(α)θ
α−1 exp(−βθ),

with shape α and rate β. Then, we define

κ(x, x′) =

∫ ∞
0

kθ(x, x
′)p(θ)dθ

=
βα

Γ(α)

∫ ∞
0

exp
(
−θ
(∥∥x− x′∥∥2

+ β
))

θα−1dθ

=
βα

Γ(α)

Γ(α)(
‖x− x′‖2 + β

)α
=

(
1 +
‖x− x′‖2

β

)−α
.

Rational quadratic RKHS models functions which vary smoothly across multiple length-
scales. If we write β = 2αγ2 and let α → ∞ we again recover Gaussian RBF, i.e.
exp

(
− 1

2γ2
‖x− x′‖2

)
.
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3.5 Kernel SVM

We can straightforwardly define a maximum margin classifier, i.e. a Support Vector Ma-
chine (SVM) in the RKHS. We write the original hinge loss formulation of the regularized
empirical risk minimization (ignoring the offset b here for simplicity3):

min
w∈H

(
1

2
‖w‖2H + C

n∑
i=1

(1− yi 〈w, k(xi, ·)〉H)+

)
for the RKHS H with kernel k(x, x′). This “kernelized” SVM satisfies the assumption of
the representer theorem, so we are looking for the solutions of the form

w =
n∑
i=1

βik(xi, ·). (3.3)

In this case, maximizing the margin in the RKHS is equivalent to minimizing ‖w‖2H: as
we have seen, for many RKHSs (e.g. the RKHS corresponding to a Gaussian kernel),
this corresponds to enforcing smoothness of the learned functions.
Substituting (3.3) and introducing the ξi variables as before, we get

min
β,ξ

(
1

2
β>Kβ + C

n∑
i=1

ξi

)
(3.4)

subject to ξi ≥ 0 yi

n∑
j=1

βjk(xi, xj) ≥ 1− ξi

where the matrix K has i, jth entry Kij = k(xi, xj). Thus, the primal variables w are
replaced with coefficients β. Note that the problem remains convex since matrix K is
positive definite. With an easy calculation (left for exercise), we can verify that the dual
takes the form

g(α) =

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjk(xi, xj),

subject to the constraints
0 ≤ αi ≤ C,

and the decision function takes the form

w =
n∑
i=1

yiαik(x, ·).

This is analogous to the original dual SVM, with inner products replaced with the kernel
k.

3Note that it suffices to add a constant feature or equivalently use the kernel k(x, x′) + 1 to include the
offset.
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3.6 Kernel PCA

Kernel PCA is a popular nonlinear dimensionality reduction technique [24]. Assume
we have a dataset {xi}ni=1, where xi ∈ Rp. Consider an explicit feature transformation
x 7→ ϕ(x) ∈ H, and assume that we are interested in performing PCA in the feature
space H. Assume that the features {ϕ(xi)}ni=1 are centred. Assume for the moment that
the feature space is finite-dimensional, i.e. H = RM . Then theM×M sample covariance
matrix in the feature space is given by

S =
1

n− 1

n∑
i=1

ϕ(xi)ϕ(xi)
> =

1

n− 1
Φ>Φ,

where Φ ∈ Rn×M is the feature representation of the data. To perform PCA, recall
that we are interested in solving the eigenvalue problem Svm = λmvm, m = 1, . . . ,M ,
and we need the top k � min {n,M} eigenvectors vm, m = 1, . . . , k, to construct
the PC projections z(m)

i = v>mϕ (xi). A property analogous to the representer theo-
rem holds here: whenever λm > 0, the eigenvectors lie in the linear span of feature
vectors span {ϕ(xi) : i = 1, . . . , n}, i.e.

vm =
n∑
i=1

amiϕ(xi) (3.5)

for some scalars ami. To see this, note that

λmvm = Svm =
1

n− 1

n∑
i=1

ϕ(xi)
(
ϕ(xi)

>vm

)
and since λm > 0, it suffices to take ami = 1

λm(n−1)

(
ϕ(xi)

>vm
)
and clearly vm has

form (3.5). Thus eigenvectors can also be recovered in the dual space. Consider now
the n × n kernel matrix K with Kij = k(xi, xj) = ϕ(xi)

>ϕ(xj). By substituting vm =∑n
i=1 amiϕ(xi) back into the eigenvalue problem, we have:

Svm =
1

n− 1

n∑
i=1

ϕ(xi)
n∑
`=1

am`k(xi, x`) = λm

n∑
i=1

amiϕ(xi).

To express the above in terms of the kernel matrix, we project both sides onto ϕ(xj), for
each j = 1, . . . , n. This gives

1

n− 1

n∑
i=1

k(xj , xi)
n∑
`=1

am`k(xi, x`) = λm

n∑
i=1

amik(xj , xi), j = 1, . . . , n,

which in matrix notation can be written as

K2am = λm(n− 1)Kam.
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Assuming that K is invertible, am vectors can be found as the eigenvectors of the kernel
matrix K with corresponding eigenvalues given by λm(n− 1).
But if we simply perform the eigendecomposition of K, we will obtain n-dimensional

eigenvectors of unit norm, and we are after the M -dimensional eigenvectors vm of S
which have unit norm. We see that 1 = v>mvm = a>mKam = λm(n − 1)a>mam. Thus, if
um denotes the m-th eigenvector of K with unit norm, to ensure that vm has unit norm,
we need to rescale am = um/

√
λm(n− 1). Now, we have an implicit representation of

eigenvectors in terms of their dual coefficients. The PC projections are

z
(m)
i = v>mϕ (xi) =

 n∑
j=1

amjϕ(xj)

> ϕ(xi) =

n∑
j=1

amjk(xj , xi),

or equivalently, the m-th dimension of the PC projections is given by

z(m) = Kam = λm(n− 1)am =
√
λm(n− 1)um. (3.6)

We have seen this before! Note that PC projections can be discovered from the SVD
Φ = UDV > as either Z = ΦV or Z = UD. The latter expression is exactly (3.6), since
um are the eigenvectors of kernel matrix K (i.e. the left singular vectors of the feature
matrix Φ) and Dmm =

√
λm(n− 1) (why?). But note that the eigendecomposition of

K and these projections do not require explicit feature transformations - thus, all the
computation is happening in the dual representation and ϕ(xi) need not be computed,
only the kernel matrix K with Kij = k(xi, xj). The kernel formalism also allows us to
compute the projection v>mϕ(x̃) of a new (previously unseen) data vector x̃ ∈ Rp to the
m-th kernel principal component using(

n∑
i=1

amiϕ(xi)

)>
ϕ(x̃) =

n∑
i=1

amik(xi, x̃) = a>mkx̃,

where kx̃ = [k(x1, x̃), . . . , k(xn, x̃)]>, so again no explicit feature transformations are
needed.
Recall that the above all assumes that the features are centred, i.e. that 1

n

∑n
i=1 ϕ(xi) =

0, but if we are just given a kernel function k(x, x′), there is no reason to believe that
the features would be centred. Fortunately, it is straightforward to transform any kernel
matrix into a centred form. Note that the squared distance matrix in the feature space,
i.e. matrix D for which

Dij = ‖ϕ(xi)− ϕ(xj)‖2H = k(xi, xi) + k(xj , xj)− 2k(xi, xj)

can easily be recovered from the Gram/kernel matrix. In matrix form, In matrix form,

D = diag (K) 1> + 1diag (K)> − 2K.

But distances are invariant to centering and the Gram matrix corresponding to centred
features can then also be recovered from the distance matrix (exercise).
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3.7 Representation of probabilities in RKHS

We have seen that kernel methods effectively work on implicit representations of indi-
vidual data points, via the canonical feature map φ : x 7→ k (·, x), such that every data
point is represented as a point in the RKHS Hk. One can similarly represent probability
distributions P in the RKHSs by considering the kernel mean embedding

P 7→ µk (P ) = EX∼Pk (·, X) ∈ Hk.
This is a potentially infinite-dimensional representation of P akin to a characteristic
function of a probability distribution. Kernel mean embedding represents expectations
over RKHS:

〈f, µk (P )〉Hk = EX∼P f(X), ∀f ∈ Hk
and exists whenever f 7→ EX∼P f(X) is a bounded functional. Note that this is always
true if the kernel function itself is bounded, i.e. k(x, y) ≤ M < ∞ ∀x, y. Namely, by
Cauchy-Schwarz

EX∼P f(X) = EX∼P 〈f, k (·, X)〉 ≤ ‖f‖Hk EX∼P ‖k (·, X)‖Hk ≤
√
M ‖f‖Hk

Such representation imposes a simple Hilbert space structure on probability distribu-
tions. In particular, inner products between kernel mean embeddings can be computed
as

〈µk (P ) , µk (Q)〉Hk = EX∼PEY∼Qk(X,Y ).

MMD. We can easily estimate the (squared) distances between probability measures
induced by this RKHS representation since they correspond to simple expectations. Such
distances are called Maximum Mean Discrepancy (MMD):

MMD2
k (P,Q) = ‖µk (P )− µk (Q)‖2Hk (3.7)

= E
X,X′

iid∼P
k(X,X ′) + E

Y,Y ′
iid∼Q

k(Y, Y ′)− 2EX∼P,Y∼Qk(X,Y ),

where X and X ′ denote independent copies of random variables with law P , and similarly
for Y and Y ′.
The name MMD comes from the following interpretation: it can also be written as the

largest discrepancy between expectations of the unit norm RKHS functions with respect
to two distributions (exercise):

MMDk (P,Q) = sup
f∈Hk: ‖f‖Hk≤1

|EX∼P f(X)− EY∼Qf(Y )| .

As a consequence, the function f where the supremum is attained (which can be shown
to be proportional to the difference between embeddings, i.e. µk (P ) − µk (Q), can be
thought of as the witness function for the difference between distributions P and Q.
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Figure 3.1: Witness function for a difference between two univariate densities

An example of such a witness function is shown in green in Fig. 3.1, where P and
Q correspond to distributions on the real line whose densities are drawn in blue and
red, respectively. We can see that the witness function is large in amplitude where the
difference between two densities is large and it can thus be used to discover regions in
the space where two distributions disagree.
For a large class of kernels, including Gaussian, Matern family and rational quadratic,

MMD is a proper metric on probability distributions, in the sense thatMMDk (P,Q) = 0
implies P = Q. Such kernels are called characteristic. MMD is a popular probability
metric, used for nonparametric hypothesis testing [13] and in various machine learning
applications, e.g. training deep generative models [10]. Given two samples {xi}nxi=1 ∼ P
and {yi}nyi=1 ∼ Q, a simple unbiased estimator of the squared MMD in 3.7 is given by

M̂MD2
k (P,Q) =

1

nx (nx − 1)

∑
i 6=j

k (xi, xj)+
1

ny (ny − 1)

∑
i 6=j

k (yi, yj)−
2

nxny

nx∑
i=1

ny∑
j=1

k (xi, yj) ,

which can be interpreted as the difference between within-sample average similarity (self-
similarity excluded) and the between-sample average similarity.

HSIC. Another use of kernel embeddings is in measuring dependence between random
variables taking values in some generic domains (e.g. random vectors, strings, or graphs).
Recall that for any kernels kX and kY on the respective domains X and Y, we can define
k = kX ⊗ kY , given by

k
(
(x, y) ,

(
x′, y′

))
= kX (x, x′)kY(y, y′) (3.8)

which is a valid kernel on the product domain X ×Y by Lemma 12. The tensor notation
signifies that the canonical feature map of k is (x, y) 7→ kX (·, x) ⊗ kY(·, y). Here the
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feature of pair (x, y), ϕx,y = kX (·, x) ⊗ kY(·, y) is understood as a function on X × Y,
i.e. ϕx,y(x′, y′) = kX (x′, x)kY(y′, y). The RKHS of the product kernel k = kX ⊗ kY is
in fact isometric to HkX ⊗ HkY , which can be viewed as the space of Hilbert-Schmidt
operators between HkY and HkX . We are now ready to define an RKHS-based measure
of dependence between random variables X and Y .

Definition 14. Let X and Y be random variables on domains X and Y (non-empty
topological spaces). Let kX and kY be kernels on X and Y respectively. Hilbert-Schmidt
Independence Criterion (HSIC) ΞkX ,kY (X,Y ) of X and Y is the squared MMD between
the joint measure PXY and the product of marginals PXPY , computed with the product
kernel k = kX ⊗ kY , i.e.,

ΞkX ,kY (X,Y ) = ‖µk (PXY )− µk (PXPY )‖2Hk
= ‖EXY [kX (., X)⊗ kY(., Y )]− EXkX (., X)⊗ EY kY(., Y )‖2Hk .

A sufficient condition for HSIC to be well defined is that both kernels kX and kY
are bounded. The name of HSIC comes from the operator view of the RKHS HkX⊗kY .
Namely, by repeated use of the reproducing property, it can be verified (exercise) that
the difference between embeddings µk (PXY ) − µk (PXPY ) can be identified with the
cross-covariance operator CXY : HkY → HkX for which

〈f, CXY g〉HkX = Cov [f(X)g(Y )] , ∀f ∈ HkX , g ∈ HkY .

