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Administrivia

Course Structure
Who is the course for?

MMath Part C & OMMS & MSc in Statistical Science
Lectures

Tuesdays 3pm, LG.01.
Thursdays 4pm, LG.01.

MSc
4 problem sheets: classes Fri 10am weeks 3,5,7,TT1, LG.01.

Part C/OMMS
4 problem sheets, solutions due Fri noon in weeks 2,4,6 (sheets 1-3).
3 sets of classes on Tue mornings in weeks 3,5,7,TT1.
Sign up details (via WebLearn) on departmental website. Check minerva class
lists or course website for class times, locations, and class tutor contact details.

Background
SB2.2/SM4 is helpful, but not a prerequisite. Ch.1 provides detailed background
notes on material needed.

Lecture notes and slides will be available at the course website:
http://www.stats.ox.ac.uk/~sejdinov/atsml19/
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Administrivia

Topics

1 Review of fundamentals: PCA, clustering, empirical risk minimization,
regularization

2 Support vector machines
3 Kernel methods and Reproducing kernel Hilbert spaces
4 Graph Laplacians: Spectral clustering and manifold regularization
5 Latent variable models and EM algorithm
6 Collaborative filtering and matrix factorization
7 Bayesian learning
8 Variational methods, topic modelling
9 Gaussian processes

10 Bayesian optimization
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Introduction Types of Machine Learning

What is Machine Learning?

Arthur Samuel, 1959
Field of study that gives computers the ability to learn without being explicitly
programmed.

Tom Mitchell, 1997
Any computer program that improves its performance at some task through
experience.

Kevin Murphy, 2012

To develop methods that can automatically detect patterns in data, and
then to use the uncovered patterns to predict future data or other outcomes
of interest.
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Introduction Types of Machine Learning

What is Machine Learning?

recommender systems
machine translation self-driving cars

image recognition
DQN Atari games

AlphaGo
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Introduction Types of Machine Learning

Types of Machine Learning

Supervised learning

Data contains “labels”: every example is an input-output pair
classification, regression
Goal: prediction on new examples

Unsupervised learning

Extract key features of the “unlabelled” data
clustering, signal separation, density estimation
Goal: representation, hypothesis generation, visualization
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Introduction Types of Machine Learning

Types of Machine Learning

Semi-supervised Learning

A database of examples, only a small subset of which are labelled.

Multi-task Learning

A database of examples, each of which has multiple labels corresponding to
different prediction tasks.

Reinforcement Learning

An agent acting in an environment, given rewards for performing appropriate
actions, learns to maximize their reward.
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Introduction Types of Machine Learning

Unsupervised learning basics
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Introduction Types of Machine Learning

Unsupervised Learning

Goals:
Find the variables that summarise the data / capture relevant information.
Discover informative ways to visualise the data.
Discover the subgroups among the observations.

It is often much easier to obtain unlabeled data than labeled data!
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Dimensionality Reduction PCA

Dimensionality reduction

deceptively many variables to measure, many of them redundant /
correlated to each other (large p)
often, there is a simple but unknown underlying relationship hiding
example: ball on a frictionless spring recorded by three different cameras

our imperfect measurements obfuscate the true underlying dynamics
are our coordinates meaningful or do they simply reflect the method of data
gathering?

J. Shlens, A Tutorial on Principal Component Analysis, 2005
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Dimensionality Reduction PCA

Principal Components Analysis (PCA)

PCA considers interesting directions to be those with greatest variance.
A linear dimensionality reduction technique: looks for a new basis to
represent a noisy dataset.
Workhorse for many different types of data analysis (often used for data
preprocessing before supervised techniques are applied).
Often the first thing to run on high-dimensional data.
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Dimensionality Reduction PCA

Data Matrix notation

Notation
Data consists of p variables (features/attributes/dimensions) on n
examples (items/observations).
X = (xij) is a n× p-matrix with xij := the j-th variable for the i-th example

X =



x11 x12 . . . x1j . . . x1p

x21 x22 . . . x2j . . . x2p
...

...
. . .

...
. . .

