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Probabilistic Unsupervised Learning Mixture Models

Mixture Models

Mixture models suppose that our dataset X was created by sampling iid from K
distinct populations (called mixture components).
Samples in population k can be modelled using a distribution Fµk with density
f (x|µk), where µk is the model parameter for the k-th component. For a concrete
example, consider a Gaussian with unknown mean µk and known diagonal
covariance σ2I,

f (x|µk) = |2πσ2|−
p
2 exp

(
− 1

2σ2 ‖x− µk‖2
2

)
.

Generative model: for i = 1, 2, . . . , n:
First determine the assignment variable independently for each data item i:

Zi ∼ Discrete(π1, . . . , πK) i.e., P(Zi = k) = πk

where mixing proportions are πk ≥ 0 for each k and
∑K

k=1 πk = 1.
Given the assignment Zi = k, then Xi = (X(1)

i , . . . ,X(p)
i )> is sampled

(independently) from the corresponding k-th component:

Xi|Zi = k ∼ f (x|µk)

We observe Xi = xi for each i but not Zi’s (latent variables), and would like to
infer the parameters {µk}K

k=1 and {πk}K
k=1 (σ2 can also be estimated).
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Probabilistic Unsupervised Learning Mixture Models

Mixture Models

Unknowns to learn given data are
Parameters: θ = (πk, µk)

K
k=1, where π1, . . . , πK ∈ [0, 1], µ1, . . . , µK ∈ Rp, and

Latent variables: z1, . . . , zn.

The joint probability over all cluster indicator variables {Zi} are:

pZ((zi)
n
i=1) =

n∏

i=1

πzi =

n∏

i=1

K∏

k=1

π
1(zi=k)
k

The joint density at observations Xi = xi given Zi = zi are:

pX((xi)
n
i=1|(Zi = zi)

n
i=1) =

n∏

i=1

f (xi|µzi) =

n∏

i=1

K∏

k=1

f (xi|µk)
1(zi=k)
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Probabilistic Unsupervised Learning Mixture Models

Mixture Models: Joint pmf/pdf of observed and latent
variables

Unknowns to learn given data are
Parameters: θ = (πk, µk)

K
k=1, where π1, . . . , πK ∈ [0, 1], µ1, . . . , µK ∈ Rp, and

Latent variables: z1, . . . , zn.

The joint probability mass function/density1 is:

pX,Z((xi, zi)
n
i=1) = pZ((zi)

n
i=1)pX((xi)

n
i=1|(Zi = zi)

n
i=1) =

n∏

i=1

K∏

k=1

(πkf (xi|µk))
1(zi=k)

And the marginal density of xi (resulting model on the observed data) is:

p(xi) =
K∑

j=1

p(Zi = j, xi) =
K∑

j=1

πjf (xi|µj).
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Probabilistic Unsupervised Learning Mixture Models

Mixture Models: Gaussian Mixtures with Unequal
Covariances

11.2. Mixture models 339

p(xi|zi) p(zi) Name Section
MVN Discrete Mixture of Gaussians 11.2.1
Prod. Discrete Discrete Mixture of multinomials 11.2.2
Prod. Gaussian Prod. Gaussian Factor analysis/ probabilistic PCA 12.1.5
Prod. Gaussian Prod. Laplace Probabilistic ICA/ sparse coding 12.6
Prod. Discrete Prod. Gaussian Multinomial PCA 27.2.3
Prod. Discrete Dirichlet Latent Dirichlet allocation 27.3
Prod. Noisy-OR Prod. Bernoulli BN20/ QMR 10.2.3
Prod. Bernoulli Prod. Bernoulli Sigmoid belief net 27.7

Table 11.1 Summary of some popular directed latent variable models. Here “Prod” means product, so
“Prod. Discrete” in the likelihood means a factored distribution of the form

∏
j Cat(xij |zi), and “Prod.

Gaussian” means a factored distribution of the form
∏

j N (xij |zi). “PCA” stands for “principal components
analysis”. “ICA” stands for “indepedendent components analysis”.
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Figure 11.3 A mixture of 3 Gaussians in 2d. (a) We show the contours of constant probability for each
component in the mixture. (b) A surface plot of the overall density. Based on Figure 2.23 of (Bishop 2006a).
Figure generated by mixGaussPlotDemo.