Note that this is analogous to the finite-dimensional property f>CXY g = Cov
[
f>X, g>Y

]
,

where X and Y are random vectors and CXY is their cross-covariance matrix, i.e.
[CXY ]ij = Cov

[
X(i), Y (j)

]
. HSIC is then simply the squared Hilbert-Schmidt norm

‖CXY ‖2HS of this operator.
To obtain an estimator of the HSIC, we first express it in terms of the expectations of

kernels. Starting from the definition, and expanding the Hilbert space norm into inner
products:

ΞkX ,kY (X,Y ) = ‖EXY (kX (·, X)⊗ kY (·, Y ))

− EX (k (·, X))⊗ EY (k (·, Y )) ‖2Hk
= 〈EXY (kX (·, X)⊗ kY (·, Y )) ,EXY (kX (·, X)⊗ kY (·, Y ))〉Hk

+ 〈EX (EY (kX (·, X)⊗ kY (·, Y ))) ,EX (EY (kX (·, X)⊗ kY (·, Y )))〉Hk
− 2〈EXY (kX (·, X)⊗ kY (·, Y )) ,EX (EY (kX (·, X)⊗ kY (·, Y ))〉Hk

= EXY
(
EX′Y ′

(
〈kX (·, X)⊗ kY (·, Y ) , kX

(
·, X ′

)
⊗ kY

(
·, Y ′

)
〉Hk
))

+ EXX′
(
EY Y ′

(
〈kX (·, X)⊗ kY (·, Y ) , kX

(
·, X ′

)
⊗ kY

(
·, Y ′

)
〉Hk
))

− 2EXY
(
EX′

(
EY ′

(
〈kX (·, X)⊗ kY (·, Y ) , kX

(
·, X ′

)
⊗ kY

(
·, Y ′

)
〉Hk
)))

= EXY
(
EX′Y ′

(
kX
(
X,X ′

)
kY
(
Y, Y ′

)))
+ EXX′

(
kX
(
X,X ′

))
EY Y ′

(
kY
(
Y, Y ′

))
− 2EXY

(
EX′

(
kX
(
X,X ′

))
EY ′′

(
kY
(
Y, Y ′′

)))
(3.9)
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Here the first expectation is taken over two independent copies (X,Y ), (X ′, Y ′) ∼ PXY ,
the second over two independent X,X ′ ∼ PX and two independent Y, Y ′ ∼ PY and
the third over a pair (X,Y ) ∼ PXY sampled from the joint and an independent pair
X ′ ∼ PX , Y ′′ ∼ PY . Now, given a sample Z = {zi}mi=1 = {(xi, yi)}mi=1, where each
(xi, yi) ∈ X ×Y, we can derive an estimator of the HSIC by estimating each of the three
terms in the expansion.
Denote for convenience kij = kX (xi, xj) and lij = kY (yi, yj) for i, j ∈ {1, 2, ...,m}

and define the kernel matrices K = (kij)
m
i,j=1 and L = (lij)

m
i,j=1 (recall that they are

symmetric and positive-definite). Following, we estimate:

̂first term =
1

m2

m∑
i=1

m∑
j=1

kijlij =
1

m2
tr (KL)

̂second term =
1

m4

 m∑
i=1

m∑
j=1

kij

 m∑
i=1

m∑
j=1

lij


=

1

m4

(
1TmK1m

) (
1TmL1m

)
̂third term =

1

m3

m∑
i=1

m∑
j=1

m∑
q=1

kijliq =
1

m3
1TmKL1m

=
1

m3
1TmLK1m

Here 1m is the vector with m entries equal to 1. Therefore an estimator for the HSIC
can be written as:

Ξ̂kX ,kY (X,Y ) =
1

m2

(
tr (KL)− 2

m
1TmKL1m +

1

m2

(
1TmK1m

) (
1TmL1m

))
=

1

m2

(
tr (KL)− 1

m
tr
(
1m1TmKL

)
− 1

m
tr
(
K1m1TmL

)
+

1

m2
tr
(
1m1TmK1m1TmL

))
=

1

m2
tr
((

I − 1

m
1m1Tm

)
K

(
I − 1

m
1m1Tm

)
L

)
=

1

m2
tr (KHLH) .

Here we used that tr (AB) = tr (BA), tr (A) = tr
(
AT
)
and that any real number is equal

to its own trace. We also defined

H := I − 1

m
1m1Tm

which is the centering matrix. Namely, if A is any m×m-matrix, AH centers the rows
of A and HA centers the columns of A. Note also that H is symmetric and idempotent,
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i.e. H2 = H. Hence, tr ((HKH) (HLH))) = tr (H (KHLH)) = tr (KHLHH) =
tr (KHLH).
Recall that the kernel is an inner product between features of the inputs and that inner

products are bilinear. Therefore, the matrices K̃ = HKH and L̃ = HLH are the kernel
matrices for the variables centered in feature space. We therefore arrive at the expression
for the estimator:

Ξ̂kX ,kY (X,Y ) =
1

m2
tr
(
K̃L̃

)
, (3.10)

which has an intuitive explanation of how it measures the dependence between X and Y .
Namely, the function (A,B)→ tr

(
ATB

)
is an inner product on the vector space of real

m×m matrices. Therefore, our estimate measures the similarity between the (centered)
kernel matrices, which in turn measure the “similarity patterns” between the individual
observations. If there is some dependence between the X and Y , we also expect that the
kernel matrices will have a similar structure and hence the inner product between them
(and hence our HSIC estimator in (3.10)), will be larger.
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4 Similarity Graphs and Laplacians

Given a set of data points x1, . . . , xn and some notion of nonnegative similarity/affinity
wi,j ≥ 0 between all pairs of data points xi and xj , one can consider a weighted undirected
similarity graph G = ({1, . . . , n},W), with the similarity/affinity matrix W = (wi,j)
corresponding to edge weights. The intuition behind similarity graph is that it should
capture local neighbourhood relationships between the individual data points. Each
vertex i corresponds to a data point xi and pairs of vertices are connected by an edge if
their similarity exceeds some threshold, and the edge is weighted by wi,j . The following
are some of the most common constructions of similarity graphs based on a given data
set x1, . . . , xn.

The ε-neighbourhood graphs. Connect all points whose pairwise distances are smaller
than or equal to ε. Such graph is usually left unweighted, i.e. the only “metric” infor-
mation kept in the graph is whether or not the points are close (distance at most ε) or
far (distance greater than ε). Arguably, for small ε, as the distances between the con-
nected points are roughly on the same scale (at most ε), weighting those edges does not
incorporate much additional information to the graph.

The k-nearest neighbour graphs. Connect each vertex i to j if data point xj is among
the k nearest neighbours of data point xi. However, neighbourhood relationship is not
symmetric, so this construction would lead to a directed graph. There are two ways to
making this graph undirected. The more common way is to simply ignore the directions
of the edges, i.e. i and j are connected if xj is among the k nearest neighbours of xi or
if xi is among the k nearest neighbours of xj . Second option (so called mutual nearest
neighbor graph), i.e. i and j are connected if both xj is among the k nearest neighbours
of xi and if xi is among the k nearest neighbours of xj . In both approaches, one can leave
the resulting graph unweighted, or wieght the resulting edges by the similarity of their
endpoints.

The fully connected graph. Here we simply compute a nonnegative similarity wi,j
in some functional form and weight all edges by wi,j . A non-negative kernel κ(xi, xj),
such as a Gaussian, κ(xi, xj) = exp

(
− 1

2γ2
‖xi − xj‖2

)
can be used as the graph weight

wij , where the parameter γ controls the width of the neighbourhoods, similarly to the
role of ε in the ε-neighbourhood graphs. Note that the use of kernel functions here is
fundamentally different from that in the previous chapter (in particular, reproducing
kernels need not be nonnegative).
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4 Similarity Graphs and Laplacians

The key quantity we will need based on the similarity graph is the graph Laplacian,
defined below.

Definition 15. The (unnormalized) Laplacian of a graph G = ({1, . . . , n},W) is an
n× n matrix given by

L = D−W,

where D = diag (W1) is a diagonal matrix with Dii = deg(i), and deg(i) denotes the
degree of vertex i defined as

deg(i) =
n∑
j=1

wij .

Note that the Laplacian always has the column vector 1 as an eigenvector with eigen-
value 0 (since all rows sum to zero).

Exercise 16. For all a ∈ Rn

a>La =
1

2

∑
i,j

wij (ai − aj)2 ≥ 0,

which means that the Laplacian is a positive semi-definite matrix, and all the eigenvalues
are non-negative.

The most common application of graph Laplacians is that of spectral clustering, which
we describe next ([27] provides an excellent in-depth overview). However, the principles
behind graph Laplacians can be applied more widely and to many other machine learning
applications, such as nonlinear dimensionality reduction [2], manifold regularization [3]
and ranking [11].

4.1 Spectral Clustering

4.1.1 Graph Cuts

K-means algorithm will often fail when applied to data with elongated or non-convex clus-
ter structures. An alternative approach to clustering is to use graph cuts on a weighted
undirected similarity graph G = ({1, . . . , n},W) induced by the dataset consisting of n
observations {xi}ni=1. We wish to partition the dataset into K clusters, which can be
thought of as a partition C1, C2, . . . , CK of the vertex set {1, . . . , n}. The overall graph
cut across clusters is given by

cut (C1, . . . , CK) =
K∑
k=1

cut(Ck, C̄k),
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4 Similarity Graphs and Laplacians

where C̄k is the complement of Ck and cut(A,B) =
∑

i∈A,j∈B wij is the sum of the weights
separating vertex subset A from the vertex subset B, where A and B are disjoint.
The direct cut minimization, however, results with very small cluster sizes (i.e. it

would typically split a single datapoint from the rest), so one needs to balance the cuts
by the cluster sizes in the partition. One approach is to consider the notion of “ratio cut"

ratio-cut (C1, . . . , CK) =

K∑
k=1

cut(Ck, C̄k)
|Ck|

.

Unfortunately, minimizing this criterion is computationally hard to solve. Spectral
clustering algorithm uses a relaxation of the problem of minimizing the ratio cut.

4.1.2 Graph Laplacian and Ratio Cuts

The relationship between the ratio cuts and the graph Laplacian is given in the following:

Lemma 17. For a given partition C1, C2, . . . , CK define the column vectors hk ∈ Rn as

hk,i =
1√
|Ck|

1{i∈Ck}.

Then

ratio-cut (C1, . . . , CK) =

K∑
k=1

h>k Lhk. (4.1)

Note that the vectors hk are orthonormal by construction. Thus, to minimize the ratio
cut exactly, we can search for orthonormal vectors hk with entries either 0 or 1/

√
|Ck|

which minimize the RHS in (4.1). This is equivalent to integer programming so it is
computationally hard. Thus, we instead look for any collection of orthonormal vectors
hk that minimize RHS in (4.1) – which corresponds to the eigendecomposition of the
Laplacian.
If the original graph is disconnected, in addition to 1, there would be other 0-eigenvectors

of L, corresponding to the indicators of the connected components of the graph (see The-
orem 25.4.1 in [18]). The idea of spectral clustering is to assume that the graph we end
up with based on the dataset, while possibly not disconnected, is a “small perturbation"
of a disconnected graph, and we are trying to recover connected components, i.e., clusters
based on a noisy version of the true Laplacian of the underlying disconnected graph.
The algorithm proceeds by eigendecomposing L and taking the K eigenvectors corre-

sponding to the K smallest eigenvalues – this gives a new "data representation"

Z = [u1, . . . , uK ] ∈ Rn×K

on which we can apply a more conventional clustering algorithm, such as K-means.

Remark 18. A number of normalized graph Laplacians have also been proposed, which
are based on slightly different “balancing" formulation of cuts, including the “random
walk" matrix I−D−1W and I−D−1/2WD−1/2.
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4.2 Manifold Regularization

In semi-supervised learning, graph Laplacians are utilized to construct additional regu-
larizers of functions f : X → Y mapping from inputs to the outputs. The idea is to learn
the manifold shape corresponding to input distribution from unlabelled inputs and then
constrain the functions using that shape. A learned function should change slowly were
the inputs are dense.
Assuming we have a labelled set of examples {(xi, yi)ni=1} and an unlabelled set of

inputs {xn+i}ui=1, we form an (n + u) × (n + u) Laplacian matrix L and consider the
ERM with an additional intrinsic regularizer

f>Lf =
1

2

n+u∑
i=1

n+u∑
j=1

wij(f(xi)− f(xj))
2

for the vector f = [f(x1), . . . , f(xn+u)]> of function values on all inputs, i.e. the addi-
tional regularizer penalizes large differences between function values at the neighbouring
vertices i and j(where wij > 0). As a result, we obtain the optimization problem

min
f∈H

1

n

n∑
i=1

L(yi, f(xi)) +
λ

n
‖f‖2H +

η

n
f>Lf

for a given hypothesis class H. Term ‖f‖2H is the standard, ambient regularizer corre-
sponding to the complexity of functions in the hypothesis class and λ and η, respectively,
denote ambient and intrinsic regularization parameters.
If H = Hk is an RKHS for a kernel k, a version of the representer theorem still

applies, but with the solution spanned using all inputs, i.e. f? =
∑n+u

i=1 αik(xi, ·), since
both the empirical risk and the intrinsic regularizer term only depend on f through its
evaluations at x1, . . . , xn+u. In the case of a squared loss (Laplacian Regularized Least
Squares – LapRLS ), a closed form solution for dual coefficients is available (cf. SC4 2018
exam, Q3) and given by

α =
(
J>JK + λI + ηLK

)−1
J>y,

where J = [In | 0] is an n × (n + u) matrix and K for the kernel matrix on all n + u
inputs.
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algorithm

5.1 Clustering and Mixture Modelling

K-means and hierarchical clustering are non-probabilistic algorithms – based on the in-
tuitive notions of clustering “similar" instances together and “dissimilar" instances apart.
Their goal is not to model the probability of the observed data items. In contrast, prob-
abilistic unsupervised learning constructs a generative model that describes clustering of
the items. We assume that there is some latent / unobserved process that is governing
the data generation - and based on the data, we will try to answer the questions about
this generating process.
Mixture models assume that our dataset X was created by sampling iid fromK distinct

populations (called mixture components). In other words, data come from a mixture of
several sources and the model for the data can be viewed as a convex combination of
several distinct probability distributions, often modelled with a given parametric family.
Samples in population k can be modelled using a distribution Fµk with density f(x|µk),

where µk is the model parameter for the k-th component. For a concrete example,
consider a p-dimensional multivariate normal density with unknown mean µk and known
diagonal covariance σ2I,

f(x|µk) = |2πσ2|− p2 exp

(
− 1

2σ2
‖x− µk‖22

)
. (5.1)

Such model corresponds to the following generative model, whereby for each data item
i = 1, 2, . . . , n, we

(i) first determine the assignment variable (independently for each data item i):

Zi
iid∼ Mult(π1, . . . , πK) i.e., P(Zi = k) = πk

where for k = 1, . . . ,K, πk ≥ 0, such that
∑K

k=1 πk = 1, are the mixing proportions,
additional model parameters to be inferred;

(ii) then, given the assignment Zi = k of the mixture component,Xi = (X
(1)
i , . . . , X

(p)
i )>

is sampled (independently) from the corresponding k-th component:

Xi|(Zi = k) ∼ f(x|µk).
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We observe Xi = xi for each i but do not observe its assignment Zi (latent variables),
and would like to infer the parameters θ = (µ1, . . . , µK , π1, . . . , πK) as well as the latent
variables.
Note that the complete log-likelihood in the model

log p(z,X|θ) = log

(
n∏
i=1

πzif(xi|µzi)
)

=
n∑
i=1

(log πzi + log f(xi|µzi)) (5.2)

is not available as zi is not observed. We can consider marginalising over the latent
variables

p(X|θ) =
K∑

z1=1

. . .
K∑

zn=1

n∏
i=1

πzif(xi|µzi) =
n∏
i=1

(
K∑
k=1

πkf(xi|µk)
)
. (5.3)

giving the marginal log-likelihood of the observations,

`(θ) = log p(X|θ) =

n∑
i=1

log

K∑
k=1

πkf(xi|µk).