...
xi1 xi2 . . . xij . . . xip
...

...
. . .

...
. . .

...
xn1 xn2 . . . xnj . . . xnp


.

Denote the i-th data item by xi ∈ Rp (we will treat it as a column vector: it
is the transpose of the i-th row of X).
Assume x1, . . . , xn are independently and identically distributed
samples of a random vector X over Rp. The j-th dimension of X will be
denoted X(j).
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Dimensionality Reduction PCA

PCA

PCA

Find an orthogonal basis {v1, v2, . . . , vp} for the data space such that:
The first principal component (PC) v1 is the direction of greatest
variance of data.
The j-th PC vj is the direction orthogonal to v1, v2, . . . , vj−1 of greatest
variance, for j = 2, . . . , p.

Eigendecomposition of the sample covariance matrix S = 1
n−1

∑n
i=1 xix>i

(data is assumed centred).
S =

1
n− 1

X>X = VΛV>.

Λ is a diagonal matrix with eigenvalues (variances along each principal
component) λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0
V (loadings matrix) is a p× p orthogonal matrix whose columns are the p
eigenvectors of S, i.e. the principal components v1, . . . , vp

Dimensionality reduction by projecting xi ∈ Rp onto first k principal
components, to obtain scores matrix:

zi =
[
v>1 xi, . . . , v>k xi

]> ∈ Rk; Z = XV.
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Dimensionality Reduction PCA

Properties of the Principal Components

Derived scalar variable (projection to the j-th principal component)
Z(j) = v>j X has sample variance λj, for j = 1, . . . , p
S is a real symmetric matrix, so eigenvectors (principal components) are
orthogonal.
Projections to principal components are uncorrelated:
Ĉov(Z(i),Z(j)) ≈ v>i Svj = λjv>i vj = 0, for i 6= j.

The total sample variance is given by Tr(S) =
∑p

i=1 Sii = λ1 + . . .+λp, so
the proportion of total variance explained by the jth PC is λj

λ1+λ2+...+λp
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Dimensionality Reduction PCA

PCA on Face Images: Eigenfaces

Turk and Pentland, CVPR 1995
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Dimensionality Reduction PCA

PCA on European Genetic Variation
Example of PCA: Genetic variation within Europe

Novembre et al. (2008) Nature 456:98-101Genes mirror geography within Europe, Nature 2008
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Dimensionality Reduction SVD

Singular Value Decomposition (SVD)

SVD

Any real-valued n× p matrix X can be written as X = UDV> where
U is an n× n orthogonal matrix: UU> = U>U = In

D is a n× p matrix with decreasing non-negative elements on the
diagonal (the singular values) and zero off-diagonal elements.
V is a p× p orthogonal matrix: VV> = V>V = Ip

SVD always exists, even for non-square matrices.
Fast and numerically stable algorithms for SVD are available in most
packages, e.g. the relevant R command is svd.
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Dimensionality Reduction SVD

SVD and PCA

Let X = UDV> be the SVD of the n× p data matrix X.
Note that

(n− 1)S = X>X = (UDV>)>(UDV>) = VD>U>UDV> = VD>DV>,

using orthogonality (U>U = In) of U.
The eigenvalues of S are thus the diagonal entries of Λ = 1

n−1 D>D.
We also have

XX> = (UDV>)(UDV>)> = UDV>VD>U> = UDD>U>,

using orthogonality (V>V = Ip) of V.

Gram matrix

K = XX>, Kij = x>i xj is called the Gram matrix of dataset X.
K and (n− 1)S = X>X have the same nonzero eigenvalues, equal to the
non-zero squared singular values of X.
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Dimensionality Reduction SVD

PCA projections from Gram matrix
If we consider projections to all principal components, the transformed data
matrix is

Z = XV = UDV>V = UD, (1)

If p ≤ n this means

zi = [Ui1D11, . . . ,UipDpp]
>
, (2)

and if p > n only the first n projections are defined (sample covariance will
have rank at most n):

zi = [Ui1D11, . . . ,UinDnn, 0, . . . , 0]
>
. (3)

