
SC4/SM8 Advanced Topics in Statistical Machine Learning
Problem Sheet 4

1. Consider modelling the mean function m of the Gaussian process prior f ∼ GP(m, kθ) with
another GP: m ∼ GP(0, kη).

(a) Show that this is equivalent to a zero-mean GP prior on f and find its covariance function.

(b) Consider constraining the mean functions such that they follow a particular type of functions:
(i) constant m(x) ≡ b, with b ∼ N (0, σ2b ) (ii) linear m(x) = w>x+b, withw ∼ N (0, σ2wI)
and b ∼ N (0, σ2b ) independent. Find the appropriate covariance functions kη.

2. Consider a GP regression model with f ∼ GP(0, k) and yi ∼ N
(
f(xi), σ

2
)
. For training

inputs x = {xi}ni=1 and outputs y = [y1, . . . , yn]
> we denote the vector of evaluations of f

by f = [f(x1), . . . , f(xn)]
> ∈ Rn. We also have test inputs x? = {x?j}mj=1 and denote the

corresponding evaluations of f by f? = [f(x?1), . . . , f(x?m)]
> ∈ Rm.

(a) Write down the joint distribution of

 f
y
f?

 and thus compute p(f |y), p(f?|f) and p(f?|y).

(b) Verify that p(f?|y) =
∫
p(f?|f)p(f |y)df .

[Hint:
∫
N (a|Bc,D)N (c|e, F )dc = N (a|Be,D +BFB>)]

3. Consider a GP regression model in which the response variable y is d-dimensional, i.e. y ∈ Rd.
Assuming that the individual response dimensions y(1), . . . , y(d) are conditionally independent
given the input vector x with

y(j)|x ∼ N (f (j)(x), λ),

with independent priors f (j) ∼ GP(0, kθ). Derive the posterior predictive distribution

p (y?|x?, {xi, yi}ni=1) ,

for a test input vector x? and the training set {xi, yi}ni=1.

Comment on the difference between this model and d independent Gaussian process regressions.

4. We observe {(xi, yi)}ni=1, with xi ∈ Rp and yi ∈ {0, 1, 2, . . .}. Consider a Gaussian process
model with a Poisson link. Denoting f = [f(x1), . . . , f(xn)], we have a prior f ∼ N (0,K) and
the likelihood

p(yi = r|f(xi)) =
erf(xi) exp(−ef(xi))

r!
, i = 1, . . . , n, (1)

i.e. given f(xi), yi follows a Poisson distribution with rate λ(xi) = ef(xi). We will assume that
K is invertible.

(a) Compute the log-posterior log p(f |y) up to an additive constant and its gradient.

(b) Compute the Hessian and verify that it is negative definite. Briefly describe how you would
find a posterior mode f̂MAP of f .

(c) Construct a Laplace approximation to the posterior p(f |y) and compute the resulting ap-
proximation to the posterior predictive p(f(x?)|y) for a new input x?. Compare it to the
prediction p(f(x?)|f̂MAP), based on the point estimate f̂MAP of f . [Hint: you may find the
following version of Woodbury identity useful: (A−1 +D)−1 = A − A(A +D−1)−1A for
invertible matrices A and D]

1



5. Suppose you have some frequencies ω1, . . . , ωm ∼ λ to approximate a translation invariant kernel
k(x, x′) = κ

(
x−x′
γ

)
=
∫
exp

(
iω> (x− x′)

)
λ(ω)dω with random Fourier features

ϕω(x) =
1√
m

[
exp(iω>1 x), . . . , exp(iω

>
mx)

]
Assume you wish to double the lengthscale parameter γ. How would you modify the feature
representation?

You also have frequencies η1, . . . , ηm ∼ ν for another kernel l(x, x′) =
∫
exp

(
iη> (x− x′)

)
ν(η)dη.

Describe two ways to construct a feature map approximation of the product kernel k(x, x′)l(x, x′).

6. (Ex. 24) In lecture notes on Bayesian optimization, we derived the probability of improvement
and expected improvement acquisition function which ignore the noise in ỹ. Derive the corrected
versions.
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