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Variational Methods ELBO

The main idea of variational Bayes is to turn posterior inference in intractable
Bayesian models into optimization.

The key quantity is ELBO (Evidence Lower BOund):
F(q) = Eq logp(X,z,0)] + H(q)
which is a lower bound on log-evidence log p(X).

It equals log-evidence iff ¢(z,0) = p(z, 0|X).

Department of Statistics, Oxford SC4/SM8 ATSML, HT2019 2/14



Variational families

VB minimises the divergence KL (¢(z, 0)||p(z, 0|X)) over some variational
family Q or, equivalently, maximises the ELBO, i.e., finds the tightest lower
bound on the log-evidence.

If Q consists of variational distributions which factorise across the latents and
the parameters: ¢(z,0) = gz (z) qo (9), we obtain the alternating Bayesian EM
updates

qz (z) o exp (/ logp(X,z,0)q0 (9) d9> ,

go (0) x exp (/ logp(X,z,0)qz (z) dz) .

The distinction between parameters 6 and latent variables z disappears in
Bayesian modelling, so we will drop ¢ from the notation and collect all
unobserved quantities into z.
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Mean-field variational family

In mean-field variational family Q, variational distribution fully factorizes
a(2) =14,
j=1

Unable to capture posterior correlations between the latent variables z; and z;
for j + j'; the best we can hope for is a rich representations of the posterior
marginals.
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Variational Methods Mean-field and CAVI

Doing sequential updates for each individual factor z;, we obtain Coordinate
Ascent Variational Inference (CAVI) algorithm

Input: a model p(z, x), dataset x
Output: a variational posterior ¢(z)

while the ELBO has not converged do
eforj=1,...,m
° g(z) ocexp [E;_~qlogp (z2—j,%)]
@ ELBO(g) = E,, [logp(x.2)] + H(q)
return g (z) = [[_, ¢; ()
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CAVI in exponential families

When the complete conditionals p (zj|z—;, x) belong to an exponential family
p(zlz—j,x) = h(z) exp [ (z-;,%) "z — A (1 (z-;,%))] ,

g; belongs to the same family and CAVI simplifies to updating natural
parameters

qi(z;) o< exp[E_jlogp (z]z—;,x)]
= o [logh (5) + {E-m; (2. x)} 5 — E_jA (n (2 %))

h(z) exp {{Efﬂ?j (z—;,%)} Zj}

<
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Latent Dirichlet Allocation
Example: Latent Dirichlet Allocation

Used for topic modelling in a collection of documents: each text document
typically blends multiple topics.

@ each document is a probability distribution over topics
@ each topic is a probability distribution over words
Goal is to find the posterior

p(topics,proportions,assignments|observed words)
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Latent Dirichlet Allocation
Latent Dirichlet Allocation

D: the number of documents, K: the number of topics, V: the size of the

vocabulary.

@ Foreachtopicink=1,...,K,
@ Draw a distribution over V words S, ~ Diry (1)
@ For eachdocumentind =1,...,D,

@ Draw a vector of topic proportions 6, ~ Dirg («)
@ Foreachwordinn=1,...,Ny,

@ Draw a topic assignment z,, ~ Discrete (6,) , i-€. p (z4n = k|04) = Oux
@ Draw a word wy, ~ Discrete (3z,,), i.€. p (Wan = v|B,2) = Bzyv
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Figure: Graphical model representation of LDA. Plates represent replication, for
example there are D documents each having a topic proportion vector 6,
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Latent Dirichlet Allocation
Latent Dirichlet Allocation

Mean-field family:

K D Ny
q(6797Z) = Hq 5/(’ )‘k H { od”Yd Hq Zdnv¢dn)} .
k=1 d

=1 n=1

@ Complete conditional on the topic assignment is a multinomial
P (Zan = k[0a, B, wa) o< OaiBrw,, = exp (log O 4-10g B, ) -

@ Complete conditional on the topic proportions is a Dirichlet
Ny
p (04)z4) = DKir <94; o+ szn H) .
n=1
@ Complete conditional on the topics is another Dirichlet

D Ny
P (Belz,w) = le(ﬁkﬂﬁ‘zzzdn Wan | )

d=1 n=1
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Variational Autoencoder (VAE)

@ A probabilistic deep generative model: a pair of neural networks jointly trained
to approximately copy inputs at the outputs while passing them through a
lower-dimensional representation.