Thus, Z can be obtained from the eigendecomposition of Gram matrix K.
When p� n, eigendecomposition of K requires much less computation,
O(n3), than the eigendecomposition of the covariance matrix, O(p3), so is the
preferred method for PCA in that case.
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Clustering Introduction

Clustering

Many datasets consist of multiple heterogeneous subsets.
Cluster analysis: Given an unlabelled data, want algorithms that
automatically group the datapoints into coherent subsets/clusters.
Examples:

market segmentation of shoppers based on browsing and purchase histories
different types of breast cancer based on the gene expression
measurements
discovering communities in social networks
image segmentation
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Clustering Introduction

Types of Clustering

Model-free clustering:
Defined by similarity/dissimilarity among instances within clusters.

Model-based clustering:
Each cluster is described using a probability model.
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Clustering Introduction

Model-free clustering

notion of similarity/dissimilarity between data items is central: many ways
to define and the choice will depend on the dataset being analyzed and
dictated by domain specific knowledge
most common approach is partition-based clustering: one divides n data
items into K clusters C1, . . . ,CK where for all k, k′ ∈ {1, . . . ,K},

Ck ⊂ {1, . . . , n} , Ck ∩ Ck′ = ∅ ∀k 6= k′,
K⋃

k=1

Ck = {1, . . . , n} .

Intuitively, clustering aims to group similar items together and to place
separate dissimilar items into different groups
two objectives can contradict each other (similarity is not a transitive
relation, while being in the same cluster is an equivalence relation)
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Clustering Introduction

“Impossibility” of clustering

Clustering method is a map F : (D = {xi}n
i=1, ρ) 7→ {C1, . . . ,CK} which takes

as an input dataset D and a dissimilarity function ρ and returns a partition of
D. Three basic properties required

Scale invariance. For any α > 0, F (D, αρ) = F (D, ρ).
Richness. For any partition C = {C1, . . . ,CK} of D, there exists
dissimilarity ρ, such that F (D, ρ) = C.
Consistency. If ρ and ρ′ are two dissimilarities such that for all xi, xj ∈ D
the following holds:

xi, xj belong to the same cluster in F (D, ρ) =⇒ ρ′(xi, xj) ≤ ρ(xi, xj)

xi, xj belong to different clusters in F (D, ρ) =⇒ ρ′(xi, xj) ≥ ρ(xi, xj),

then F (D, ρ′) = F (D, ρ).
Kleinberg (2003) proves that there exists no clustering method that satisfies
all three properties!
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Clustering Introduction

Examples of Model-free Clustering

K-means clustering: a partition-based method into K clusters. Finds
groups such that variation within each group is small. The number of
clusters K is usually fixed beforehand or various values of K are
investigated as a part of the analysis.
Spectral clustering: Similarity/dissimilarity between data items defines a
graph. Find a partition of vertices which does not “cut" many edges. Can
be interpreted as nonlinear dimensionality reduction followed by
K-means.
Hierarchical clustering: nearby data items are joined into clusters, then
clusters into super-clusters forming a hierarchy. Typically, the hierarchy
forms a binary tree (a dendrogram) where each cluster has two
“children” clusters. Dendrogram allows to view the clusterings for each
possible number of clusters, from 1 to n (number of data items).
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Clustering K-means

K-means
The K-means algorithm is a widely used method that returns a local optimum of the
objective function W, given by the total within-cluster deviance:

W =

K∑
k=1

∑
i∈Ck

‖xi − µk‖2
2

using iterative and alternating minimization.
1 Randomly initialize K cluster centroids µ1, . . . , µK .
2 Cluster assignment: For each i = 1, . . . , n, assign each xi to the cluster with the

nearest centroid,

ci := argmin
k
‖xi − µk‖2

2

Set Ck := {i : ci = k} for each k.
3 Move centroids: Set µ1, . . . , µK to the averages of the new clusters:

µk :=
1
|Ck|

∑
i∈Ck

xi

4 Repeat steps 2-3 until convergence.
5 Return the partition {C1, . . . ,CK} and means µ1, . . . , µK .
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Clustering K-means
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Clustering K-means
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Clustering K-means
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Clustering K-means
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Clustering K-means

