
SC4/SM8 Advanced Topics in Statistical Machine Learning
Problem Sheet 4

1. Consider modelling the mean function m of the Gaussian process prior f ∼ GP(m, kθ) with
another GP: m ∼ GP(0, kη).

(a) Show that this is equivalent to a zero-mean GP prior on f and find its covariance function.

(b) Consider constraining the mean functions such that they follow a particular type of functions:
(i) constant m(x) ≡ b, with b ∼ N (0, σ2b ) (ii) linear m(x) = w>x+b, withw ∼ N (0, σ2wI)
and b ∼ N (0, σ2b ) independent. Find the appropriate covariance functions kη.

2. Consider a GP regression model with f ∼ GP(0, k) and yi ∼ N
(
f(xi), σ

2
)
. For training

inputs x = {xi}ni=1 and outputs y = [y1, . . . , yn]> we denote the vector of evaluations of f
by f = [f(x1), . . . , f(xn)]> ∈ Rn. We also have test inputs x? = {x?j}mj=1 and denote the
corresponding evaluations of f by f? = [f(x?1), . . . , f(x?m)]> ∈ Rm.

(a) Write down the joint distribution of

 f
y
f?

 and thus compute p(f |y), p(f?|f) and p(f?|y).

(b) Verify that p(f?|y) =
∫
p(f?|f)p(f |y)df .

[Hint:
∫
N (a|Bc,D)N (c|e, F )dc = N (a|Be,D +BFB>)]

3. Consider a GP regression model in which the response variable y is d-dimensional, i.e. y ∈ Rd.
Assuming that the individual response dimensions y(1), . . . , y(d) are conditionally independent
given the input vector x with

y(j)|x ∼ N (f (j)(x), λ),

with independent priors f (j) ∼ GP(0, kθ). Derive the posterior predictive distribution

p (y?|x?, {xi, yi}ni=1) ,

for a test input vector x? and the training set {xi, yi}ni=1.

Comment on the difference between this model and d independent Gaussian process regressions.

4. We observe {(xi, yi)}ni=1, with xi ∈ Rp and yi ∈ {0, 1, 2, . . .}. Consider a Gaussian process
model with a Poisson link. Denoting f = [f(x1), . . . , f(xn)], we have a prior f ∼ N (0,K) and
the likelihood

p(yi = r|f(xi)) =
erf(xi) exp(−ef(xi))

r!
, i = 1, . . . , n, (1)

i.e. given f(xi), yi follows a Poisson distribution with rate λ(xi) = ef(xi). We will assume that
K is invertible.

(a) Compute the log-posterior log p(f |y) up to an additive constant and its gradient.

(b) Compute the Hessian and verify that it is negative definite. Briefly describe how you would
find a posterior mode f̂MAP of f .

(c) Construct a Laplace approximation to the posterior p(f |y) and compute the resulting ap-
proximation to the posterior predictive p(f(x?)|y) for a new input x?. Compare it to the
prediction p(f(x?)|f̂MAP), based on the point estimate f̂MAP of f . [Hint: you may find the
following version of Woodbury identity useful: (A−1 + D)−1 = A − A(A + D−1)−1A for
invertible matrices A and D]
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5. Suppose you have some frequencies ω1, . . . , ωm ∼ λ to approximate a translation invariant kernel
k(x, x′) = κ

(
x−x′
γ

)
=
∫

exp
(
iω> (x− x′)

)
λ(ω)dω with random Fourier features

ϕω(x) =
1√
m

[
exp(iω>1 x), . . . , exp(iω>mx)

]
Assume you wish to double the lengthscale parameter γ. How would you modify the feature
representation?

You also have frequencies η1, . . . , ηm ∼ ν for another kernel l(x, x′) =
∫

exp
(
iη> (x− x′)

)
ν(η)dη.

Describe two ways to construct a feature map approximation of the product kernel k(x, x′)l(x, x′).

6. In lecture notes on Bayesian optimization, we derived the probability of improvement and ex-
pected improvement acquisition function which ignore the noise in ỹ. Derive the corrected ver-
sions.

7. Consider the variational approach to GP regression, used not because of non-conjugacy but in
order to reduce the computational cost. We have a zero-mean GP prior with covariance k on f
and its evaluatons of on training inputs {xi}ni=1, given by vector f = [f(x1), . . . , f(xn)]> ∈ Rn.
We take a small set of inducing inputs {zj}mj=1 and the evaluations of f at these inputs, giving
the vector u = [f(z1), . . . , f(zm)]> ∈ Rm. We then place a variational distribution q (u) =
N (u|µ,Σ), which serves as an approximation to the posterior p(u|y) at these inducing points.
On the augmented space (u, f), we use a variational distribution

q (u, f) = q (u) p (f |u) ,

with the true conditional p (f |u) = N
(
f |KxzK

−1
zz u,Kxx −Qxx

)
, where Qxx := KxzK

−1
zz Kzx.

(a) Derive the resulting variational approximation to the posterior p(f |y) at the training points.

(b) Prove that

∫
p (f |u) log p (y|f) df = logN

(
y|KxzK

−1
zz u, σ

2I
)
− 1

2σ2
Tr {Kxx −Qxx} .

(c) Insert the expression derived in (b) into ELBO, and show that ELBO is maximized for
q (u) ∝ N

(
y|KxzK

−1
zz u, σ

2I
)
p (u) . Find the value of ELBO for this choice of q (u).

(d) Compare the derived expression to the exact marginal log-likelihood in the approximate
kernel model, which uses the low-rank Nyström approximation Qxx = KxzK

−1
zz Kzx of

Kxx.

2