11.2.1 Mixtures of Gaussians

The most widely used mixture model is the mixture of Gaussians (MOG), also called a Gaussian
mixture model or GMM. In this model, each base distribution in the mixture is a multivariate
Gaussian with mean μk and covariance matrix Σk . Thus the model has the form

p(xi|θ) =
K∑

k=1

πkN (xi|μk,Σk) (11.2)

Figure 11.3 shows a mixture of 3 Gaussians in 2D. Each mixture component is represented by a
different set of eliptical contours. Given a sufficiently large number of mixture components, a
GMM can be used to approximate any density defined on R

D .

figure from Murphy, 2012, Ch. 11.
Here θ = (πk, µk,Σk)

K
k=1 are all the model parametes and

f (x| (µk,Σk)) = (2π)−
p
2 |Σk|−

1
2 exp

(
−1

2
(x− µk)

>Σ−1
k (x− µk)

)
,

p(x) =

K∑

k=1

πkf (x| (µk,Σk))
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Probabilistic Unsupervised Learning Mixture Models

Mixture Models: Responsibility

Suppose we know the parameters θ = (πk, µk)
K
k=1.

Zi is a random variable and its conditional distribution given data set X is:

Qik := p(Zi = k|xi) =
p(Zi = k, xi)

p(xi)
=

πkf (xi|µk)∑K
j=1 πjf (xi|µj)

The conditional probability Qik is called the responsibility of mixture
component k for data point xi.
These conditionals softly partitions the dataset among the k
components:

∑K
k=1 Qik = 1.
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Probabilistic Unsupervised Learning Mixture Models

Mixture Models: Maximum Likehood

How can we learn about the parameters θ = (πk, µk)
K
k=1 from data?

Standard statistical methodology asks for the maximum likelihood
estimator (MLE).
The goal is to maximise the marginal probability of the data over the
parameters

θ̂ML = argmax
θ

p(X|θ) = argmax
(πk,µk)K

k=1

n∏

i=1

p(xi|(πk, µk)
K
k=1)

= argmax
(πk,µk)K

k=1

n∏

i=1

K∑

k=1

πkf (xi|µk)

= argmax
(πk,µk)K

k=1

n∑

i=1

log
K∑

k=1

πkf (xi|µk)

︸ ︷︷ ︸
:=`((πk,µk)K

k=1)

.
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Probabilistic Unsupervised Learning Mixture Models

Mixture Models: Maximum Likehood

Marginal log-likelihood:

`((πk, µk)
K
k=1) := log p(X|(πk, µk)

K
k=1) =

n∑

i=1

log
K∑

k=1

πkf (xi|µk)

The gradient w.r.t. µk:

∇µk`((πk, µk)
K
k=1) =

n∑

i=1

πkf (xi|µk)∑K
j=1 πjf (xi|µj)

∇µk log f (xi|µk)

=

n∑

i=1

Qik∇µk log f (xi|µk).

Difficult to solve, as Qik depends implicitly on µk.
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Probabilistic Unsupervised Learning Mixture Models

Likelihood Surface for a Simple Example

If latent variables zi’s were all observed, we would have a unimodal likelihood
surface but when we marginalise out the latents, the likelihood surface
becomes multimodal: no unique MLE.
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Figure 11.6: Left: N = 200 data points sampled from a mixture of 2 Gaussians in 1d, with πk = 0.5, σk = 5, µ1 = −10 and µ2 = 10.
Right: Likelihood surface p(D|µ1, µ2), with all other parameters set to their true values. We see the two symmetric modes, reflecting the
unidentifiability of the parameters. Produced by mixGaussLikSurfaceDemo.

11.4.2.5 Unidentifiability

Note that mixture models are not identifiable, which means there are many settings of the parameters which have the same
likelihood. Specifically, in a mixture model withK components, there areK! equivalent parameter settings, which differ merely
by permuting the labels of the hidden states. See Figure 11.6 for an illustration. The existence of equivalent global modes does
not matter when computing a single point estimate, such as the ML or MAP estimate, but it does complicate Bayesian inference,
as we will in Section 12.5.6.3. Unfortunately, even finding just one of these global modes is computationally difficult. The EM
algorithm is only guaranteed to find a local mode. A variety of methods can be used to increase the chance of finding a good
local optimum. The simplest, and most widely used, is to perform multiple random restarts.