However, direct maximisation is not feasible and the marginal log-likelihood will often
have many local optima. Fortunately, there is a simple local marginal log-likelihood
maximisation algorithm called Expectation Maximisation (EM), which we will describe
in Section 5.3.

5.2 KL Divergence and Gibbs’ Inequality

Before we describe the EM algorithm, we will review the notion of Kullback-Leibler (KL)
divergence or relative entropy between probability distributions P and Q.

KL divergence.

• Let P and Q be two absolutely continuous probability distributions on X ⊆ Rd
with densities p and q respectively. Then the KL divergence from Q to P is defined
as

DKL (P ‖ Q) =

∫
X
p(x) log

p(x)

q(x)
dx. (5.4)

• Let P and Q be two discrete probability distributions with probability mass func-
tions p and q respectively. Then the KL divergence from Q to P is defined as

DKL (P ‖ Q) =
∑
i

p(xi) log
p(xi)

q(xi)
. (5.5)
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In both cases, we can write

DKL (P ‖ Q) = Ep
[
log

p(X)

q(X)

]
, (5.6)

where Ep denotes that expectation is taken over p. By convexity of f(x) = − log(x) and
Jensen’s inequality (5.8), we have that

DKL (P ‖ Q) = Ep
[
− log

q(X)

p(X)

]
≥ − logEp

q(X)

p(X)
= 0, (5.7)

where in the last step we used that
∫
X q(x)dx = 1 in continuous case and

∑
i q(xi) = 1

in discrete case.

Jensen’s inequality. Let f be a convex function and X be a random variable. Then

E [f(X)] ≥ f (EX) . (5.8)

If f is strictly convex, then equality holds if and only if X is almost surely a constant.

Thus, we conclude that KL-divergence is always non-negative. This consequence of
Jensen’s inequality is called Gibbs’ inequality. Moreover, since f(x) = − log(x) is strictly
convex on x > 0, the equality holds if and only if p(x) = q(x) almost everywhere, i.e. P =
Q. Note that in general KL-divergence is not symmetric: DKL (P ‖ Q) 6= DKL (Q ‖ P ).

5.3 EM Algorithm

EM algorithm is a general purpose iterative strategy for local maximisation of the likeli-
hood under missing data/hidden variables. The method has been proposed many times
for specific models– it was given its name and studied as a general framework by [9].
Let (X, z) be a pair of observed variables X, and latent variables z. Our probabilistic

model is given by p(X, z|θ), but we have no access to z. Therefore, we would like to
maximise the observed data log-likelihood (marginal log-likelihood) `(θ) = log p(X|θ) =
log
∫
p(X, z|θ)dz over θ. However, marginalisation of latent variables typically results in

an intractable optimization problem and we need to resort to approximations.
Now, assume for a moment that we have access to another objective function F(θ, q),

where q(z) is a certain distribution on latent variables z, which we are free to choose and
will call variational distribution. Moreover, assume that F satisfies

F(θ, q) ≤ `(θ) for all θ, q, (5.9)
max
q
F(θ, q) = `(θ), (5.10)

i.e. F(θ, q) is a lower bound on the log-likelihood for any variational distribution q (5.9),
which also matches the log-likelihood at a particular choice of q (5.10).
Given these two properites, we can construct an alternating maximisation: coordinate

ascent algorithm as follows:
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Coordinate ascent on the lower bound. For t = 1, 2 . . . until convergence:

q(t) := argmaxqF(θ(t−1), q)

θ(t) := argmaxθF(θ, q(t)).

Theorem 19. Assuming (5.9) and (5.10), coordinate ascent on the lower bound F(θ, q)
does not decrease the log likelihood `(θ).

Proof. `(θ(t−1)) = F(θ(t−1), q(t)) ≤ F(θ(t), q(t)) ≤ F(θ(t), q(t+1)) = `(θ(t)). Additional
assumption, that ∇2

θF(θ(t), q(t)) are negative definite with eigenvalues < −ε < 0, implies
that θ(t) → θ∗ where θ∗ is a local MLE.

But how to find such lower bound F? It is given by the so called variational free
energy, which we define next.

Definition 20. Variational free energy in a latent variable model p(X, z|θ) is defined as

F(θ, q) = Eq[log p(X, z|θ)− log q(z)], (5.11)

where q is any probability density/mass function over the latent variables z.

Consider the KL divergence between q(z) and the true conditional based on our model
p(z|X, θ) = p(X, z|θ)/p(X|θ) for the observations X and a fixed parameter vector θ.
Since KL is non-negative,

0 ≤ DKL [q(z) ‖ p(z|X, θ)] = Ez∼q log
q(z)

p(z|X, θ)

= log p(X|θ) + Ez∼q log
q(z)

p(X, z|θ) .

Thus, we have obtained a lower bound on the marginal log-likelihood which holds true
for any parameter value θ and any choice of the variational distribution q:

`(θ) = log p(X|θ) ≥ Ez∼q log
p(X, z|θ)
q(z)

= Ez∼q log p(X, z|θ)︸ ︷︷ ︸
energy

entropy︷ ︸︸ ︷
−Ez∼q log q(z) . (5.12)

The right hand side in (5.12) is precisely the variational free energy - we see it decom-
poses in two terms. The first term is usually referred to as energy using the physics
terminology, more precisely it is the expected complete data log-likelihood (if we observed
z, we would just maximise the complete data log-likelihood log p(X, z|θ), but since z
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5 Latent Variable Models and EM algorithm

is not observed we need to integrate it out - but recall that q here is any distribution
over latent variables). The second term is the Shannon entropy H(q) = −Eq log q(z) of
the variational distribution q(z), and does not depend on θ (it can be thought of as the
complexity penalty on q).
The inequality becomes an equality when KL divergence is zero, i.e. when q(z) =

p(z|X, θ) which means that the optimal choice of variational distribution q for fixed
parameter value θ is the true conditional of the latent variables given the observations
and that θ.
Thus, we have proved the following lemma:

Lemma 21. Let F be the variational free energy in a latent variable model p(X, z|θ).
Then (a) F(θ, q) ≤ `(θ) for all q and for all θ, and (b) for any θ, F(θ, q) = `(θ) iff
q(z) = p(z|x, θ).

Thus, properties (5.9) and (5.10) are satisfied and we can recast the alternating max-
imisation of the variational free energy into iterative updates of q (E-step, via the plug-in
full conditional of z using the current estimate of θ) and the updates of θ (M-step, by
maximising the ’energy’ for the current estimate of q). Provided that both E-step and
M-step can be solved exactly, EM Algorithm converges to the local maximum likelihood
solution.

EM Algorithm. Initialize θ(0). At time t ≥ 1:

• E-step: Set q(t)(z) = p(z|X, θ(t−1))

• M-step: Set θ(t) = arg maxθ Ez∼q(t) log p(X, z|θ).

5.4 EM Algorithm for Mixtures

Consider again our mixture model from Section 5.1 with

p(z,X|θ) =
n∏
i=1

πzif(xi|µzi).

Recall that our latent variables z are discrete (they correspond to cluster assignments)
so q is a probability mass function over z := (zi)

n
i=1. Using the expression (5.2), we can
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5 Latent Variable Models and EM algorithm

write the variational free energy as

F(θ, q) =Eq[log p(X, z|θ)− log q(z)]

=Eq

[(
n∑
i=1

K∑
k=1

1(zi = k) (log πk + log f(xi|µk))
)
− log q(z)

]

=
∑
z

q(z)

[(
n∑
i=1

K∑
k=1

1(zi = k) (log πk + log f(xi|µk))
)
− log q(z)

]

=

n∑
i=1

K∑
k=1

q(zi = k) (log πk + log f(xi|µk)) +H(q).

We will denote Qik = q(zi = k), which is called responsibility of cluster k for data item
i.
Now, the E-step simplifies because

p(z|X, θ) =
p(X, z|θ)
p(X|θ) =

∏n
i=1 πzif(xi|µzi)∑

z′
∏n
i=1 πz′if(xi|µz′i)

=

n∏
i=1

πzif(xi|µzi)∑
k πkf(xi|µk)

=

n∏
i=1

p(zi|xi, θ).

Thus, for a fixed θ(t−1) = (µ
(t−1)
1 , . . . , µ

(t−1)
K , π

(t−1)
1 , . . . , π

(t−1)
K ) we can set

Q
(t)
ik = p(zi = k|xi, θ(t−1)) =

π
(t−1)
k f(xi|µ(t−1)

k )∑K
j=1 π

(t−1)
j f(xi|µ(t−1)

j )
. (5.13)

Now, consider the M-step. For mixing proportions we have a constraint that
∑K

j=1 πj =
1, so we introduce the Lagrange multiplier and obtain

∇πk
(
F(θ, q)− λ(

∑K
j=1 πj − 1)

)
=

n∑
i=1

Qik
πk
− λ = 0 ⇒ πk ∝

n∑
i=1

Qik.

Since
K∑
k=1

n∑
i=1

Qik =
n∑
i=1

K∑
k=1

Qik︸ ︷︷ ︸
=1

= n,

the M-step update for mixing proportions is

π
(t)
k =

∑n
i=1Q

(t)
ik

n
, (5.14)
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i.e., they are simply given by the total responsibility of each cluster. Note that this
update holds regardless of the form of the parametric family f(·|µk) used for mixture
components.
Setting derivative with respect to µk to 0, we obtain

∇µkF(θ, q) =

n∑
i=1

Qik∇µk log f(xi|µk) = 0. (5.15)

This equation can be solved quite easily for mixture of normals in (5.1), giving the
M-step update

µ
(t)
k =

∑n
i=1Q

(t)
ik xi∑n

i=1Q
(t)
ik

, (5.16)

which implies that the k-th cluster mean estimate is simply a weighted average of all
the data items, where the weights correspond to the responsibilities of cluster k for these
points.
Put together, the EM for normal mixture model with known (fixed) covariance is

very similar to K-means algorithm where cluster assignments are soft, i.e. rather than
assigning each data item xi to a single cluster at each iteration, we carry forward a
responsibility vector (Qi1, . . . , QiK) giving probabilities of xi belonging to each cluster.
Indeed, K-means algorithm can be undestood as EM where σ2 → 0, such that E-step
will assign exactly one entry in (Qi1, . . . , QiK) to one (corresponding to the nearest mean
vector) and the rest to zero.

EM for Normal Mixtures (known covariance) – “Soft K-means"

1. Initialize K cluster means µ1, . . . , µK and mixing proportions π1, . . . , πK .

2. Update responsibilites (E-step): For each i = 1, . . . , n, k = 1, . . . ,K:

Qik =
πk exp

(
− 1

2σ2 ‖xi − µk‖22
)∑K

j=1 πj exp
(
− 1

2σ2 ‖xi − µj‖22
) (5.17)

3. Update parameters (M-step): Set µ1, . . . , µK and π1, . . . , πK and based on the new
cluster responsibilities:

πk =

∑n
i=1Qik
n

, µk =

∑n
i=1Qikxi∑n
i=1Qik

. (5.18)

4. Repeat steps 2-3 until convergence.

5. Return the responsibilites {Qik} and parameters µ1, . . . , µK , π1, . . . , πK .
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5 Latent Variable Models and EM algorithm

In some cases, depending on the form of the parametric family f(·|µk) the M-step
update for mixtures cannot be solved exactly. In these cases, we can use gradient ascent
algorithm inside the M-step:

µ
(r+1)
k = µ

(r)
k + α

n∑
i=1

Qik∇µk log f(xi|µ(r)
k ).

This leads to generalized EM algorithm.

5.5 Probabilistic PCA

So far, we have considered the application of EM to clustering, but it can be applied to
latent variable models more broadly. Here, we will derive EM for Probabilistic PCA [26],
a latent variable model for probabilistic dimensionality reduction. Just like in PCA, we
try to model a collection of n p-dimensional vectors using a k-dimensional representation
with k < p. Probabilistic PCA corresponds to the following generative model.
For each data item i = 1, 2, . . . , n:

• Let Yi be a (latent) k-dimensional normally distributed random vector with mean
0 and identity covariance:

Yi ∼ N (0, Ik),

• Given Yi, the distribution of the i-th data item is a p-dimensional normal:

Xi ∼ N (µ+ LYi, σ
2I)

where the parameters θ = (µ,L, σ2) correspond to a vector µ ∈ Rp, a matrix
L ∈ Rp×k and σ2 > 0.

Note that unlike in clustering, the latent variables Y1, . . . , Yn are now continuous.
From an equivalent representation Xi = µ + LYi + ε, where ε ∼ N (0, σ2Ip) and is

independent of Y , we see that the marginal model on Xi’s is

f(x|θ) = N
(
x;µ,LL> + σ2I

)
,

where parameters are denoted θ =
(
µ,L, σ2

)
. From here it is clear that the maximum

marginal likelihood estimator of µ is available directly as µ̂ = 1
n

∑n
i=1Xi and thus, we

do not require EM to estimate µ. We will henceforth assume that the data is centred, to
simplify notation and remove µ from the parameters.

On the other hand, maximum marginal likelihood solution for L is unique only up
to orthonormal transformations, which is why a certain form of L is usually enforced
(e.g. lower-triangular, orthogonal columns). [26] shows that the MLE for PPCA has
the following form. Let λ1 ≥ · · · ≥ λp be the eigenvalues of the sample covariance and
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V1:k ∈ Rp×k the top k eigenvectors as before. Let Q ∈ Rk×k be any orthogonal matrix.
Then we have:

µMLE = x̄ (σ2)MLE = 1
p−k

∑p
j=k+1 λj

LMLE = V1:kdiag((λ1 − (σ2)MLE)
1
2 , . . . , (λk − (σ2)MLE)

1
2 )Q.

We note that the standard PCA is recovered when σ2 → 0. However, the EM algorithm
we derive below can be faster than eigendecomposition, can be implemented online, can
handle missing data and can be extended to more complicated models. We will now
proceed by deriving the EM algorithm.

E-step.

By Gaussian conditioning (exercise),

q(yi) = p(yi|xi, θ) = N (yi|bi, R) ,

where

bi =
(
L>L+ σ2I

)−1
L>xi, (5.19)

R = σ2
(
L>L+ σ2I

)−1
. (5.20)

M-step.

Recall that the parameters of interest are θ =
(
L, σ2

)
(since the marginal maximum

likelihood estimate of the mean parameter µ is directly available). We would like to
maximise the variational free energy given by:

F (θ, q) = Ey∼q

[
n∑
i=1

log p(xi, yi|θ)
]

+ const.

