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Bayesian Learning Review of Bayesian Inference

The Bayesian Learning Framework

Bayesian learning: treat parameter vector θ as a random variable:
process of learning is then computation of the posterior distribution
p(θ|D).
In addition to the likelihood p(D|θ) need to specify a prior distribution
p(θ).
Posterior distribution is then given by the Bayes Theorem:

p(θ|D) =
p(D|θ)p(θ)

p(D)

Likelihood: p(D|θ)
Prior: p(θ)

Posterior: p(θ|D)
Marginal likelihood: p(D) =

´
Θ

p(D|θ)p(θ)dθ

Summarizing the posterior:
Posterior mode: θ̂MAP = argmaxθ∈Θ p(θ|D) (maximum a posteriori).
Posterior mean: θ̂mean = E [θ|D].
Posterior variance: Var[θ|D].
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Bayesian Learning Review of Bayesian Inference

Bayesian Inference on the Categorical Distribution

Suppose we observe the with yi ∈ {1, . . . ,K}, and model them as i.i.d.
with pmf π = (π1, . . . , πK):

p(D|π) =

n∏
i=1

πyi =

K∏
k=1

πnk
k

with nk =
∑n

i=1 1(yi = k) and πk > 0,
∑K

k=1 πk = 1.
The conjugate prior on π is the Dirichlet distribution Dir(α1, . . . , αK) with
parameters αk > 0, and density

p(π) =
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

K∏
k=1

παk−1
k

on the probability simplex {π : πk > 0,
∑K

k=1 πk = 1}.
The posterior is also Dirichlet Dir(α1 + n1, . . . , αK + nK).
Posterior mean is

π̂mean
k =

αk + nk∑K
j=1 αj + nj

.
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Bayesian Learning Review of Bayesian Inference

Dirichlet Distributions

(A) Support of the Dirichlet density for K = 3.
(B) Dirichlet density for αk = 10.
(C) Dirichlet density for αk = 0.1.
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Bayesian Learning Bayesian Naïve Bayes Classifier

Naïve Bayes

Consider the classification example with naïve Bayes classifier:

p(xi|φk) =

p∏
j=1

φ
x(j)

i
kj (1− φkj)

1−x(j)
i .

Set nk =
∑n

i=1 1{yi = k}, nkj =
∑n

i=1 1{yi = k, x(j)
i = 1}. MLEs are:

π̂k =
nk

n
, φ̂kj =

∑
i:yi=k x(j)

i

nk
=

nkj

nk
.

A problem: if the `-th word did not appear in documents labelled as class
k then φ̂k` = 0 and

P(Y = k|X = x with `-th entry equal to 1)

∝ π̂k

p∏
j=1

(
φ̂kj

)x(j) (
1− φ̂kj

)1−x(j)

= 0

i.e. we will never attribute a new document containing word ` to class k
(regardless of other words in it).
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Bayesian Learning Bayesian Naïve Bayes Classifier

Bayesian Inference on Naïve Bayes model

Under the Naïve Bayes model, the joint distribution of labels
yi ∈ {1, . . . ,K} and data vectors xi ∈ {0, 1}p is

p(D|θ) =

n∏
i=1

p(xi, yi|θ) =

n∏
i=1

K∏
k=1

πk

p∏
j=1

φ
x(j)

i
kj (1− φkj)

1−x(j)
i

1(yi=k)

=

K∏
k=1

πnk
k

p∏
j=1

φ
nkj
kj (1− φkj)

nk−nkj

where nk =
∑n

i=1 1(yi = k), nkj =
∑n

i=1 1(yi = k, x(j)
i = 1).

For conjugate prior, we can use Dir((αk)
K
k=1) for π, and Beta(a, b) for φkj

independently.
Because the likelihood factorises, the posterior distribution over π and
(φkj) also factorises, and posterior for π is Dir((αk + nk)

K
k=1), and for φkj is

Beta(a + nkj, b + nk − nkj).
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Bayesian Learning Bayesian Naïve Bayes Classifier

Bayesian Inference on Naïve Bayes model

Given D = {(xi, yi)}n
i=1, want to predict a label ỹ for a new document x̃.