11.4.2.6 K-means algorithm

There is a variant of the EM algorithm for GMMs known as the K-means algorithm, which we now discuss.
Consider a GMM in which we make the following assumptions: Σk = σ2ID is fixed, and πk = 1/K is fixed, so only the

cluster centers, µk ∈ RD, have to be estimated. Now consider an approximation to EM in which we make the approximation

p(zi = k|xi,θ) ≈ I(k = z∗i ) (11.61)

where zi∗ = arg maxk p(zi = k|xi,θ). This is sometimes called hard EM, since we are making a hard assignment of points
to clusters. Since we assumed an equal spherical covariance matrix for each cluster, the most probable cluster for xi can be
computed by finding the nearest prototype:

z∗i = arg min
k
||xi − µk||2 (11.62)

Hence in each E step, we must find the Euclidean distance betweenN data points andK cluster centers, which takesO(NKD)
time. However, this can be sped up using various techniques, such as applying the triangle inequality to avoid some redundant
computations [Elk03]. Given the hard cluster assignments, the M step updates each cluster center by computing the mean of all
points assigned to it:

µk =
1

Nk

∑

i:zi=k

xi (11.63)

The resulting method is equivalent to the K-means algorithm. See Algorithm 5 for the pseudo-code.

Algorithm 3: K-means algorithm

initialize mk, k ← 1 to K1

repeat2

Assign each data point to its closest cluster center: zi = arg mink ||xi − µk||23

Update each cluster center by computing the mean of all points assigned to it: µk = 1
Nk

∑
i:zi=k

xi4

until converged5

Since K-means is not a proper EM algorithm, it is not maximizing likelihood. Instead, it can be interpreted as a greedy
algorithm for approximately minimizing the reconstruction error created by using vector quantization, as discussed in Sec-
tion 8.5.3.3. (See also Section 20.2.1.)

c© Kevin P. Murphy. Draft — not for circulation.

(left) n = 200 data points from a mixture of two 1D Gaussians with
π1 = π2 = 0.5, σ = 5 and µ1 = 10, µ2 = −10.
(right) Observed data log likelihood surface ` (µ1, µ2), all the other parameters
being assumed known.
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Probabilistic Unsupervised Learning Mixture Models

Mixture Models: Maximum Likehood
Recall we would like to solve:

∇µk`((πk, µk)
K
k=1) =

n∑

i=1

Qik∇µk log f (xi|µk) = 0

What if we ignore the dependence of Qik on the parameters?
Taking the mixture of Gaussian with covariance σ2I as example,

n∑

i=1

Qik∇µk

(
−p

2
log(2πσ2)− 1

2σ2 ‖xi − µk‖2
2

)

=
1
σ2

n∑

i=1

Qik(xi − µk) =
1
σ2

(
n∑

i=1

Qikxi − µk
(∑n

i=1 Qik
)
)

= 0

µML?
k =

∑n
i=1 Qikxi∑n
i=1 Qik
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Probabilistic Unsupervised Learning Mixture Models

Mixture Models: Maximum Likehood

The estimate is a weighted average of data points, where the estimated
mean of cluster k uses its responsibilities to data points as weights.

µML?
k =

∑n
i=1 Qikxi∑n
i=1 Qik

.

Makes sense: Suppose we knew that data point xi came from population
zi. Then Qizi = 1 and Qik = 0 for k 6= zi and:

µML?
k =

∑
i:zi=k xi∑
i:zi=k 1

= avg{xi : zi = k}

Our best guess of the originating population is given by Qik.
Soft K-Means algorithm?
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Probabilistic Unsupervised Learning Mixture Models

Mixture Models: Maximum Likehood

Gradient w.r.t. mixing proportion πk (including a Lagrange multiplier
λ
(∑

k πk − 1
)

to enforce constraint
∑

k πk = 1).

∇πk

(
`((πk, µk)

K
k=1)− λ(

∑K
k=1 πk − 1)

)

=

n∑

i=1

f (xi|µk)∑K
j=1 πjf (xi|µj)

− λ

=

n∑

i=1

Qik

πk
− λ = 0 ⇒ πk ∝

n∑

i=1

Qik

Note:
K∑

k=1

n∑

i=1

Qik =

n∑

i=1

K∑

k=1

Qik

︸ ︷︷ ︸
=1

πML?
k =

∑n
i=1 Qik

n

Again makes sense: the estimate is simply (our best guess of) the
proportion of data points coming from population k.
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Probabilistic Unsupervised Learning Mixture Models

Mixture Models: The EM Algorithm

Putting all the derivations together, we get an iterative algorithm for
learning about the unknowns in the mixture model.