By ignoring terms that do not depend on θ and denoting =c to mean “equal up to a
constant independent on θ”

log p(xi, yi|θ) =c −
p

2
log σ2 − 1

2σ2
(xi − Lyi)> (xi − Lyi)

=c −
p

2
log σ2 − 1

2σ2

{
x>i xi − 2x>i Lyi + y>i L

>Lyi

}
=c −

p

2
log σ2 − 1

2σ2

{
x>i xi − 2x>i Lyi + Tr

[
L>Lyiy

>
i

]}
.

Taking expectation over q(yi) = N (yi|bi, R) gives

Eyi∼q (log p(xi, yi|θ)) =c −
p

2
log σ2 − 1

2σ2

{
x>i xi − 2x>i Lbi + Tr

[
L>L

(
bib
>
i +R

)]}
.
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It remains to sum over all observations to get

F (θ, q) =c −
np

2
log σ2

− 1

2σ2

{
n∑
i=1

x>i xi − 2
n∑
i=1

x>i Lbi + Tr

[
L>L

(
n∑
i=1

bib
>
i + nR

)]}
.

Now, we have

∂F
∂L

=
1

σ2

{
n∑
i=1

xib
>
i − L

(
n∑
i=1

bib
>
i + nR

)}
,

which by setting to 0 gives the update rule

L(new) =

(
n∑
i=1

xib
>
i

)(
n∑
i=1

bib
>
i + nR

)−1

. (5.21)

Letting τ = σ−2, we have:

∂F
∂τ

=
np

2

1

τ
− 1

2

{
n∑
i=1

x>i xi − 2

n∑
i=1

x>i Lbi + Tr

[
L>L

(
n∑
i=1

bib
>
i + nR

)]}
,

and thus

(
σ2
)(new)

=
1

np

{
n∑
i=1

x>i xi − 2

n∑
i=1

x>i L
(new)bi + Tr

[
L(new)>L(new)

(
n∑
i=1

bib
>
i + nR

)]}
.

(5.22)
Both Probabilistic PCA and normal mixtures are examples of linear Gaussian models,

all of which have the corresponding learning algorithms based on EM. For a unifying
review of these and a number of other models from the same family, including factor
analysis and hidden Markov models, cf. [22].
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6 Collaborative Filtering

6.1 Ratings and Recommendations

Collaborative Filtering (CF) is a collective name for a range of techniques that tackle
the problem of making predictions about the preferences of a set of users on a set of
items, based on the user’s ratings on other items and based on the ratings of other users.
Typical example concerns predicting movie preferences based on the ratings of previously
watched movies – popularized by the 2006 Netflix competition.

movie \ user Alice Bob Chuck Dan Eve
Happy Gilmore ? 2 5 1 4
Click 1 ? 4 ? ?
Ex Machina ? 4 ? ? 2
Blade Runner 5 ? 1 ? ?
The Matrix 5 5 ? ? 4

In a typical setup, we have a partially observed matrix Y ∈ Rn1×n2 where yi,j is the
rating (e.g. between 1 and 5) of movie i by user j, assuming we have n1 movies and n2

users1. Most entries will be missing/unknown since most users will not have rated most
movies. We will also introduce a matrix of exposure indicators E where ei,j = 1 if the
user j has rated movie i and ei,j = 0 otherwise.

6.2 Content-Based Recommendations and Alternating
Linear Regressions

In the case where additional attributes about users or about the movies are observed, the
problem can be treated in a supervised learning fashion. Assume that for each movie i
we also have access to a feature vector φi = [φi1, . . . , φik]

> ∈ Rk (for example, φi1 may
indicate whether a movie i is a romantic comedy, φi2 whether it is based on a comic book
etc). Then we could simply formulate the problem as n2 separate linear models2 for each
user j:

min
ψj

∑
i : ei,j=1

(yi,j − φ>i ψj)2 + λψ‖ψj‖22, j = 1, . . . , n2. (6.1)

1note the departure from our usual n × p convention – indeed, we will consider that both users and
movies have some underlying set of variables – but that these are not necessarily observed

2in the typical case of integer ratings, a generalised linear model is more appropriate, as linear model
can make predictions outside of the range of valid rating values, but we are keeping things simple
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Here, ψj is the corresponding vector of coefficients in the linear model, and we have
included the L2-regularization term (which becomes important if some users have rated
only a small number of movies). This model is called content-based recommendation
system since it depends on specific features of the movies. Note that content-based
recommendations are not “collaborative" in the sense that recommendations made to a
user do not make use of the information across the entire user-base.
We often do not have appropriate features for movies and even if we do, it is not

clear if those specific features are relevant for ratings prediction. Notice that ψj =
[ψj1, . . . , ψjk]

> ∈ Rk in (6.1) can be treated as a preference vector for each user j (e.g.
ψj1 tells us whether the user j likes romantic comedies, ψj2 whether the user j likes
movies based on comic books etc), so let us assume for the moment that we have access
to these user preferences but not to the actual feature vectors φi for the movies. Because
of the symmetry in the model, we can now infer those feature vectors, based on the
preferences:

min
φi

∑
j : ei,j=1

(yi,j − φ>i ψj)2 + λφ‖φi‖22, i = 1, . . . , n1. (6.2)

Thus, we see that it is possible to formulate the predictions not based on features of
the movies nor based on the preferences of the users (either of which may or may not
be observed), but merely on the ratings matrix: we randomly initialise movie feature
vectors φi, and then perform an iterative minimization alternating between the updates
(6.1) and (6.2). This may result in features/preferences that do not have an easily
understandable meaning, but are capturing salient movie/user properties that result in
the ratings we observe. Moreover, by optimizing over both movie features and user
preferences, predictions for each user can potentially depend on ratings of all other users
(i.e. they are “collaborative").
While alternating linear regressions can be solved in closed form, due to very large

numbers n1 and n2 of movies and users, in practice one often uses stochastic gradient
descent (SGD) updates, where when we observe a new rating yi,j , we only update the
feature vector φi of movie i and the preference vector ψj of user j:

φi ← (1− εtλφ)φi + εtψj(yij − φ>i ψj), (6.3)
ψj ← (1− εtλψ)ψj + εtφi(yij − φ>i ψj). (6.4)

6.3 Low-Rank Matrix Factorization

The method of alternating linear regressions can be understood as low-rank matrix
factorization of the ratings matrix Y. Indeed, the ratings matrix is being approxi-
mated as a product of two low-rank matrices, Φ ∈ Rn1×k, Ψ ∈ Rn2×k, where typically
k � min(n1, n2), such that Y ≈ ΦΨ>. The columns φ(1), . . . , φ(k) of Φ can be interpreted
as learned attributes of movies, whereas columns ψ(1), . . . , ψ(k) of Ψ can be interpreted
as learned attributes of users.
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If Y was fully observed then the best low-rank approximation is given by SVD, i.e.
from SVD Y = UDV > we can set Φ = U1:n1,1:kD

1/2
1:k,1:k and Ψ = V1:n2,1:kD

1/2
1:k,1:k and this

is a solution3 of

min
Φ,Ψ

n1∑
i=1

n2∑
j=1

(yi,j − φ>i ψj)2

︸ ︷︷ ︸
=‖Y−ΦΨ>‖2F

. (6.5)

However, as most entries in Y are missing, we have the optimization problem given by

min
Φ,Ψ

∑
ei,j=1

(yi,j − φ>i ψj)2. (6.6)

This seemingly minor modification results in a difficult optimization problem which
cannot be solved using standard SVD techniques. Moreover, it is typically needed to add
regularization terms due to a large number of missing entries in Y, which results exactly
in the objective of the alternating linear regressions:

min
Φ,Ψ

∑
ei,j=1

(yi,j − φ>i ψj)2 + λφ‖Φ‖2F + λψ‖Ψ‖2F . (6.7)

6.4 Probabilistic Matrix Factorization

Introduced in [23], the generative model corresponding to CF can be described as follows:

• For each movie i = 1, . . . , n1, sample independently the latent vector of features
φi ∼ N (0, σ2

φIk) from a k-dimensional normal distribution,

• For each user j = 1, . . . , n2, sample independently the latent vector of preferences
ψj ∼ N (0, σ2

ψIk) from a k-dimensional normal distribution,

• For each movie-user pair (i, j), sample ei,j ∼ Bernoulli(p) independently and if
ei,j = 1, sample yi,j |φi, ψj ∼ N (φ>i ψj , σ

2
y).

The (hyper)parameter vector here is given by θ = (σ2
φ, σ

2
ψ, σ

2
y). We can write the joint

probability density of the observations and the latent variables as

3not unique as D can be distributed arbitrarily between Φ and Ψ - compare to the discussion of different
versions of scaled biplots
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p(Y,Φ,Ψ|θ) =

n1∏
i=1

1

(2πσ2
φ)k/2

exp

(
− 1

2σ2
φ

‖φi‖22

)

·
n2∏
j=1

1

(2πσ2
ψ)k/2

exp

(
− 1

2σ2
ψ

‖ψj‖22

)

·
∏
ei,j=1

1

(2πσ2
y)

1/2
exp

(
1

2σ2
y

(yi,j − φ>i ψj)2

)

∝ exp

− 1

2σ2
φ

‖Φ‖2F −
1

2σ2
ψ

‖Ψ‖2F −
1

2σ2
y

∑
ei,j=1

(yi,j − φ>i ψj)2

 . (6.8)

Maximizing log p(Φ,Ψ|Y, θ) in this model thus corresponds exactly to (6.7) with reg-
ularization parameters given by λφ = σ2

y/σ
2
φ, λψ = σ2

y/σ
2
ψ. Since we now have a full

probabilistic model, however, it is possible to consider joint inference of Φ, Ψ and θ as
well as to consider more sophisticated model construction.

6.5 User-based and Item-based Collaborative Filtering

There is also a range of model-free (also called memory-based) methods for collaborative
filtering, which are typically based on some notion of user-user similarity or item-item
similarity.
User-based CF (UBCF) starts with a notion of user-user similarity computed based

on the ratings, and then predicts ratings by aggregating those of similar users. Generally,
it proceeds in the following three steps:

1. Assign a weight to all users with respect to similarity with the current user.

2. Select k users that have the highest similarity with the current user – commonly
called the neighbourhood.

3. Compute a prediction using a weighted combination of the neighbours’ ratings.

An example similarity κ is given by

κj,j′ =

∑
i∈Ijj′

(yij − ȳj)(yij′ − ȳj
′
)√∑

i∈Ijj′
(yij − ȳj)2

√∑
i∈Ijj′

(yij′ − ȳj′)2
, (6.9)

where ȳj = avgi : eij=1{yij} denotes the average rating given by user j and Ijj′ ={
i : eijeij′ = 1

}
is the set of movies rated by both users j and j′. Thus, this similarity

is simply the Pearson correlation between the ratings columns restricted to those movies
which are rated by both users. Now to make a prediction for a new movie-user pair
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(i, j), we can simply aggregate predictions over the neighbourhood Uk(i, j) of user j: the
k users most similar to j who rated movie i, for example:

ŷi,j = ȳj +

∑
j′∈Uk(i,j) κj,j′(yi,j′ − ȳj

′
)∑

j′∈Uk(i,j) |κj,j′ |
. (6.10)

Item-based CF (IBCF) works analogously by aggregating predictions the user has made
on similar movies. There is a large number of different variants of these algorithms,
which consider different similarity measures and different aggregation strategies. See [17]
for further details and references.

6.6 Biclustering

Also known as coclustering, this is a method for clustering both rows (items) and columns
(users) in the observed data matrix. This can be a ratings matrix in CF, but can also
correspond to a more general data matrix – for example, biclustering is often used in
analysing gene expression data.
The intuition behind biclustering is as follows: even if the two users have a similar

movie taste, it is extremely unlikely that the two have watched (and rated) the same
movies (the overlap could in fact be very small). Thus, identifying similar users solely
based on the similarity of their ratings may not be sufficient. Moreover, a group of users
may have similar ratings across a certain group of movies, i.e. Alice and Bob both like
science fiction, but have very different ratings across another type of movies, i.e. Alice
also likes horrors but Bob hates them. Instead, we wish to simultaneously find groups of
similar users and groups of similar movies.
In the biclustering method, we associate to each row i a latent indicator ri ∈ {1, . . . ,Kr}

and to each column j a latent indicator cj ∈ {1, . . . ,Kc}. Based on the cluster member-
ship, matrix Y is partitioned into blocks, with yij belonging to the same block as yi′j′
iff (ri, cj) = (ri′ , cj′). Further, we assume that the matrix entries are i.i.d. within each
block (ri, cj), i.e.

p(Y | r, c, θ) =
∏
eij=1

p(yij |ri, cj , θ) =
∏
eij=1

p(yij |θri,cj ),

for some parametric probability distribution p(yij |θri,cj ). For example, we can obtain
a model similar to matrix factorization by letting θri,cj = (φri , ψcj ) for movie-group-
level feature vectors φri ∈ Rk and user-group-level preference vectors ψcj ∈ Rk and
p(yij |θri,cj ) = 1√

2πσ2
exp

(
− 1

2σ2 (yij − φ>riψcj )2
)
. Inference can then proceed similarly as

in the EM algorithm.
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7 Bayesian Learning

7.1 Bayesian Inference

So far, our treatment of probabilistic machine learning models has been frequentist, i.e.
we used one set of tools to reason about latent variables z (e.g. cluster indicators in a
mixture model) and another to reason about model parameters θ (e.g. parameters of
mixture components defining those clusters). The generative processes we considered
define the likelihood function: the joint distribution p (D|θ) of all the observed data D
given the model parameters θ and the learning consists in computing the maximum
likelihood estimator

θ̂ = arg max
θ∈Θ

p (D|θ) .

For example, in the EM algorithm (which is a frequentist method aimed at locally max-
imising the likelihood function), we were placing a variational distribution q on latent
variables but not on θ, which was inferred using point estimates at each iteration.
In Bayesian inference, we also treat the model parameters θ as random variables and the

process of learning is then computation of the posterior distribution p(θ|D). In addition
to the likelihood p (D|θ) specified by the generative model, one needs to also specify a
prior distribution p(θ). Posterior distribution is then given by the Bayes Theorem:

p(θ|D) =
p(D|θ)p(θ)
p(D)

,

where the denominator is the marginal likelihood or evidence:

p(D) =

∫
Θ
p(D|θ)p(θ)dθ.

All the questions about model parameters can be addressed based on the posterior. We
can, for example, consider

• Posterior mode: θ̂MAP = arg maxθ∈Θ p(θ|D) (maximum a posteriori).