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

y

Move centroids. W = 19.72

Department of Statistics, Oxford SC4/SM8 ATSML, HT2019 26 / 41



Clustering K-means
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Clustering K-means
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Clustering K-means

K-means

The algorithm stops in a finite number of iterations. Between steps 2
and 3, W either stays constant or it decreases, this implies that we never
revisit the same partition. As there are only finitely many partitions, the
number of iterations cannot exceed this.
The K-means algorithm need not converge to global optimum.
K-means is a heuristic search algorithm so it can get stuck at suboptimal
configurations. The result depends on the starting configuration. Typically
perform a number of runs from different configurations, and pick the end
result with minimum W.
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Clustering K-means

K-means Additional Comments

Good practice initialization. Set centroids µ1, µ2, . . . , µK equal to a
subset of training examples (chosen without replacement). Initialization
using weighted sampling of training examples (K-means++) has precise
theoretical guarantees1

Sensitivity to distance measure. Euclidean distance can be greatly
affected by measurement unit and by strong correlations. Can use
Mahalanobis distance instead:

‖x− y‖M =
√

(x− y)>M−1(x− y)

where M is positive semi-definite matrix, e.g. sample covariance.
Determination of K. The K-means objective will always improve with
larger number of clusters K. Determination of K requires an additional
regularization criterion. E.g., in DP-means2, use

W =

K∑
k=1

∑
i∈Ck

‖xi − µk‖2
2 + λK
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Clustering K-means

Supervised learning basics
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Supervised Learning

Supervised Learning

Supervised learning:
In addition to the observations of X, we have access to their response
variables / labels Y ∈ Y: we observe {(xi, yi)}n

i=1.
Types of supervised learning:

Classification: discrete responses, e.g. Y = {+1,−1} or {1, . . . ,K}.
Regression: a numerical value is observed and Y = R.

The goal is to accurately predict the response Y on new observations of X,
i.e., to learn a function f : Rp → Y, such that f (X) will be close to the true
response Y.
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Loss and Risk

Loss function

Suppose we made a prediction Ŷ = f (X) ∈ Y based on observation of X.
How good is the prediction? We can use a loss function L : Y ×Y 7→ R+

to formalize the quality of the prediction.
Typical loss functions:

Misclassification loss (or 0-1 loss) for classification

L(y, f (x)) =

{
0 f (x) = y
1 f (x) 6= y

.

Squared loss for regression

L(y, f (x)) = (f (x)− y)2 .

Many other choices are possible.
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Loss and Risk

Loss functions for binary classification

Classes are denoted −1 and +1. Class prediction is sign(f (x)), whereas the
magnitude of f (x) represents the “confidence".

0/1 loss L(y, f (x)) = 1{yf (x) ≤ 0},
(also called misclassification loss, optimal solution is called the Bayes
classifier and is given by f (x) = argmaxk∈{0,1} P(Y = k|X = x)),
hinge loss L(y, f (x)) = (1− yf (x))+
(used in support vector machines - leads to sparse solutions),
exponential loss L(y, f (x)) = e−yf (x)

(used in boosting algorithms - Adaboost),
logistic loss L(y, f (x)) = log

(
1 + e−yf (x)

)
(used in logistic regression, associated with a probabilistic model).

The loss can penalize misclassification (wrong sign) as well as the
overconfident misclassification (wrong sign and large magnitude) and even
underconfident correct classification (correct sign but small magnitude).
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Loss and Risk
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Figure: Loss functions for binary classification
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Loss and Risk

Loss functions for regression

squared loss: L(y, f (x)) = (y− f (x))2

(least squares regression: optimal f is the conditional mean E[Y|X = x]),
absolute loss: L(y, f (x)) = |y− f (x)|
(less sensitive to outliers: optimal f is the conditional median
med[Y|X = x]),
τ -pinball loss: L(y, f (x)) = 2 max{τ(y− f (x)), (τ −1)(y− f (x))} for τ ∈ (0, 1)
(quantile regression: optimal f is the τ -quantile of p(y|X = x)),

ε-insensitive (Vapnik) loss: L(y, f (x)) =

{
0, if |y− f (x)| ≤ ε,
|y− f (x)| − ε, otherwise.