Start with some initial parameters (π
(0)
k , µ

(0)
k )K

k=1.
Iterate for t = 1, 2, . . .:

Expectation Step:

Q(t)
ik :=

π
(t−1)
k f (xi|µ(t−1)

k )∑K
j=1 π

(t−1)
j f (xi|µ(t−1)

j )

Maximization Step:

π
(t)
k =

∑n
i=1 Q(t)

ik

n
µ
(t)
k =

∑n
i=1 Q(t)

ik xi∑n
i=1 Q(t)

ik

Will the algorithm converge?
What does it converge to?
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Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians
An example with 3 clusters.
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Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians
After 1st E and M step.

−5 0 5 10

−5
0

5

data[,1]

da
ta
[,2
]

Iteration 1
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Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians
After 2nd E and M step.

−5 0 5 10

−5
0

5

data[,1]

da
ta
[,2
]

Iteration 2
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Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians
After 3rd E and M step.

−5 0 5 10

−5
0

5

data[,1]

da
ta
[,2
]

Iteration 3
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Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians
After 4th E and M step.

−5 0 5 10

−5
0

5

data[,1]

da
ta
[,2
]

Iteration 4

Department of Statistics, Oxford SC4/SM8 ATSML, HT2019 20 / 36



Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians
After 5th E and M step.

−5 0 5 10

−5
0

5

data[,1]

da
ta
[,2
]

Iteration 5
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Probabilistic Unsupervised Learning EM Algorithm

EM Algorithm

In a maximum likelihood framework, the objective function is the log likelihood,

`(θ) =

n∑
i=1

log
K∑

k=1

πkf (xi|µk)

Direct maximisation is not feasible.
Consider another objective function F(θ, q), where q is any probability distribution
on latent variables z, such that:

F(θ, q) ≤ `(θ) for all θ, q,

max
q
F(θ, q) = `(θ)

F(θ, q) is a lower bound on the log likelihood.
We can construct an alternating maximisation algorithm as follows:
For t = 1, 2 . . . until convergence:

q(t) := argmax
q
F(θ(t−1), q)

θ(t) := argmax
θ

F(θ, q(t))
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Probabilistic Unsupervised Learning EM Algorithm

EM Algorithm

The lower bound we use is called the variational free energy.
q is a probability mass function for a distribution over z := (zi)

n
i=1.

F(θ, q) =Eq[log p(X, z|θ)− log q(z)]

=Eq

[(
n∑

i=1

K∑

k=1

1(zi = k) (logπk + log f (xi|µk))

)
− log q(z)

]

=
∑

z

q(z)

[(
n∑

i=1

K∑

k=1

1(zi = k) (logπk + log f (xi|µk))

)
− log q(z)

]

Lemma

F(θ, q) ≤ `(θ) for all q and for all θ.
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Probabilistic Unsupervised Learning EM Algorithm

EM Algorithm - Solving for q

Lemma

F(θ, q) = `(θ) for q(z) = p(z|x, θ).

In combination with previous Lemma, this implies that q(z) = p(z|x, θ)
maximizes F(θ, q) for fixed θ, i.e., the optimal q∗ is simply the conditional
distribution given the data and that fixed θ.

In mixture model,

q∗(z) =
p(z, x|θ)
p(x|θ) =

∏n
i=1 πzi f (xi|µzi)∑

z′
∏n

i=1 πz′i f (xi|µz′i )
=

n∏

i=1

πzi f (xi|µzi)∑
k πkf (xi|µk)

=

n∏

i=1

p(zi|xi, θ).
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Probabilistic Unsupervised Learning EM Algorithm

EM Algorithm - Solving for θ

Setting derivative with respect to µk to 0,

∇µkF(θ, q) =
∑

z

q(z)

n∑

i=1

1(zi = k)∇µk log f (xi|µk)

=

n∑

i=1

q(zi = k)∇µk log f (xi|µk) = 0

This equation can be solved quite easily. E.g., for mixture of Gaussians,

µ∗k =

∑n
i=1 q(zi = k)xi∑n
i=1 q(zi = k)

If it cannot be solved exactly, we can use gradient ascent algorithm
(generalized EM):

µ∗k = µk + α

n∑

i=1

q(zi = k)∇µk log f (xi|µk).