• Posterior mean: θ̂mean = E [θ|D].

• Posterior variance: Var[θ|D].

• Posterior expectations of functions of parameters: E [g (θ) |D] for some g : Θ→ Rs.

A particularly convenient choice of prior distributions are conjugate priors to a given
likelihood function. A prior and likelihood are said to be conjugate if they result in a
posterior that lies in the same parametric family as the prior.
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Example: Bayesian inference on a categorical distribution.

Suppose we observe D = {yi}ni=1, with yi ∈ {1, . . . ,K}, and model them as i.i.d. with
the probability mass function π = (π1, . . . , πK):

p(D|π) =

n∏
i=1

πyi =

K∏
k=1

πnkk

with nk =
∑n

i=1 1(yi = k) and πk > 0,
∑K

k=1 πk = 1. The conjugate prior on π is the
Dirichlet distribution Dir(α1, . . . , αK) with parameters αk > 0, and density

p(π) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

παk−1
k

on the probability simplex {π : πk > 0,
∑K

k=1 πk = 1}. Since

p (π|D) ∝
K∏
k=1

πnk+αk−1
k ,

the posterior is also Dirichlet Dir(α1 + n1, . . . , αK + nK). Posterior mean is given by

π̂mean
k =

αk + nk∑K
j=1 αj + nj

.

Notice how parameters of the prior (hyperparameters) are essentially playing the role of
the pseudocounts for each of the classes 1, . . . ,K (but they need not be integer-valued).
They are reflecting prior beliefs about class proportions. For the case of two classes, this
is equivalent to a Beta (α1, α2) prior on π1, i.e. p(π1) = Γ(α1+α2)

Γ(α1)Γ(α1)π
α1
1 (1− π1)α2 .

7.2 Predictive distributions

How do we construct predictions based on the posterior distributions? Write the obser-
vations as D = {xi}ni=1 and assume the generative model specifies p(x|θ), e.g. a mixture
model p(x|θ) =

∑K
k=1 πkf (x|φk), with θ = (π1, . . . , πK ;φ1, . . . , φK). The posterior pre-

dictive distribution is the conditional distribution of xn+1 given D = {xi}ni=1:

p(xn+1|D) =

∫
Θ
p(xn+1|θ,D)p(θ|D)dθ

=

∫
Θ
p(xn+1|θ)p(θ|D)dθ.

Thus, we predict new data by averaging the predictive distribution over the posterior.
This is fundamentally different than predicting using a point estimate of θ, i.e. p(xn+1|θ̂)
as it takes into account the posterior uncertainty in parameters.
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Example: Bayesian treatment of naïve Bayes classifer. Consider a K-class classi-
fication problem with binary input vectors, i.e. D = {(xi, yi)}ni=1, xi ∈ {0, 1}p and
yi ∈ {1, . . . ,K}. Naïve Bayes classifier uses the following model:

p(yi = k|θ) = πk, p(xi|yi = k, θ) =

p∏
j=1

φ
x
(j)
i
kj (1− φkj)1−x(j)i ,

i.e. it assumes that given the class labels, individual dimensions in input vectors are
independent. The parameters of the model are collated into θ = ((πk) , (φkj)). It is
often used in text classification where data items correspond to documents and x

(j)
i

indicates whether word j from a list of p words has appeared in document i. Class labels
correspond to e.g. topics of the documents. Despite the name, naïve Bayes is often
treated in a frequentist way, i.e. using maximum likelihood estimation of parameters. If
we set nk =

∑n
i=1 1{yi = k}, nkj =

∑n
i=1 1(yi = k, x

(j)
i = 1), the MLE can be written as

π̂k =
nk
n
, φ̂kj =

∑
i:yi=k

x
(j)
i

nk
=
nkj
nk

.

But the MLEs can be problematic in some cases. For example, if the `-th word did not
appear in any documents labelled as class k (nkl = 0), then φ̂k` = 0. But if we then wish
to compute the predictive probability once for a new document x̃ which contains `-th
word, we have:

p(ỹ = k|x̃ with `-th entry equal to 1, θ̂)

∝ π̂k
p∏
j=1

(
φ̂kj

)x̃(j) (
1− φ̂kj

)1−x̃(j)
= 0,

since φ̂k` = 0. This means that we will never attribute a new document containing word
` to class k (regardless of what other words in it may be!). Moreover, probability of a
document under all classes can be 0 by the same reasoning.
Let us consider a Bayesian approach to the same model. We can write the likelihood

as

p(D|θ) =
n∏
i=1

p(xi, yi|θ) =
n∏
i=1

K∏
k=1

πk p∏
j=1

φ
x
(j)
i
kj (1− φkj)1−x(j)i

1(yi=k)

=
K∏
k=1

πnkk

p∏
j=1

φ
nkj
kj (1− φkj)nk−nkj .

For a conjugate prior, we can use Dir((αk)Kk=1) for π, and Beta(a, b) for φkj independently.
Now, because the likelihood factorises, the posterior distribution over π and (φkj) also
factorises, and posterior for π is Dir((αk+nk)

K
k=1), and for φkj is Beta(a+nkj , b+nk−nkj).

If we want to predict a label ỹ for a new document x̃, we obtain

p(x̃, ỹ = k|D) = p(ỹ = k|D)p(x̃|ỹ = k,D)
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with

p(ỹ = k|D) =
αk + nk∑K
l=1 αl + n

p(x̃(j) = 1|ỹ = k,D) =
a+ nkj
a+ b+ nk

and the predicted class is

p(ỹ = k|x̃,D) =
p(ỹ = k|D)p(x̃|ỹ = k,D)

p(x̃|D)
∝ αk + nk∑K

l=1 αl + n

p∏
j=1

(
a+ nkj
a+ b+ nk

)x̃(j) (b+ nk − nkj
a+ b+ nk

)1−x̃(j)

.

Compared to the MLE plug-in predictions, pseudocounts help to “regularise” probabilities
away from the extreme values.

7.3 Laplace Approximation

Bayesian approach to learning is conceptually very elegant, but the posterior distribu-
tions are intractable in almost all interesting cases, and we therefore need to resort to
various approximations. One of the techniques for approximation of intractable posterior
distributions is the Laplace or saddlepoint approximation. The idea is to simply approxi-
mate the posterior distribution p(θ|D) with a (multivariate) Gaussian distribution. Given
the ease of manipulating Gaussians, this is a convenient choice, since the various poste-
rior expectations and predictive distributions will be easier to calculate when we have
Gaussian approximate posteriors.
Consider for simplicity the case where parameter θ is a scalar and assume that posterior

mode θ̂MAP is available. Often, the posterior mode can be found even if the normalising
constant p(D) is intractable since it suffices to maximise p(θ|D) ∝ p(θ,D) = p(D|θ)p(θ)
using a numerical method. Then, we can use a Taylor expansion of log p(θ|D) around
the posterior mode θ̂MAP:

log p(θ|D) = log p(θ̂MAP|D) +
∂ log p(θ|D)

∂θ

∣∣∣∣∣
θ=θ̂MAP

(
θ − θ̂MAP

)

+
∂2 log p(θ|D)

∂θ2

∣∣∣∣∣
θ=θ̂MAP

(
θ − θ̂MAP

)2

2
+O

((
θ − θ̂MAP

)3
)
.

By ignoring the third and higher order terms and noticing that the the first derivative
at the mode must be zero, we have an approximation:

log p(θ|D) ≈ log p(θ̂MAP|D)− τ

2

(
θ − θ̂MAP

)2
, (7.1)

where we write τ = −∂2 log p(θ|D)
∂θ2

≥ 0. But recall that logN
(
θ|µ, σ2

)
= log

((
2πσ2

)−1/2
)
−

1
2σ2 (θ − µ)2, so this second order Taylor approximation has exactly the form of a normal
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log-density with mean µ = θ̂MAP and variance σ2 = τ−1 so we can approximate the

posterior with N
(
θ̂MAP,

(
−∂2 log p(θ|D)

∂θ2

)−1
)
.

This idea easily extends to multivariate densities. In particular, the Laplace approxi-
mation of p(θ|D) is a multivariate Gaussian N

(
θ̂MAP,Σ

)
, where the inverse covariance

matrix is given by the negative Hessian of the log-posterior evaluated at the posterior
mode:

Σ−1 = −∂
2 log p(θ|D)

∂θ∂θ>

∣∣∣∣∣
θ=θ̂MAP

.

Since log p(θ|D) agrees with log p(θ,D) up to a constant, they have the same deriva-
tives, so often we work with the energy function J(θ) = − log p(θ,D), which is the
negative logarithm of the unnormalised posterior. Then we can write

Σ−1 =
∂2J(θ)

∂θ∂θ>

∣∣∣∣∣
θ=θ̂MAP

.

7.4 Bayesian Model Selection

Consider a situation where we do not have one Bayesian model but several. Each model
M has a set of parameters θM, likelihood p(D|θM) and the prior distribution p(θM).
Within each model, the posterior distribution is

p(θM|D,M) =
p(D|θM,M)p(θM|M)

p(D|M)

where the normalising constant is the marginal probability of the data under modelM
(Bayesian model evidence):

p(D|M) =

∫
Θ
p(D|θM,M)p(θM|M)dθ

In Bayesian model selection, one compares models using their Bayes factors p(D|M)
p(D|M′) .

Considering Bayesian model evidence can be interpreted as a Bayesian version of Oc-
cam’s Razor : of two explanations adequate to explain the same set of observations, the
simpler should be preferred. Namely, note that the model evidence p(D|M) is the prob-
ability that a set of randomly selected parameter values (under the prior) inside the
model would generate dataset D. In that case, models that are too simple are unlikely
to generate the observed dataset. On the other hand, models that are too complex can
generate many possible datasets, so again, they are unlikely to generate that particular
dataset at random.
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One of the workhorses of Bayesian machine learning are variational approximations,
which turn posterior inference in intractable Bayesian models into optimization. We
have seen that Bayesian model selection proceeds by optimizing (maximizing) the model
evidence. While model evidence is almost always intractable, using the same principles
as in the EM algorithm (Gibbs inequality), lower bounds may be available which can be
optimized instead.

8.1 ELBO

Assume that we are taking a Bayesian approach to inference in a latent variable model
p(X, z|θ) with observations X, latent variables z and parameters θ. Now, because we
are using a Bayesian model, our treatment of latent variables and model parameters is
exactly the same. We can now consider some joint distribution q(z, θ) of latent variables
and parameters, called variational distribution (similarly to EM, but note that EM was
not allowed to place a distribution over θ!). We claim that the quantity

F(q) = Eq [log p(X, z, θ)] +H(q) (8.1)

is a lower bound on log-evidence log p(X). Namely, we can write

F(q) = Eq [log p(X, z, θ)]− Eq[log q(z, θ)]

= Eq [log p(z, θ|X)] + log p(X)− Eq[log q(z, θ)]

= −KL (q(z, θ)||p(z, θ|X)) + log p(X),

which is by Gibbs inequality maximised (and equal to log-evidence) when KL is zero,
i.e. when q(z, θ) = p(z, θ|X). Thus, for any variational distribution q, F(q) ≤ log p(x).
Expression 8.1 is called the evidence lower bound (ELBO).
To reason about all the unknowns in the model, we would simply need to compute the

joint posterior p(z, θ|X), but this is almost always intractable. Hence, the variational
Bayesian inference approximates the posterior by starting with a family Q of tractable
variational distributions q(z, θ) (e.g. q(z, θ|ν) where ν are the variational parameters),
and aims to minimize the divergence KL (q(z, θ)||p(z, θ|X)) over Q or, equivalently, max-
imise the ELBO, i.e. find the tightest lower bound on the log-evidence.
In a nutshell, variational Bayes projects the (intractable) posterior p(z, θ|X) onto a

tractable family Q with respect to the KL divergence KL (q(z, θ)||p(z, θ|X)). Alternative
divergences are possible in this context. In particular, since KL is not symmetric, min-
imization of the “reverse” divergence KL (p(z, θ|X)||q(z, θ)) results in a different family
of approximate Bayesian methods, known as Expectation Propagation (EP).
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8.2 Bayesian EM and Mean-Field Variational Family

Variational approximation requires specifying the variational family Q. The complexity
of Q determines the difficulty of the optimization; it is more difficult to optimize over a
large family Q than over a simpler, smaller one. Consider family Q of variational dis-
tributions which factorize across the latents and the parameters: q(z, θ) = qZ (z) qΘ (θ).
For a fixed qΘ, we can solve for qZ which maximises ELBO (exercise):

qZ (z) ∝ exp

(∫
log p(X, z, θ)qΘ (θ) dθ

)
,

and by symmetry, for a fixed qZ, we can solve for qΘ which maximises ELBO:

qΘ (θ) ∝ exp

(∫
log p(X, z, θ)qZ (z) dz

)
.

Now, one can formulate an algorithm similar to EM, which alternates between optimising
qZ and qΘ, such that each iteration increases ELBO and thus decreases the KL divergence
from the posterior.
We notice the symmetry between z and θ. Indeed, the distinction between parameters

and latent variables disappears in Bayesian modelling, as all unobserved quantities in
the model are treated in the same way and our goal is to approximate their posterior
distribution. In the rest of this section, we will drop θ from the notation and treat them
as a part of the set of all unobserved quantities z.
The further simplification we often make in Variational Bayes is to focus on the mean-

field variational family where the variational distribution fully factorizes

q (z) =
m∏
j=1

qj (zj) ,

i.e. all latent variables are mutually independent and each latent zj is governed by its own
variational factor qj . Note that there could be a mix between categorical and continuous
latents, each having the appropriate factor qj . Also, zj itself need not be a univariate
latent – see an example with LDA below. Using the mean-field family implies that we
will not be able to capture any posterior correlations between the latent variables zj and
zj′ for j 6= j′ and that the best we can hope for is a rich representations of the posterior
marginals.
The iterative procedure similar to Bayesian EM can now be applied to each individual

factor, giving rise to the algorithm 8.1 called Coordinate Ascent Variational Inference
(CAVI), closely related to Gibbs sampling, i.e. it also uses full conditionals p (zj |z−j ,x) ∝
p(z,x), where we denoted z−j = [z1, . . . , zj−1, zj+1, . . . , zn].

