
SC4/SM8 Advanced Topics in Statistical Machine Learning
Problem Sheet 1

1. For a given loss function L, the risk R of real-valued f : X → R is given by the expected loss

R(f) = E [L(Y, f(X))] .

Derive the optimal regression functions (which minimize the true risk) for the following losses:

(a) The squared error loss
L(Y, f(X)) = (Y − f(X))2

(b) The τ -pinball loss, for general τ ∈ (0, 1), given by

L(Y, f(X)) = 2max {τ(Y − f(X)), (τ − 1)(Y − f(X))} .

What happens in the case τ = 1/2?

2. The figure below shows a binary classification dataset and the optimal the decision boundary and
margins of a soft-margin C-SVM for some value C.
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(a) Which of the points a,. . . ,k are support vectors? Which ones are margin support vectors?

(b) For points a, b and d what are the range of possible values for the corresponding dual vari-
ables?

3. Parameter C in C-SVM can sometimes be hard to interpret. An alternative parametrization is
given by ν-SVM:

min
w,b,ρ,ξ

(
1

2
‖w‖2 − νρ+ 1

n

n∑
i=1

ξi

)
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subject to

ρ ≥ 0,

ξi ≥ 0,

yi

(
w>xi + b

)
≥ ρ− ξi.

(note that we now directly adjust the constraint threshold ρ).

Using complementary slackness, show that ν is an upper bound on the proportion of non-margin
support vectors (margin errors) and a lower bound on the proportion of all support vectors with
non-zero weight (both those on the margin and margin errors). You can assume that ρ > 0 at the
optimum (non-zero margin).

4. Consider the regression problem to the real-valued output y ∈ R. Let ε > 0 and define the
ε-insensitive loss function Lε as

Lε(y, f(x)) =

{
0 if |y − f(x)| < ε,

|y − f(x)| − ε otherwise,

and the regularized empirical risk objective defined as

J(w, b) = C
n∑
i=1

Lε(yi, f(xi)) +
1

2
‖w‖22,

where we used a linear model f(x) = w>x+ b for regression functions.

(a) Introduce the slack variables ξ+i = max{yi−f(xi)−ε, 0} and ξ−i = max{f(xi)−yi−ε, 0}.
Verify that Lε(yi, f(xi)) = ξ+i + ξ−i .

(b) Re-express the regularized empirical risk objective J(w, b) as a constrained optimization
problem over w, b, ξ+ and ξ−. Write down Lagrangian and show that the dual problem can
be written as

max
α+,α−

−1

2

n∑
i=1

n∑
j=1

(α+
i − α

−
i )(α

+
j − α

−
j )x

>
i xj +

n∑
i=1

(α+
i − α

−
i )yi − ε

n∑
i=1

(α+
i + α−i )

 ,

subject to
n∑
i=1

(α+
i − α

−
i ) = 0, α+

i ∈ [0, C], α−i ∈ [0, C], i = 1, . . . , n.

(c) Considering derivatives of the Lagrangian and complementary slackness, express the weight
vector w using dual coefficients α+

i and α−i . Show that those examples (xi, yi) which lie
outside of the ε-insensitive tube around f , must have corresponding α+

i = C or α−i = C and
that those examples (xi, yi) for which |f(xi) − yi)| < ε (they lie strictly inside the ε-tube),
must have α+

i = α−i = 0. How can you compute b using the dual solution?

5. (Kernel Ridge Regression) Let (xi, yi)ni=1 be our dataset, with xi ∈ Rp and yi ∈ R. Classical
linear regression can be formulated as empirical risk minimization, where the model is to predict
y using a class of functions f(x) = w>x, parametrized by vector w ∈ Rp using the squared loss,
i.e. we minimize

R̂(w) =
1

n

n∑
i=1

(yi − w>xi)2.
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(a) Show that the optimal parameter vector is

ŵ = (X>X)−1X>y

where X is a n × p matrix with ith row given by x>i , and y is a n × 1 column vector with
i-th entry yi.

(b) Consider regularizing our empirical risk by incorporating an L2 regularizer. That is, find w
minimizing

1

n

n∑
i=1

(yi − w>xi)2 +
λ

n
‖w‖22

Show that the optimal parameter is given by the ridge regression estimator

ŵ = (X>X + λI)−1X>y

(c) Suppose that we now wish to introduce nonlinearities into the model, by transforming x 7→
ϕ(x). Let Φ be a matrix with ith row given by ϕ(xi)>. The optimal parameters ŵ would
then be given by (previous part):

ŵ = (Φ>Φ + λI)−1Φ>y.

Can we make predictions without computing ŵ?

First, express the predicted y values on the training set, Φŵ, only in terms of y and the Gram
matrix K = ΦΦ>, with Kij = ϕ(xi)

>ϕ(xj) = k(xi, xj) where k is some kernel function.
Then, compute an expression for the value of y? predicted by the model at an unseen test
vector x?.

[Hint: You will find the Woodbury matrix inversion formula useful:

(A+ UBV )−1 = A−1 −A−1U(B−1 + V A−1U)−1V A−1

where A and B are square invertible matrices of size n × n and p × p respectively, and U
and V are n× p and p× n rectangular matrices.]

6. Denote σ(t) = 1/(1 + e−t). Verify that the ERM corresponding to the logistic loss over the
functions of the form f(x) = w>ϕ(x) can be written as

min
w

n∑
i=1

− log σ(yiw
>ϕ(xi)) + λ‖w‖22 (1)

and is a convex optimisation problem in w. Assume that you can write w =
∑n

i=1 αiϕ(xi).
Show that the criterion in (1) is also convex in the so called dual coefficients α ∈ Rn. [Hint:
σ′(t) = σ(t)σ(−t)]
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