Similar derivation for optimal πk as before.
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Probabilistic Unsupervised Learning EM Algorithm

EM Algorithm

Start with some initial parameters (π
(0)
k , µ

(0)
k )K

k=1.
Iterate for t = 1, 2, . . .:

Expectation Step:

q(t)(zi = k) := p(zi = k|xi, θ
(t−1)) =

π
(t−1)
k f (xi|µ(t−1)

k )∑K
j=1 π

(t−1)
j f (xi|µ(t−1)

j )

Maximization Step:

π
(t)
k =

∑n
i=1 q(t)(zi = k)

n
µ
(t)
k =

∑n
i=1 q(t)(zi = k)xi∑n

i=1 q(t)(zi = k)

Theorem
EM algorithm does not decrease the log likelihood.

Proof: `(θ(t−1)) = F(θ(t−1), q(t)) ≤ F(θ(t), q(t)) ≤ F(θ(t), q(t+1)) = `(θ(t)).

Additional assumption, that ∇2
θF(θ(t), q(t)) are negative definite with

eigenvalues < −ε < 0, implies that θ(t) → θ∗ where θ∗ is a local MLE.
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Probabilistic Unsupervised Learning EM Algorithm

Notes on Probabilistic Approach and EM Algorithm

Some good things:

Guaranteed convergence to locally optimal parameters.
Formal reasoning of uncertainties, using both Bayes Theorem and
maximum likelihood theory.
Rich language of probability theory to express a wide range of generative
models, and straightforward derivation of algorithms for ML estimation.

Some bad things:

Can get stuck in local minima so multiple starts are recommended.
Slower and more expensive than K-means.
Choice of K still problematic, but rich array of methods for model
selection comes to rescue.
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Probabilistic Unsupervised Learning EM Algorithm

Flexible Gaussian Mixture Models

We can allow each cluster to have its own mean and covariance structure
to enable greater flexibility in the model.

Different covariances

Identical covariances

Different, but diagonal covariances

Identical and spherical covariances
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Probabilistic Unsupervised Learning Probabilistic PCA

Probabilistic PCA

A probabilistic model related to PCA (also known as sensible PCA) has
the following generative model: for i = 1, 2, . . . , n:

Let k < n, p be given.
Let Yi be a (latent) k-dimensional normally distributed random variable with 0
mean and identity covariance:

Yi ∼ N (0, Ik)

We model the distribution of the ith data point given Yi as a p-dimensional
normal:

Xi ∼ N (µ+ LYi, σ
2I)

where the parameters are a vector µ ∈ Rp, a matrix L ∈ Rp×k and σ2 > 0.

Tipping and Bishop, 1999
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Probabilistic Unsupervised Learning Probabilistic PCA

Probabilistic PCA: EM vs MLE

EM algorithm can be used for ML estimation (lecture notes), but PPCA
can more directly give an MLE (which is not unique).
Let λ1 ≥ · · · ≥ λp be the eigenvalues of the sample covariance and
V1:k ∈ Rp×k the top k eigenvectors as before. Let Q ∈ Rk×k be any
orthogonal matrix. Then an MLE is given by:

µMLE = x̄ (σ2)MLE = 1
p−k

∑p
j=k+1 λj

LMLE = V1:k diag((λ1 − (σ2)MLE)
1
2 , . . . , (λk − (σ2)MLE)

1
2 )Q

However, EM can be faster, can be implemented online, can handle
missing data and can be extended to more complicated models!

Tipping and Bishop, 1999
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Probabilistic PCA
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Mixture of Probabilistic PCAs

We have learnt two types of unsupervised learning techniques:
Dimensionality reduction, e.g. PCA, MDS, Isomap.
Clustering, e.g. K-means, linkage and mixture models.

Probabilistic models allow us to construct more complex models from
simpler pieces.
Mixture of probabilistic PCAs allows both clustering and dimensionality
reduction at the same time.

Zi ∼ Discrete(π1, . . . , πK)

Yi ∼ N (0, Id)

Xi|Zi = k,Yi = yi ∼ N (µk + Lyi, σ
2Ip)

Allows flexible modelling of covariance structure without using too many
parameters.

Ghahramani and Hinton 1996
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Further reading

Hastie et al, 8.5
Bishop, Chapter 9
Roweis and Ghahramani: A unifying review of linear Gaussian models
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