8.3 Complete conditionals in the exponential family

When the complete conditionals p (zj |z−j ,x) belong to an exponential family of distri-
butions, i.e. they are given by
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Algorithm 8.1 Coordinate Ascent Variational Inference (CAVI)
Input: a model p(z,x), dataset x
Output: a variational posterior q(z)

while the ELBO has not converged do

• for j = 1, . . . ,m

– qj(zj) ∝ exp
[
Ez−j∼q log p (zj |z−j ,x)

]
• ELBO(q) = Ez∼q [log p(x, z)] +H(q)

return q (z) =
∏m
j=1 qj (zj)

p(zj |z−j ,x) = h (zj) exp
[
ηj (z−j ,x)>zj −A (ηj (z−j ,x))

]
,

a particular convenient form of CAVI is available, i.e. the updates in Algorithm 8.1 are
available in closed form. Above, we assume zj is already transformed to its appropriate
sufficient statistic, h (·) is a base measure, A (·) is the log-normalizer and ηj are the
natural parameters (which depend on the conditioning set). Now, the CAVI update
reads

qj(zj) ∝ exp [E−j log p (zj |z−j ,x)]

= exp
[
log h (zj) + {E−jηj (z−j ,x)}> zj − E−jA (ηj (z−j ,x))

]
∝ h (zj) exp

[
{E−jηj (z−j ,x)}> zj

]
and thus, the variational factors are in the same exponential family as the complete con-
ditionals with natural parameter being the expected natural parameter of the complete
conditional

νj = E−jηj (z−j ,x) .

This setup describes many models, including Bayesian Gaussian mixtures, Dirichlet pro-
cess mixtures, matrix factorization, multilevel regression and latent Dirichlet allocation,
giving thus one classical overarching CAVI algorithm with closed-form updates for many
instances of Variational Bayes.
While the distinction between parameters and latent variables disappears in Bayesian

modelling, there is still a relevant distinction in terms of where in the model hierarchy
these unobserved quantities appear. In that respect, we can differentiate global latent
vector β which is associated to all observations and the local latents {zi}ni=1 each of which
is associated to an individual observation xi, such that the observation xi is conditionally
independent of {z1, . . . , zi−1, zi+1, . . . , zn} given β and zi. The joint density is then
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p(β, z,x) = p (β)
n∏
i=1

p (zi, xi|β) .

The normal mixtures are an example of this, where the mixture parameters are the global
latents, while cluster assignments are the local latents. The impact of such hierarchy is
that not all updates in Algorithm 8.1 need to be performed sequentially. Multiple levels
of hierarchy are also possible.
We next study a concrete example of this in topic modelling, Latent Dirichlet Alloca-

tion [5].

8.4 Example: Topic Modelling

Topic models are a class of probabilistic models of text that lead to parsimonious repre-
sentations of hidden thematic structure of a collection of documents. A popular approach
to topic modelling is Latent Dirichlet Allocation (LDA1) [5].

Latent Dirichlet Allocation

LDA captures the intuition that a text document typically exhibits multiple topics and
blends them in a particular way. In LDA, each topic is modelled as a probability dis-
tribution over words and each document as a mixture of corpus-wide topics (i.e. it can
be identified with a distribution over topics). Each observed word in a document is then
treated as a draw from the mixture, i.e. it belongs to one of the topics (mixture com-
ponents). Mixture proportions are thus unique for each document, i.e. they are local
latents, but mixture components are shared across the whole collection - they are global
latents. This setting is also called a mixed membership model. The goal of the LDA is to
find the posterior

p(topics,proportions,assignments|observed words)

Note that a corpus of text to be analyzed may consist of millions of documents, thus
having possibly billions of latent variables.
LDA posits the following conditionally conjugate model, LetK be the number of topics

and V the size of the vocabulary.

1. For each topic in k = 1, . . . ,K,

a) Draw a distribution over V words βk ∼ DirV (η)

2. For each document in d = 1, . . . , D,

a) Draw a vector of topic proportions θd ∼ DirK (α)

b) For each word in n = 1, . . . , Nd,

1Do not confuse it with Linear Discriminant Analysis which shares the acronym - these two models are
not related.
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Figure 8.1: Graphical model representation of LDA. Plates represent replication, for ex-
ample there are D documents each having a topic proportion vector θd

i. Draw a topic assignment zdn ∼ Mult (θd) , i.e. p (zdn = k|θd) = θdk

ii. Draw a word wdn ∼ Mult (βzdn), i.e. p (wdn = v|β, z) = βzdnv

Thus, we can write the joint distribution as

p (β, θ, z, w) =
K∏
k=1

p (βk; η)
D∏
d=1

{
p (θd;α)

Nd∏
n=1

p (zdn|θd) p (wdn|β, z)
}

=
1

B (η)K B (α)D

K∏
k=1

V∏
v=1

βηv−1
kv

D∏
d=1

{
K∏
k=1

θαk−1
dk

Nd∏
n=1

θd,zdnβzdn,wdn

}
.(8.2)

The model has the following latents: β (topics), θ (proportions), and z (assignments).
Note that there are also hyperparameter vectors η ∈ RV+ and α ∈ RK+ in the Dirichlet
priors - these are assumed fixed. Data are the observed words {wdn} . There will be some
abuse of notation here - we denote by wdn both the appropriate draw from vocabulary
{1, . . . , V } - to be used for indexing, and its “one-hot” encoding i.e. a binary V -vector
with wdn [v] = 1 if wdn = v and zero otherwise. We will write wdn [·] in the case of the
latter. Similarly, we denote by zdn both the appropriate topic assignment from {1, . . . ,K}
and its “one-hot” encoding i.e. a binary K-vector with zdn [k] = 1 if zdn = k and zero
otherwise. We will write zdn [·] in the case of the latter.
We will use a mean-field family of the form

q (β, θ, z) =

K∏
k=1

q (βk;λk)

D∏
d=1

{
q (θd; γd)

Nd∏
n=1

q (zdn;φdn)

}
.

The complete conditionals are proportional to the joint distribution in (8.2):

1. Complete conditional on the topic assignment is a multinomial with

p (zdn = k|θd, β, wd) ∝ θdkβk,wdn = exp (log θdk + log βk,wdn) . (8.3)

Thus, for the variational approximation we also use a multinomial but with a
“free parameter” φdn, where we denote φdn[k] = q (zdn = k), i.e. φdn is simply a
probability mass function over K topics.
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2. Complete conditional on the topic proportions depends only on the assignments
and is given by

p (θd|zd) = DirK

(
θd;α+

Nd∑
n=1

zdn [·]
)
. (8.4)

For the variational approximation we also use Dirichlet, with parameter vector
γd ∈ RK+ .

3. Complete conditional on the topics is

p (βk|z, w) = DirV

(
βk; η +

D∑
d=1

Nd∑
n=1

zdn [k]wdn [·]
)
. (8.5)

For the variational approximation we also use Dirichlet, with parameter vector
λk ∈ RV+.

With these full conditionals we can derive the CAVI updates in the LDA model. We will
need the following fact about the Dirichlet distribution given here without proof.

Fact 22. If π ∼ DirL (α), then

E [log πj ] = ψ (αj)− ψ
(

L∑
`=1

α`

)
,

where ψ (u) = Γ′(u)
Γ(u) =

∫∞
0

(
e−t

t − e−ut

1−e−t

)
dt is the digamma function.

Now we can obtain the closed-form updates for each set of the latents.

Proposition 23. CAVI updates in the LDA model are given by

1. φdn[k] ∝ exp
(
ψ (γdk) + ψ (λk,wdn)− ψ

(∑V
v=1 λk,v

))
,

2. γd = α+
∑Nd

n=1 φdn,

3. λk = η +
∑D

d=1

∑Nd
n=1 φdn [k]wdn [·],

where ψ is the digamma function.

Proof. Steps (2) and (3) directly follow from the exponential family properties of Dirichlet
distribution and are left for exercise. For (1), we make use of Fact 22 and write

φdn[k] ∝ exp (Eθd,β∼q log p (zdn = k|θd, β, wd))
∝ exp (Eθd∼q log θdk + Eβk∼q log βk,wdn)

∝ exp

(
ψ (γdk)− ψ

(
K∑
`=1

γd`

)
+ ψ (λk,wdn)− ψ

(
V∑
v=1

λk,v

))

∝ exp

(
ψ (γdk) + ψ (λk,wdn)− ψ

(
V∑
v=1

λk,v

))
,

as required.
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8.5 Variational Autoencoders

A popular use of variational methods is in the context of training probabilistic deep
generative models known as Variational Autoencoders (VAEs) [14, 21]. An autoencoder
consists of a pair of neural networks which are jointly trained to attempt to approximately
copy inputs at the outputs while passing them through a lower-dimensional representa-
tion. They consist of (a) an encoder (also called recognition model) qφ(z|x), a conditional
probability distribution of codes z ∈ Rdz , given a high-dimensional input x ∈ Rdx , typ-
ically parametrized by a neural network with weights φ, and (b) a decoder (also called
generative model) pθ (x|z), a conditional probability distribution of outputs x ∈ Rdx ,
given a code z ∈ Rdz , also parametrized by a neural network with weights θ. Typically,
dz � dx. In VAEs, codes are interpreted as local latent variables in a model which
places a prior p(z) and has a likelihood specified by the decoder pθ (x|z). Thus, encoder
is essentially a variational approximation to the intractable posterior of latent codes and
training VAEs proceeds by jointly fitting the model parameters θ and the variational
parameters φ using stochasting gradient descent 2. After a VAE has been trained, new
examples can be generated by drawing new codes z from the prior and passing them
through the decoder network (e.g. if VAE was trained on a database of images, it will
learn to generate new images).
The encoder typically uses a normal distribution with mean and covariance parame-

terized by a neural network, i.e.

qφ(z|x) = N (z|µφ (x) ,Σφ (x)) , (8.6)

but many other options are possible, including augmenting VAE posterior approxima-
tions by transforming drawn samples through mappings (so called flows) with additional
trainable parameters to achieve richer variational families.

VAE ELBO. Consider different ways in which we can write the ELBO for a single
observation x:

L(x, θ, φ) = Eqφ(z|x) [log pθ(x, z)] +H (qφ (·|x))

= Eqφ(z|x)

[
log

pθ(x, z)

qφ (z|x)

]
= Eqφ(z|x)

[
log

p(z)

qφ (z|x)

]
+ Eqφ(z|x) [log pθ (x|z)]

= −KL (qφ (z|x) ||p(z)) + Eqφ(z|x) [log pθ (x|z)] . (8.7)

The final expresssion is particularly convenient as for a normal variational posterior in
(8.6) and a normal prior p(z), the KL divergence term is available in closed form. The
prior is typically just p(z) = N (z|0, I), and the KL term thus reads

KL (qφ (z|x) ||p(z)) =
1

2

[
µφ (x)> µφ (x) + tr (Σφ (x))− log det (Σφ (x))− dz

]
.

2note that θ and φ are typically not treated in a Bayesian way, i.e. only the codes are latents
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In the most common case of a mean field approximation where Σφ (x) is a diagonal matrix
with [Σφ (x)]jj = σ2

φ,j(x), this further simplifies to

KL (qφ (z|x) ||p(z)) =
1

2

dz∑
j=1

[
µ2
φ,j(x) + σ2

φ,j(x)− log
(
σ2
φ,j(x)

)
− 1
]
.

Note that in this case the encoder network produces 2dz outputs {µφ,j(x)}dzj=1 and{
σ2
φ,j(x)

}dz
j=1

, based on the dx-dimensional input x, using weights φ.

To obtain the ELBO objective on the whole set of observations {xi}ni=1 ,we average the
individual terms in (8.7), i.e.

L(θ, φ) =
1

n

n∑
i=1

{
Eqφ(z|xi) [log pθ (xi|z)]−KL (qφ (z|xi) ||p(z))

}
. (8.8)

Assuming that {(xi, zi)}ni=1 are drawn i.i.d. from pθ (x, z), L(θ, φ) is a lower bound
on the (scaled) model evidence 1

n log pθ ({xi}ni=1) = 1
n

∑n
i=1 log pθ (xi), since L(xi, θ, φ) ≤

log pθ (xi), for all i. We wish to proceed with stochastic gradient descent to jointly
maximize (8.8) with respect to θ and φ using minibatches of observations xi at the time
in order to compute unbiased estimators of the gradients of ELBO. We note, however,
that the terms Eqφ(z|xi) [log pθ (xi|z)] are generally not tractable, which we address next.

Reparametrization trick. In order to optimize the ELBO objective over θ and φ, it
remains to estimate the terms Eqφ(z|xi) [log pθ (xi|z)]. Getting a good Monte Carlo es-
timator would require drawing many samples of codes for each obervation xi, which is
prohibitive. Thus, one is tempted to proceed with drawing a single zi ∼ qφ (z|xi) and
estimating

Êqφ(z|xi) [log pθ (xi|z)] = log pθ (xi|zi) .
However, this is clearly problematic, as explicit dependence of this estimator on the varia-
tional parameters φ has been lost and we cannot compute its gradients with respect to φ.
There is a simple solution, however, known as the “reparametrization trick”. For example,
in the case of a normal variational posterior, since a draw zi ∼ N (z|µφ (x) ,Σφ (x)) can
be written as zi = µφ (x) + Σ

1/2
φ (x) εi, with εi ∼ N (0, I), we can rewrite

Eqφ(z|xi) [log pθ (xi|z)] = Eε
[
log pθ

(
xi|µφ (x) + Σ

1/2
φ (x) ε

)]
,

and use estimator of the form log pθ

(
xi|µφ (x) + Σ

1/2
φ (x) εi

)
, based on a single draw

εi ∼ N (0, I). Now, it is possible to compute gradients ∇θ log pθ

(
xi|µφ (x) + Σ

1/2
φ (x) εi

)
and ∇φ log pθ

(
xi|µφ (x) + Σ

1/2
φ (x) εi

)
with respect to both θ and φ, and, importantly,

they are unbiased estimators of ∇θEqφ(z|xi) [log pθ (xi|z)] and ∇φEqφ(z|xi) [log pθ (xi|z)],
respectively. For more general variational posteriors, a similar reparametrization ap-
proach is possible whenever we can sample from qφ (z|xi) by computing some function
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h(ε, φ, xi), where ε is a draw from a known distribution with no further parameters to be
learned.

VAEs and unbiased estimators of pθ (x). Assume that we have access to some stricly
positive unbiased estimator p̂θ (x) of pθ(x), with∫

p̂θ (x) qθ,φ (u|x) du = pθ (x) ,

where u ∼ qθ,φ (·|x) denotes all random variables used to compute the estimator p̂θ (x) =
p̂θ (x;u, φ), with φ denoting any additional parameters of the sampling distribution.
Jensen’s inequality then tells us that∫

log p̂θ (x) qθ,φ (u|x) du ≤ log

∫
p̂θ (x) qθ,φ (u|x) du ≤ log pθ (x) .