(support vector regression - leads to sparse solutions).
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Loss and Risk
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Figure: Loss functions for regression
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Loss and Risk

Risk

paired observations {(xi, yi)}n
i=1 viewed as i.i.d. realizations of a random

variable (X,Y) on X × Y with joint distribution PXY

Risk
For a given loss function L, the risk R of a learned function f is given by the
expected loss

R(f ) = EPXY [L(Y, f (X))] ,

where the expectation is with respect to the true (unknown) joint distribution of
(X,Y).

The risk is unknown, but we can compute the empirical risk:

Rn(f ) =
1
n

n∑
i=1

L(yi, f (xi)).
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ERM

Hypothesis Space and Empirical Risk Minimization

The goal of learning is to find the function in hypothesis space H which
minimises the risk:

f? = argmin
f∈H

EX,Y [L(Y, f (X))]

Empirical Risk Minimization (ERM): minimize the empirical risk instead,
since we typically do not know PX,Y .

f̂ = argmin
f∈H

1
n

n∑
i=1

L(yi, f (xi))

Hypothesis space H is the space of functions f under consideration.
How complex should we allow functions f to be? If hypothesis space H is
“too large”, ERM can lead to overfitting.

f̂ (x) =

{
yi if x = xi,

0 otherwise

will have zero empirical risk, but is useless for generalization, since it has
simply “memorized” the dataset.
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ERM

Examples of Hypothesis Spaces

Say X ⊆ Rp.
all linear functions f (x) = w>x + b, parametrized by w ∈ Rp and b ∈ R
consider a specific nonlinear feature expansion ϕ : X → RD, with D > p
and use functions linear in those features: f (x) = w>ϕ(x) + b, but
nonlinear in the original inputs X , parametrized by w ∈ RD and b ∈ R. For
example, starting with X = R2, we can consider

ϕ

([
xi1
xi2

])
= [xi1, xi2, x2

i1,
√

2xi1xi2, x2
i2]>, such that the resulting function can

depend on quadratic and interaction terms as well.
In this course, we will study an important type of hypothesis space:
Reproducing Kernel Hilbert Space (RKHS).
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ERM
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Figure: Underfitting and Overfitting
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Regularisation

Regularisation

Flexible models for high-dimensional problems require many parameters.
With many parameters, learners can easily overfit.
regularisation: Limit flexibility of model to prevent overfitting.
Add term penalizing large values of parameters θ.

min
θ

R̂(fθ) + λ‖θ‖ρρ = min
θ

1
n

n∑
i=1

L(yi, fθ(xi)) + λ‖θ‖ρρ

where ρ ≥ 1, and ‖θ‖ρ = (
∑p

j=1 |θj|ρ)1/ρ is the Lρ norm of θ (also of
interest when ρ ∈ [0, 1), but is no longer a norm).
Also known as shrinkage methods—parameters are shrunk towards 0.
λ is a tuning parameter (or hyperparameter) and controls the amount
of regularisation, and resulting complexity of the model.
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Regularisation

Types of regularisation

Ridge regression / Tikhonov regularisation: ρ = 2 (Euclidean norm)
LASSO: ρ = 1 (Manhattan norm)
Sparsity-inducing regularisation: ρ ≤ 1 (nonconvex for ρ < 1)
Elastic net regularisation: mixed L1/L2 penalty:

min
θ

1
n

n∑
i=1

L(yi, fθ(xi)) + λ
[
(1− α)‖θ‖2

2 + α‖θ‖1
]

directly penalise some notion of smoothness of function f , e.g. for
X = R, the regularisation term can consist of the Sobolev norm

‖f‖2
W1 =

ˆ +∞

−∞
f (x)2dx +

ˆ +∞

−∞
f ′(x)2dx, (4)

which penalises functions with large derivative values.
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