SC4/SM8 Advanced Topics in Statistical Machine Learning
Problem Sheet 1

1. For a given loss function L, the risk R of real-valued f : X — R is given by the expected loss

R(f) =E[L(Y, f(X))].

Derive the optimal regression functions (which minimize the true risk) for the following losses:

(a) The squared error loss
L(Y, f(X)) = (Y = f(X))?

(b) The 7-pinball loss, for general 7 € (0, 1), given by
LY, (X)) = 2max {T(Y — f(X)), (r = 1)(Y — f(X))} .

What happens in the case 7 = 1/2?

2. The figure below shows a binary classification dataset and the optimal the decision boundary and
margins of a soft-margin C-SVM for some value C.
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(a) Which of the points a,.. .,k are support vectors? Which ones are margin support vectors?

(b) For points a, b and d what are the range of possible values for the corresponding dual vari-
ables?

3. Parameter C' in C'-SVM can sometimes be hard to interpret. An alternative parametrization is

given by v-SVM:
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subject to

p = 0,
gi Z 07
Yi (wT$i + b) > p=&.

(note that we now directly adjust the constraint threshold p).

Using complementary slackness, show that v is an upper bound on the proportion of non-margin
support vectors (margin errors) and a lower bound on the proportion of all support vectors with
non-zero weight (both those on the margin and margin errors). You can assume that p > 0 at the
optimum (non-zero margin).

4. Consider the regression problem to the real-valued output y € R. Let ¢ > 0 and define the
e-insensitive loss function L. as

0 if |y — f(2)] <e,
ly — f(x)] — e otherwise,

Le(y, f(x)) = {

and the regularized empirical risk objective defined as
o 1
T(w,0) = ) Lelyis fwi)) + gl
1=

where we used a linear model f(z) = w 'z + b for regression functions.

(a) Introduce the slack variables £ = max{y; — f(x;) —¢,0} and §; = max{f(z;)—y;—¢, 0}.
Verify that Le(y;, f(2:)) = & + &

(b) Re-express the regularized empirical risk objective J(w,b) as a constrained optimization
problem over w, b, £ and £~. Write down Lagrangian and show that the dual problem can
be written as
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subject to

Z(af_a;)zo, af €[0,C)], a; €[0,C), i=1,...,n.

(c) Considering derivatives of the Lagrangian and complementary slackness, express the weight
vector w using dual coefficients aj and a; . Show that those examples (x;,y;) which lie
outside of the e-insensitive tube around f, must have corresponding a;“ =Cora; =Cand
that those examples (z;,y;) for which | f(z;) — y;)| < € (they lie strictly inside the e-tube),

must have a;r = «; = 0. How can you compute b using the dual solution?

5. (Kernel Ridge Regression) Let (z;,y;)!" ; be our dataset, with z; € R and y; € R. Classical
linear regression can be formulated as empirical risk minimization, where the model is to predict

y using a class of functions f(z) = w ' z, parametrized by vector w € RP using the squared loss,
i.e. we minimize

R(w) = L D (yi—w' ).



(a) Show that the optimal parameter vector is
= (X"X)"1XTy
where X is a n X p matrix with ith row given by l‘;r, and y is an X 1 column vector with
i-th entry y;.
(b) Consider regularizing our empirical risk by incorporating an Ly regularizer. That is, find w
minimizing
1 ¢ ToN2 . A2
=3 (= wTw)? + 2wl
=1
Show that the optimal parameter is given by the ridge regression estimator

W= (X"X+A)"XTy

(c) Suppose that we now wish to introduce nonlinearities into the model, by transforming = —
¢(x). Let ® be a matrix with ith row given by () 7. The optimal parameters @ would
then be given by (previous part):

W= (TP + )y,

Can we make predictions without computing w?

First, express the predicted y values on the training set, @, only in terms of y and the Gram
matrix K = ®® 7, with K;; = ¢(z;) " ¢(x;) = k(x;,z;) where k is some kernel function.
Then, compute an expression for the value of y, predicted by the model at an unseen test
VECLOr Xy.

[Hint: You will find the Woodbury matrix inversion formula useful:

(A+UBV) t=A"'— A\ UB ' +vA Uy lvaT?
where A and B are square invertible matrices of size n X n and p X p respectively, and U
and 'V are n X p and p X n rectangular matrices.)

6. Denote o(t) = 1/(1 + et). Verify that the ERM corresponding to the logistic loss over the
functions of the form f(z) = w ' ¢(x) can be written as

m&nZ—logU(yinw(mi)) +)‘||U)H§ (D
i=1

and is a convex optimisation problem in w. Assume that you can write w = Y ;" ; cip(x;).
Show that the criterion in (I]) is also convex in the so called dual coefficients &« € R". [Hint:

o' (t) = o(t)o(—t)]