Thus, the term

L(x, θ, φ) :=

∫
log p̂θ (x;u, φ) qθ,φ (u|x) du (8.9)

is a lower bound on evidence for any choice of an unbiased estimator p̂θ (x;u, φ). VAE
framework we described above corresponds to simply setting u = z and the estimator is of
the form p̂θ(x) = pθ (x, z) /qφ (z|x). However, one can consider other types of estimators.
For example, Importance Weighted Autoencoder (IWAE) [8] uses an estimator based on
s importance samples u = {zj}sj=1, with zj ∼ qφ (·|x)

p̂θ(x) =
1

s

s∑
j=1

pθ (x, zj)

qφ (zj |x)
.

While the lower bound in (8.9) may not be tractable, it suffices to only compute un-
biased estimators of its gradients with respect to parameters θ and φ. Similarly to
before, if Eqφ(u|x) [log p̂θ (x;u, φ)] = Eε [log p̂θ (x;h(ε, φ, x), φ)], for some known distribu-
tion of ε and a given function h, then we can simply use ∇θ log p̂θ (x;h(ε, φ, x), φ) and
∇φ log p̂θ (x;h(ε, φ, x), φ).
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9 Gaussian Processes

9.1 Different views of regression

Regression with least squares loss L(y, f(x)) = (y − f(x))2 implies that we are fitting
the conditional mean function f∗(x) = E [Y |X = x]. This loss also corresponds to the
probabilistic model where yi is a noisy version of the underlying function f evaluated at
input xi:

yi|f(xi) ∼ N (f(xi), σ
2), independently for i = 1, . . . , n. (9.1)

There are different ways to model the class of functions f .

• Frequentist Parametric approach: model f as fθ for some parameter vector θ. Fit
θ by ML / ERM with squared loss (linear regression).

• Frequentist Nonparametric approach: model f as the unknown parameter taking
values in an infinite-dimensional space of functions (RKHS). Fit f by regularized
ML / ERM with squared loss (kernel ridge regression)

• Bayesian Parametric approach: model f as fθ for some parameter vector θ. Put a
prior on θ and compute a posterior p(θ|D) (Bayesian linear regression).

• Bayesian Nonparametric approach: treat f as the random variable taking values in
an infinite-dimensional space of functions. Put a prior over functions f ∈ F , and
compute a posterior p(f |D) (Gaussian Process regression).

9.2 Gaussian Process Regression

Gaussian processes (GPs) are a widely used class of models that allow us to place a prior
distribution directly on the space of functions rather than on parameters in a particular
family of functions. This prior can then be converted into a posterior distribution once
we have seen some data. One can think of a Gaussian process as an infinite-dimensional
generalisation of a multivariate normal distribution. Namely, given an index set X , a
collection of random variables {Ax}x∈X is said to be a Gaussian process if and only if for
every finite set of indices x1, . . . , xn, vector [Ax1 , . . . , Axn ]> has a multivariate normal
distribution on Rn. Thus, to any Gaussian process, we can associate a random function
f : X → R by setting f(x) = Ax, for all x ∈ X . Gaussian process is fully specified by its
mean and covariance functions, i.e.

m (x) = E [f (x)] ,

k
(
x, x′

)
= E

[
(f (x)−m (x))

(
f
(
x′
)
−m

(
x′
))]

,
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9 Gaussian Processes

where expectations are taken over f (x and x′ are fixed elements in the index set X ). This
means that for any finite set x1, . . . , xn, f = [f(x1), . . . , f(xn)]> ∈ Rn has a distribution
N (m,K), where mi = m(xi) and K is the covariance matrix given by Kij = k(xi, xj).
We will typically assume that the mean function m(x) is zero under the Gaussian process
prior. If we know before seeing any data that the distribution of the function evaluations
should be centered around some other mean, we could easily include that into the model.
Equivalently, we could also subtract that known mean from the data and just use the
zero mean model. If we are looking at the data to estimate the mean function, then
often the zero mean GP suffices – in fact, structural information about mean functions
(constant, linear) can be included into the choice of the covariance function (exercises).
Covariance functions k : X × X → R obviously has to be positive definite so they are
essentially equivalent to the kernel functions we have seen before. In fact, there is a rich
connection between RKHS methods and Gaussian processes, an example of which we
will discuss below.

9.2.1 Gaussian Conditioning and Regression Model

The convenience of manipulating multivariate normal distributions carries over to Gaus-
sian processes. Let us review the rules for Gaussian conditioning, which are key to
Gaussian process regression.

Gaussian Conditioning. Let z ∼ N (µ,Σ) be a multivariate normal random vector
and let us split its dimensions into two parts, i.e.

z =

[
z1

z2

]
, µ =

[
µ1

µ2

]
, Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. (9.2)

Note that Σ21 = Σ>12 due to symmetry of covariance matrices. Then the conditional
density of z2 given z1 is also normal and given by

p(z2|z1) = N (z2; µ2 + Σ21Σ−1
11 (z1 − µ1), Σ22 − Σ21Σ−1

11 Σ12). (9.3)

For a given set of inputs x = {xi}ni=1, we denote the vector of evaluations of f by f =
[f(x1), . . . , f(xn)]> ∈ Rn and the vector of observed outputs by y = [y1, . . . , yn]> ∈ Rn.
Note that since we treat f as a random function, f is a random n-dimensional vector.
The Gaussian process regression model, assuming likelihood function in (9.1), is then
given by

f ∼ N (0,K)

y|f ∼ N (f , σ2I),

where K is the covariance (kernel) matrix given by Kij = k(xi, xj). But because both
the prior and the likelihood are normal this simply means that f and y are jointly normal
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with [
f
y

]
∼ N

([
0
0

]
,

[
K K
K K + σ2I

])
. (9.4)

For example, to find the cross-covariance between f and y note that

E
[
fy>

]
= E

[
f(f + σε)>

]
= E

[
ff>
]

+ σE
[
fε>
]

= K, (9.5)

where ε ∼ N (0, I) is independent of f . Now, we can simply apply the Gaussian condi-
tioning to find the posterior distribution

f |y ∼ N (K(K + σ2I)−1y,K−K(K + σ2I)−1K).

This gives as the posterior distribution of the evaluations of the unknown function at the
set of inputs where we have observed noisy evaluations y.

9.2.2 Posterior Predictive Distribution

But we can continue with this formalism further and construct the posterior predictive
distribution. Suppose x′ = {x′j}mj=1 is a test set. We can extend our model to include
the function values f ′ = [f(x′1), . . . , f(x′m)]> ∈ Rm at the test set. The prior can now
be extended to include f ′ (recall that our prior was on the whole function – not on its
values at specific locations!), so that the model reads:[

f
f ′

]
|x,x′ ∼ N

([
0
0

]
,

[
Kxx Kxx′

Kx′x Kx′x′

])
y|f ∼ N (f , σ2I)

where (Kxx)ij = k(xi, xj), (Kx′x′)ij = k(x′i, x
′
j), Kxx′ is an n ×m matrix with (i, j)-th

entry k(xi, x
′
j) and Kx′x = K>xx′ We are now making use of the joint normality of f ′ and

y: [
f ′

y

]
∼ N

([
0
0

]
,

[
Kx′x′ Kx′x

Kxx′ Kxx + σ2I

])
(9.6)

and from Gaussian conditioning rules again, we can read off the posterior predictive
distribution as

f ′|y ∼ N
(
Kx′x(Kxx + σ2I)−1y,Kx′x′ −Kx′x(Kxx + σ2I)−1Kxx′

)
. (9.7)

Thus, we also have a closed form expression for the posterior distribution of the eval-
uations of the unknown function at any collection of inputs in X . While this follows
directly from the joint normality and Gaussian conditioning rules, it is instructive to no-
tice that we could have arrived at the posterior predictive by integrating p(f ′|f) through
the posterior p(f |y), i.e.

p(f ′|y) =

∫
p(f ′|f)p(f |y)df . (9.8)

This follows from
∫
N (a|Bc,D)N (c|e, F )dc = N (a|Be,D+BFB>) (exercises). Namely,

even if we no longer have the Gaussian observation model (9.1) and y and f are no longer
jointly normal, we can still use (9.8) to reason about the posterior predictive distribution.
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9.2.3 Kernel Ridge Regression vs Gaussian Process Regression

If kernel ridge regression (KRR) uses the same kernel as the covariance function in
Gaussian process regression (GPR) and moreover, if the regularisation parameter λ in
KRR is the same as the noise variance σ2 in GPR, KRR estimate of the function coincides
with the GPR posterior mean. Indeed, recall that in KRR we are solving empirical risk
minimisation

min
f∈Hk

n∑
i=1

(yi − f(xi))
2 + σ2 ‖f‖2Hk ,

and are fitting a function of the form f(x) =
∑n

i=1 αik (·, xi). Closed form solution is
given by α =

(
Kxx + σ2I

)−1
y. But then if we wish to predict function values at a new

set x′ = {x′j}mj=1 of input vectors, we have

f(x′j) =

n∑
i=1

αik
(
x′j , xi

)
=
[
k(x′j , x1), . . . , k(x′j , xn)

]
(Kxx + σ2I)−1y,

and
[
k(x′j , x1), . . . , k(x′j , xn)

]
is the j-th row of Kx′x, so this is the same as the mean in

(9.7). Note that GPR also gives predictive variance, a measure of uncertainty, which can
be important when making predictions far away from the input data. There are other
important differences between the two approaches: KRR is frequentist, while GPR is
Bayesian, and thus the hyperparameters are fitted in different ways. KRR typically uses
cross-validation and grid search, while GPR, as we discuss next, uses maximum marginal
likelihood or a fully Bayesian treatment with hyperparameters integrated out.

9.3 Hyperparameter Selection

Probabilistic model given by Gaussian processes allows principled selection of hyperpa-
rameters in the model (parameters of the kernel function and the noise variance in the
likelihood (9.1)) using maximum marginal likelihood.
Marginal likelihood of the hyperparameter vector θ = (ν, σ2) which would generally

include kernel parameters ν as well as the standard deviation σ2 of the noise in the
observation model, is given by

p(y|θ) =

∫
p(y|f , θ)p(f |θ)df = N

(
y; 0,Kν + σ2I

)
.

We will introduce the shorthand Kθ+ = Kν + σ2I. Thus, we can write the marginal
log-likelihood as

log p(y|θ) = −1

2
log |Kθ+| −

1

2
y>K−1

θ+y − n

2
log(2π). (9.9)

In general, marginal log-likelihood is a nonconvex function of the parameter vector θ
and it can have multiple maxima - thus we typically resort to numerical optimisation
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methods, such as gradient ascent. The derivative with respect to θi (exercise) has the
form

∂

∂θi
log p(y|θ) = −1

2
Tr
(

K−1
θ+

∂Kθ+

∂θi

)
+

1

2
y>K−1

θ+

∂Kθ+

∂θi
K−1
θ+y. (9.10)

Some common kernel choices in this context involve Automatic Relevance Determination
(ARD) kernel

k(x, x′) = τ2 exp

− p∑
j=1

(x(j) − x′(j))2

η2
j

 , (9.11)

which has a global scale parameter τ as well as one bandwidth parameter ηj per covariate
dimension j. If in the hyperparameter selection, very large values of ηj are selected, this
essentially means that the dimension j is switched off (does not contribute to the kernel
function). This is very useful in applications where it is likely that not all dimensions
will be relevant.
In addition to maximum marginal likelihood, we can also perform full Bayesian in-

ference for hyperparameters. Namely, we could start with a prior p(θ) on θ and draw
samples from the posterior

p(θ|y) ∝ p(θ)p(y|θ) = p(θ)

∫
p(y|f , θ)p(f |θ)df .

This means that we can integrate uncertainty over hyperparameters into predictions as
well, and approximate (integral is typically not available in closed form)

p(f ′|y) =

∫
p(f ′|y, θ)p(θ|y)dθ.

9.4 Gaussian Processes for Classification

In Bayesian classification problems, we are interested in modelling the posterior proba-
bilities of the categorical response variable given a set of training examples and a new
input vector. These probabilities must lie in the interval (0, 1) while a Gaussian process
models functions that have output on the entire real axis. Thus, it is necessary to adapt
Gaussian processes by transforming their outputs using an appropriate nonlinear acti-
vation/link function. Consider the binary classification model with classes −1 and +1,
using the logistic sigmoid:

p(yi = +1|f(xi)) = σ(f(xi)) =
1

1 + e−f(xi)
. (9.12)

This non-Gaussian form of the likelihood function, however, renders exact posterior in-
ference intractable and approximate methods are needed. There are a number of approx-
imate schemes that can be used but we will focus here on Laplace approximation. We
know that
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log p(f |y) = const + log p (f) + log p (y|f)

= const− 1

2
f>K−1f +

n∑
i=1

log σ(yif(xi)).

Thus, we can compute the gradient

∂ log p(f |y)

∂f
= −K−1f + gf , (9.13)

where the gradient of the likelihood is gf = ∂ log p(y|f)
∂f with [gf ]i = ∂ log p(y|f)

∂fi
= σ(−yif(xi))yi.

The Hessian is given by

∂2 log p(f |y)

∂f∂f>
= −K−1 −Df , (9.14)

where Df = −∂2 log p(y|f)
∂f∂f>

is the negative Hessian of the log-likelihood, which is an n× n
diagonal matrix1 with (Df )ii = σ(f(xi))σ(−f(xi)). The overall Hessian of the log-
posterior is negative definite, since K−1 is positive definite and (Df )ii ≥ 0. Thus, there
is a unique posterior mode. Note also that Df depends on f = [f1, . . . , fn]> but not on
the labels y. We can now employ numerical optimisation (gradient ascent or Newton-
Raphson method) to find the posterior mode f̂MAP and approximate the posterior p (f |y)
with a normal distribution:

p̃ (f |y) = N
(
f
∣∣∣ f̂MAP,

(
K−1 + Df̂MAP

)−1
)
.

Note that this can be rewritten as

p̃ (f |y) = N
(

f
∣∣∣ f̂MAP,K−K

(
K + D−1

f̂MAP

)−1
K

)
,

using the Woodbury identity2 (K−1 + D
)−1

= K − K
(
K + D−1

)−1
K for invertible

matrices K and D.
We can use the Laplace approximation further to construct an approximation of the

predictive posterior at a test set x′ = {x′j}mj=1, writing

p̃(f ′|y) =

∫
p(f ′|f)p̃(f |y)df , (9.15)

1Note that ∂2 log p(y|f)
∂f∂f>

is a diagonal matrix in any GP model regardless of the form of the likelihood
function as long as it factorizes across observations, i.e. p(y|f) =

∏n
i=1 p (yi|fi) with (Df )ii =

− ∂
2 log p(yi|fi)

∂f2i
. In addition, if log p(y|f) is concave in f , (Df )ii ≥ 0.