We can calculate

p(x̃, ỹ = k|D) = p(ỹ = k|D)p(x̃|ỹ = k,D)

with

p(ỹ = k|D) =
αk + nk∑K
l=1 αl + n

, p(x̃(j) = 1|ỹ = k,D) =
a + nkj

a + b + nk
.

Predicted class is

p(ỹ = k|x̃,D) =
p(ỹ = k|D)p(x̃|ỹ = k,D)

p(x̃|D)

∝ αk + nk∑K
l=1 αl + n

p∏
j=1

(
a + nkj

a + b + nk

)x̃(j) (
b + nk − nkj

a + b + nk

)1−x̃(j)

Compared to ML plug-in estimator, pseudocounts help to “regularize”
probabilities away from extreme values.
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Bayesian Learning Bayesian Model Selection

Bayesian Learning and Regularisation

Consider a Bayesian approach to logistic regression: introduce a
multivariate normal prior for weight vector w ∈ Rp, and a uniform
(improper) prior for offset b ∈ R. The prior density is:

p(b,w) = 1 · (2πσ2)−
p
2 exp

(
− 1

2σ2 ‖w‖
2
2

)
The posterior is

p(b,w|D) ∝ exp

(
− 1

2σ2 ‖w‖
2
2 −

n∑
i=1

log(1 + exp(−yi(b + w>xi)))

)
The posterior mode is equivalent to minimising the L2-regularised
empirical risk.
Regularised empirical risk minimisation is (often) equivalent to having a
prior and finding a MAP estimate of the parameters.

L2 regularisation - multivariate normal prior.
L1 regularisation - multivariate Laplace prior.

From a Bayesian perspective, the MAP parameters are just one way to
summarise the posterior distribution.
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Bayesian Learning Bayesian Model Selection

Bayesian Model Selection

A modelM with a given set of parameters θM consists of both the
likelihood p(D|θM) and the prior distribution p(θM).
The posterior distribution

p(θM|D,M) =
p(D|θM,M)p(θM|M)

p(D|M)

Marginal probability of the data underM (Bayesian model evidence):

p(D|M) =

ˆ
Θ

p(D|θM,M)p(θM|M)dθ

Compare models using their Bayes factors p(D|M)
p(D|M′)
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Bayesian Learning Bayesian Model Selection

Bayesian Occam’s Razor

Occam’s Razor: of two explanations adequate to explain the same set of
observations, the simpler should be preferred.

p(D|M) =

ˆ
Θ

p(D|θM,M)p(θM|M)dθ

Model evidence p(D|M) is the probability that a set of randomly selected
parameter values inside the model would generate dataset D.
Models that are too simple are unlikely to generate the observed dataset.
Models that are too complex can generate many possible dataset, so
again, they are unlikely to generate that particular dataset at random.
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Bayesian Learning Bayesian Model Selection

Bayesian model comparison: Occam’s razor at work
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Bayesian Learning Bayesian Model Selection

Bayesian computation

Most posteriors are intractable, and posterior approximations need to be
used.

Laplace approximation.
Variational methods (variational Bayes, expectation propagation).
Monte Carlo methods (MCMC and SMC).
Approximate Bayesian Computation (ABC).
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Bayesian Learning Discussion and Further Reading

Bayesian Learning – Discussion

Use probability distributions to reason about uncertainties of parameters
(latent variables and parameters are treated in the same way).
Model consists of the likelihood function and the prior distribution on
parameters: allows to integrate prior beliefs and domain knowledge.
Prior usually has hyperparameters, i.e., p(θ) = p(θ|ψ). How to choose ψ?

Be Bayesian about ψ as well — choose a hyperprior p(ψ) and compute
p(ψ|D): integrate the predictive posterior over hyperparameters.
Maximum Likelihood II — ψ̂ = argmaxψ∈Ψ p(D|ψ).

p(D|ψ) =

ˆ
p(D|θ)p(θ|ψ)dθ

p(ψ|D) =
p(D|ψ)p(ψ)

p(D)
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Bayesian Learning Discussion and Further Reading

Bayesian Learning – Further Reading

Videolectures by Zoubin Ghahramani:
Bayesian Learning

Murphy, Chapter 5
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