@ An encoder / recognition model g4 (z|x), of latent codes z € R*, given inputs
x € R%, d. <« d., parametrized by a neural network with weights ¢,

e A decoder / generative model pg (x|z), of outputs x € R%, given codes
z € R%:, parametrized by a neural network with weights 6.

encode > decode >
Inference Generative

Input econstructed
Image Image
B - o2

input hidden output

Distribution

Figure: Figure from Kaggle tutorial on VAEs for MNIST


https://www.kaggle.com/rvislaywade/visualizing-mnist-using-a-variational-autoencoder

Variational Methods Variational Autoencoders

The decoder specifies the likelihood and the encoder is a variational
approximation to the intractable posterior of latent codes.
ELBO for a single observation x:

L(x,0,0) = Eg (v [logpe(x,2)] + H(qs (-x))

= B, {10 Pl Zﬂ

= K@ {log 20 (2 )} + Eq, o) [log po (x[2)]
= —KL(qg (2x) Ip(2)) + Eq, (o) log po (x]2)] . (1)

The common choice is g4(z|x) = N (z|pg (x) , X4 (x)), where pg(x) and Xy (x)
are the outputs of a neural network. The prior is typically p(z) = N (0,1), so the
KL term is tractable.

s (4
p(z)
(2l

KL (g (20) [1p(2)) = 5 [0 () 1 (3) 11 (8 (x)) — og et (S (1)) — k]
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Variational Methods Variational Autoencoders

n

ELBO on the whole set of observations {x;},_,, average over individual terms
in (1):

£0,6) = " {Eyu o) logps (610] - KL (g0 () 0@} - (@)

i=1

@ Lower bound on the (scaled) model evidence
Llogpe ({xi}i)) = 370 logpy (x;), since L(x;, 6, ¢) < logpy (x;), for all i.
@ Use Stochastic gradient descent to jointly maximize (2) with respect to ¢
and ¢ using minibatches of observations x; at the time in order to
compute unbiased estimators of the gradients of ELBO.
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Reparametrization trick

@ The terms E,, .|, [log pe (x;|z)] are generally not tractable.
@ A simple idea: obtain an unbiased estimator with drawing a single
zi ~ g (z]x;) and estimating

g, ) logpo (xi[2)] = logpo (xilz) -

@ Problem: cannot compute the gradients of this estimator with respect to ¢
as explicit dependence on the variational parameters ¢ has been lost.

@ Solution is the so called “Reparametrization trick”: a draw
zi ~ N (zlpe (x), X4 (x)) can be written as z; = g (x) + E;/z (x) €, with
e; ~ N(0,1), so can rewrite

Ey, ey logpo (312)] = e [logpo (wilug (1) + 3 () ¢) |,
and use an estimator of the form
log pg (xi|u¢ (x) + E(‘b/Z (x) ei> ,

based on a single draw ¢; ~ N(0, I), with gradients w.r.t. ¢ and 6 both

available.
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L
Other criteria

Lower bounds other than ELBO are possible. If have access to to some stricly
positive unbiased estimator py (x) of py(x), with

/ P (x) 0.6 (ulx) du = py (x)

where u ~ g 4 (-|x) denotes all random variables used to compute the
estimator and ¢ parametrizes the sampling distribution of u.
By Jensen’s inequality:

/logi?o () 90,0 (ulx) du < log/ﬁe (%) 40,0 (ulx) du < log py (x).

@ In the standard VAE ELBO, u = z and pg(x) = pg (x,z) /g4 (z|x)
@ Other options include Importance Weighted Autoencoder (IWAE) using s
importance samples u = {z}'_,, with z; ~ g, (-|x)

ZPG X, Zj

qe (gilx
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