2Woodbury matrix identity or matrix inversion lemma in its general form is (A+ UCV )−1 = A−1 −
A−1U

(
C−1 + V A−1U

)−1
V A−1 for matrices A,U ,C,V of conformable sizes.
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which can now be solved in the closed form since p(f ′|f) is also normal,

p
(
f ′|f
)

= N
(
f ′ |Kx′xK−1

xxf ,Kx′x′ −Kx′xK−1
xxKxx′

)
,

giving

p̃
(
f ′|y

)
= N

(
f ′ |Kx′xK−1

xx f̂MAP,Kx′x′ −Kx′x

(
Kxx + D−1

f̂MAP

)−1
Kxx′

)
. (9.16)

Let us compare this to the predictive distribution p
(
f ′|f̂MAP

)
based on simply plugging

in the point estimate f̂MAP at the training points, which is

p
(
f ′|f̂MAP

)
= N

(
f ′ |Kx′xK−1

xx f̂MAP,Kx′x′ −Kx′xK−1
xxKxx′

)
.

Two distributions have the same mean but the plug-in predictive underestimates the
variance. To see this, note that for any test point x?, the predictive variances are

var [f (x?) |y] = k?? − k?x

(
Kxx + D−1

f̂MAP

)−1
kx?,

var
[
f (x?) |f̂MAP

]
= k?? − k?xK−1

xxkx?,

and positive-definiteness of D−1

f̂MAP implies
(
Kxx + D−1

f̂MAP

)−1
� K−1

xx , whereby var [f (x?) |y] ≥
var
[
f (x?) |f̂MAP

]
.

An alternative to the logistic link is the probit model, i.e.

p(yi = +1|f(xi)) = Φ(f(xi)), (9.17)

where Φ(z) = 1√
2π

∫ z
−∞ e

−t2/2dt is the standard normal cdf. Derivations proceed similarly
by considering the gradient and Hessian of the log-posterior

log p(f |y) = const− 1

2
f>K−1f +

n∑
i=1

log Φ(yif(xi)).

Thus, it suffices to replace

(gf )i =
yiφ (fi)

Φ (yifi)
,

(Df )ii =
φ (fi)

2

Φ (yifi)
2 +

yifiφ (fi)

Φ (yifi)

in (9.13) and (9.14), where φ(z) = Φ′ (z) is the standard normal pdf. The overall Hessian
is again negative definite as a consequence of the log-concavity of Φ.
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9.5 Numerically stable implementation

Kernel matrix K can in practice have eigenvalues close to zero and thus be numerically
unstable to invert. Fortunately, the direct inversion of K can be avoided. Consider, for
example, the Newton iteration for finding the MAP given by

fnew = f −
(
∂2 log p(f |y)

∂f∂f>

)−1
∂ log p(f |y)

∂f

= f +
(
K−1 + Df

)−1 (
gf −K−1f

)
=

(
K−1 + Df

)−1 (
K−1f + Df f

)
+
(
K−1 + Df

)−1 (
gf −K−1f

)
=

(
K−1 + Df

)−1
(Df f + gf )

=
[
K−K

(
K + D−1

f

)−1
K
]

(Df f + gf ) ,

with the last expression involving only the inverse of K + D−1
f and not of K. A recom-

mended implementation [20, Section 3.4.3] is to consider the matrix

B = D
1/2
f

(
K + D−1

f

)
D

1/2
f = D

1/2
f KD

1/2
f + I

which is guaranteed to be well conditioned for most kernel functions since its eigenvalues
are between 1 and 1+nmaxi,j Kij/4 and perform its Cholesky decomposition B = LL>.
The Newton update can then be implemented as

fnew = K
(
I −D

1/2
f L−>L−1D

1/2
f K

)
(Df f + gf ) .

9.6 Large-Scale Kernel Approximations

Gaussian processes and kernel methods require computational cost that scales at least
as O(n2) and often as O(n3) in the number of observations n (due to the need to com-
pute, store and invert the n × n kernel matrix K). This is the price we pay for having
a nonparametric model, i.e. for performing the computation in terms of the dual coeffi-
cients. For large datasets, e.g. where n ∼ 105, this becomes a prohibitive computational
cost and memory requirement, however. Many methods have been proposed to deal
with this issue, here we will overview the basic approaches based on the reduced-rank
approximation of Kxx - see Chapter 8 of [20] for an in-depth overview.

9.6.1 Nyström method

GP regression and kernel ridge regression both require inversion of the matrix Kxx+σ2I.
Let us assume for the moment that Kxx can be approximated by a rank m matrix, with
m � n, i.e. Kxx ≈ QQ>, where Q is an n ×m matrix. Then we can apply the matrix
inversion lemma and write(

QQ> + σ2I
)−1

= σ−2I − σ−2Q
(
σ2I +Q>Q

)−1
Q>, (9.18)
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such that the inversion of an n × n matrix has been transformed into an inversion of
an m×m matrix. However, in order to derive the optimal reduced-rank approximation
to Kxx, we need to perform the eigendecomposition of Kxx which is itself a costly
operation, requiring O(n3) computation. Instead, an often used approach is the Nyström
approximation:

K̃xx = KxzK
−1
zz Kzx,

where {zj}mj=1 is a collection of a small number of inputs in X (which could be a sub-
set of the training set, but could also be some auxiliary pseudo-inputs) called inducing
variables or landmark points, and we denoted as usual (Kzz)ij = k(zi, zj), (Kxz)ij =

k(xi, zj) and Kzx = K>xz. Now, we can set Q = KxzK
−1/2
zz and apply the formula

(9.18). Note that this is equivalent to using a finite-dimensional feature map φ : x 7→
K−1

zz [k(z1, x), . . . , k(zm, x)]>and an approximate kernel :

k̃(x, x′) = φ (x)> φ
(
x′
)
.

9.6.2 Random Fourier Features

Another popular method within the frequentist kernel methods are random Fourier
features (RFF) of [19]. The idea behind RFF is to use Bochner’s representation of
translation-invariant kernels on Rp, i.e. if a real-valued kernel k(x, x′) depends only on
the difference x− x′, then it can be written as

k(x, x′) =

∫
Rp

exp
(
iω>(x− x′)

)
dΛ(ω)

=

∫
Rp

{
cos
(
ω>x

)
cos
(
ω>x′

)
+ sin

(
ω>x

)
sin
(
ω>x′

)}
dΛ(ω) (9.19)

for some positive measure (w.l.o.g. a probability distribution) Λ called spectral measure of
k. For many widely used kernels, spectral measure takes a simple form, e.g. if k(x, x′) =

exp
(
− 1

2γ2
‖x− x′‖22

)
, then Λ is a multivariate normal N (0, γ−2I). Now, for a given

Λ, we sample m frequencies {ωj} ∼ Λ and use a Monte Carlo estimator of the kernel
function given by the integral in (9.19):

k̃(x, y) =
1

m

m∑
j=1

{
cos
(
ω>j x

)
cos
(
ω>j y

)
+ sin

(
ω>j x

)
sin
(
ω>j y

)}
= 〈φω(x), φω(y)〉R2m ,

which is an approximate kernel corresponding to an explicit set of features φω(x) ∈ R2m

given by

x 7→ 1√
m

[
cos
(
ω>1 x

)
, sin

(
ω>1 x

)
, . . . , cos

(
ω>mx

)
, sin

(
ω>mx

)]
With this set of features, we can now run algorithms in the primal representation which
is less costly than paying the computational cost in n.
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10.1 Tuning hyperparameters as optimizing “black-box”
functions

We have considered several families of machine learning models which have complex in-
ference algorithms and often require tuning of a number of hyperparameters in order to
make them work in practice. These could for example be kernel parameters, the number
of layers and units per layer in a deep neural network, learning rates, regularization pa-
rameters, or batch sizes in stochastic optimizers. Many important implementation details
of hyperparameter tuning are often missing and can be extremely time-consuming as the
algorithm needs to be run repeatedly for a large number of hyperparameter configura-
tions – one often uses some form of grid search or random search based on a particular
objective function, such as cross-validated empirical risk. Can this be done in a more
principled and automated way, i.e. without having “human in the loop”? Ideally, we
would want a fully automated machine learning pipeline where (nearly) optimal model
configuration is selected with a small number of algorithm runs.
More broadly, we are interested in optimizing a particular ’well behaved’ (i.e. it exhibits

some degree of smoothness but is nonconvex and possibly multimodal) function f : X →
R over some bounded domain X ⊂ Rd, i.e. in solving1

x? = argminx∈X f(x).

However, f is not known explicitly, i.e. it is a black-box function. We can only observe
its potentially noisy pointwise evaluations yi = f (xi) + εi at selected locations xi. More-
over, these pointwise evaluations may be extremely expensive (i.e. they correspond to
training of a large machine learning model or even running a complex physical experiment
- see [7] for further details).

10.2 Surrogate Gaussian Process models

The principle of Bayesian optimization is to use a surrogate probabilistic model of the
black-box function f in order to carry out the optimization. The default choice for a
surrogate model is a Gaussian process (GP) – being a flexible prior over functions (but
other models are possible, based on random forests or student-t processes). Further,
based on the GP model, we need to define a criterion, which we call an acquisition

1We will phrase the optimization, w.l.o.g. as minimization here. For maximization of f , we can just
use minimization of−f .
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function, which determines the next location in X where f will be evaluated. These
locations will in certain sense be most informative about the optimum of f .

Good acquisition functions will need to balance exploration (learning more about f
based on new evaluations) vs exploitation (finding the maximum based on the current
model of f). Exploration-exploitation tradeoff will be based on our estimates of the
uncertainty in the values of f - which is why GP regression models with closed-form
uncertainty estimates are most commonly used in this context. Namely, it is customary
to assume that the noise εi in the evaluations of the black-box function is i.i.d. N

(
0, δ2

)
,

to bring us to the vanilla GP regression context. We have seen in the previous chapter
that the GP model

f ∼ N (0,K)

y|f ∼ N (f , δ2I),

gives us a closed form expression for the posterior predictive mean µ (x) and the posterior
predictive marginal standard deviation σ (x) =

√
κ (x, x) at any new location x, i.e.

f (x) |D ∼ N (µ (x) , κ (x, x)) ,

where

µ (x) = kxx(K + δ2I)−1y,

κ (x, x) = k(x, x)− kxx(K + δ2I)−1kxx

Exploration in this context means that we are seeking locations with high posterior
variance κ (x, x), exploitation that we are seeking location with low posterior mean µ (x).

10.3 Acquisition Functions

Most commonly used acquisition functions are: GP-LCB, probability of improvement
(PI) and expected improvement (EI).

GP-LCB

GP-LCB follows the principle of the “optimism in the phase of uncertainty” and simply
seeks to minimize the lower (1 − α)-credible bound of the posterior of the unknown
function values f(x), i.e.

αLCB (x) = µ (x)− z1−ασ (x) ,

where z1−α = Φ−1 (1− α) is the desired quantile of the standard normal distibution.
Note that the same principle is used extensively in the theory of K-armed bandits which
deals with a similar setup of the optimization of uncertain objectives over a discrete
number of choices (not covered in this course), but is typically referred to as UCB (upper
confidence/credible bound) since the convention is to consider maximization rather than
minimization.
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Probability of improvement (PI)

If we denote by x̃ the optimal location so far, i.e. the observed ỹ is the minimum among
(y1, . . . , yn). Consider u (x) = 1 {f (x) < ỹ}, i.e. u represents the indicator of the event
that the function value at any given location is below the observed minimum. Then the
probability of improvement is simply

αPI (x) = E [u(x)|D] =

∫ ỹ

−∞
N
(
f ;µ (x) , σ2 (x)

)
df = Φ

(
ỹ − µ (x)

σ (x)

)
.

Expected Improvement (EI)

Note that in the probability of improvement, we do not take into account the size of an
improvement in the objective function. Thus, the PI method can be viewed as preferring
exploitation - locations that have a high probability of being infinitesimally smaller than
ỹ will be drawn over points that offer possibly larger improvement but less certainty. We
wish to now use as the utility the expected improvement at the location x, i.e. we define

u (x) = max (0, ỹ − f (x)) ,

which measures the size of an improvement from the current (estimated) minimum ỹ and
we seek to maximize E [u(x)|D].
We will need the following simple result about a truncated normal random variable.

Lemma 24. Let S ∼ N
(
m, τ2

)
. Denote by φ the density and by Φ the cdf of a standard

normal random variable. Then

E [max (0, S)] =

∫ ∞
0

sN
(
s;m, τ2

)
ds = Φ

(m
τ

)
m+ φ

(m
τ

)
τ.

As a shorthand, we will write γ (x) = ỹ−µ(x)
σ(x) .

Now,

αEI (x) = E [u(x)|D] =

∫ ỹ

−∞
(ỹ − f)N

(
f ;µ (x) , σ2 (x)

)
df

=

∫ ∞
0

sN
(
s; ỹ − µ (x) , σ2 (x)

)
ds

after the substitution s = ỹ − f . Now, by Lemma 24 we get the most commonly used
expression for the expected improvement acquisition function:

αEI (x) = Φ (γ (x)) (ỹ − µ (x)) + φ (γ(x))σ (x)

= σ (x) (γ (x) Φ (γ (x)) + φ (γ(x))) .

While it is the most commonly used, the above expression is ignoring the noise in f(x̃),
i.e. it is treating ỹ as the actual value of the objective which can be problematic if the
noise level in evaluations is not negligible. Naively, we could simply replace ỹ with the
predictive mean µ (x̃). However, the predictive variance is still ignored.

88



10 Bayesian Optimization

Exercise 25. Derive the alternative expression for both the probability of improvement
and for the expected improvement acquisition functions by considering the distribution
of u (x) = 1 {f (x) < f (x̃)}. In particular, show that

E [u(x)|D] = Φ (γ (x)) (µ (x̃)− µ (x)) + φ (γ (x)) ρ (x, x̃) , (10.1)

where ρ (x, x̃) =
√
κ (x, x) + κ (x̃, x̃)− 2κ (x, x̃).

Note that we can interpret the two terms in 10.1 as trading-off exploration vs. ex-
ploitation. We can increase the acquisition either by decreasing µ (x) (exploitation) or
by increasing ρ (x, x̃), i.e. a notion of a distance from the current optimum x̃ (explo-
ration).
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