
SC4/SM8 Advanced Topics in Statistical Machine Learning

Chapter 4: Similarity Graphs and Laplacians

Dino Sejdinovic
Department of Statistics

Oxford

Slides and other materials available at:
http://www.stats.ox.ac.uk/~sejdinov/atsml19/

Department of Statistics, Oxford SC4/SM8 ATSML, HT2019 1 / 9

http://www.stats.ox.ac.uk/~sejdinov/atsml19/


Spectral Clustering

Nonlinear cluster structures

K-means algorithm will often fail when applied to data with elongated or
non-convex cluster structures.
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Spectral Clustering

Clustering and Graph Cuts

Construct a weighted undirected similarity graph G = ({1, . . . , n},W),
where vertices correspond to data items and W is the matrix of edge
weights corresponding to pairwise item similarities.
Partition the graph vertices into C1,C2, . . . ,CK to minimize the graph cut.
The unnormalized graph cut across clusters is given by

cut (C1, . . . ,CK) =

K∑
k=1

cut(Ck, C̄k),

where C̄k is the complement of Ck and cut(A,B) =
∑

i∈A,j∈B wij is the sum
of the weights separating vertex subset A from the vertex subset B, where
A and B are disjoint.
Typically results with singleton clusters, so one needs to balance the cuts
by the cluster sizes in the partition. One approach is to consider the
notion of “ratio cut"

ratio-cut (C1, . . . ,CK) =

K∑
k=1

cut(Ck, C̄k)

|Ck|
.
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Spectral Clustering

Graph Laplacian

The (unnormalized) Laplacian of a graph G = ({1, . . . , n},W) is an n× n
matrix given by

L = D−W,

where D is a diagonal matrix with Dii = deg(i), and deg(i) denotes the degree
of vertex i defined as

deg(i) =

n∑
j=1

wij.

Laplacian always has the column vector 1 as an eigenvector with
eigenvalue 0 (since all rows sum to zero)
(exercise) Laplacian is a positive semi-definite matrix so all the
eigenvalues are non-negative.
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Spectral Clustering

Laplacian and Ratio Cuts

Lemma
For a given partition C1,C2, . . . ,CK define the column vectors hk ∈ Rn as

hk,i =
1√
|Ck|

1{i∈Ck}.

Then

ratio-cut (C1, . . . ,CK) =

K∑
k=1

h>k Lhk. (1)

To minimize the ratio cut, search for orthonormal vectors hk with entries either
0 or 1/

√
|Ck| which minimize the RHS in (1).

Equivalent to integer programming so computationally hard.
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Spectral Clustering

Laplacian and Ratio Cuts

Lemma
For a given partition C1,C2, . . . ,CK define the column vectors hk ∈ Rn as

hk,i =
1√
|Ck|

1{i∈Ck}.

Then

ratio-cut (C1, . . . ,CK) =

K∑
k=1

h>k Lhk. (1)

Relaxation: Search for any collection of orthonormal vectors hk in Rn that
minimize RHS in (1) – which corresponds to the eigendecomposition of the
Laplacian.
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Spectral Clustering

Laplacian and Connected Components

If the original graph is disconnected, in addition to 1, there would be other
0-eigenvectors of L, corresponding to the indicators of the connected
components of the graph (Murphy – Theorem 25.4.1).
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Spectral Clustering

Laplacian and Connected Components

Spectral clustering treats the constructed graph as a “small perturbation" of a
disconnected graph.
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Spectral Clustering

Eigenvectors as dimensionality reduction
Spectral Clustering. Eigendecompose L and take the K eigenvectors
corresponding to the K smallest eigenvalues – this gives a new "data matrix"

Z = [u1, . . . , uK ] ∈ Rn×K

on which we can apply a more conventional clustering algorithm, such as
K-means.
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Spectral Clustering

Further reading

von Luxburg: Tutorial on Spectral Clustering
Clustering on scikit-learn
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Manifold Regularization

Laplacian matrices for Manifold Regularization

Manifold regularization [Belkin et al, 2006] is useful in semisupervised learning.
Assuming we have a labelled set of examples {(xi, yi)

n
i=1} and an unlabelled set

of inputs {xn+i}u
i=1, we form an (n + u)× (n + u) Laplacian matrix L and consider

the ERM with an additional (intrinsic) regularizer

f>Lf = 1
2

n+u∑
i=1

n+u∑
j=1

wij(f (xi)− f (xj))
2

for the vector f = [f (x1), . . . , f (xn+u)]
> of function values on all inputs

min
f∈H

1
n

n∑
i=1

L(yi, f (xi)) + λ‖f‖2
H + λMf>Lf

The additional regularizer penalizes large differences between function values at
the neighbouring vertices.
If H = Hk is an RKHS for a kernel k, representer theorem still applies, but with the
solution spanned using all inputs:

f? =

n+u∑
i=1

αik(xi, ·).
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