SC4/SM8 Advanced Topics in Statistical Machine Learning
Problem Sheet 4

1. Consider modelling the mean function m of the Gaussian process prior f ~ GP(m,ky) with
another GP: m ~ GP(0, k).

(a) Show that this is equivalent to a zero-mean GP prior on f and find its covariance function.

(b) Consider constraining the mean functions such that they follow a particular type of functions:
(i) constant m(z) = b, with b ~ N(0, 02) (ii) linear m(z) = w ' x+b, with w ~ N(0,02 1)
and b ~ N (0, af) independent. Find the appropriate covariance functions k;,.

2. Consider a GP regression model with f ~ GP(0,k) and y; ~ N (f(x;),0?). For training
inputs x = {z;}; and outputs y = [y1,...,Yn] we denote the vector of evaluations of f
by f = [f(z1),...,f(zs)]T € R™ We also have test inputs x, = {z4;}72, and denote the
corresponding evaluations of f by f, = [f(z41),..., f(Zwm)]T € R™.

f
(a) Write down the joint distribution of |y | and thus compute p(f]y), p(f.|f) and p(f,|y).
£

(b) Verify that p(f,|y) = [ p(£|f)p(£f]y)df.
[Hint: [ N(a|Bc, D)N(cle, F)dc = N(a|Be,D + BFBT)]

3. Consider a GP regression model in which the response variable 3 is d-dimensional, i.e. y € R%.
Assuming that the individual response dimensions y Dy @D are conditionally independent
given the input vector x with

y D]z ~ N(f9)(2),N),

with independent priors fU) ~ GP(0, k). Derive the posterior predictive distribution

p (y*\:r*, {xiv yi}znzl) )
for a test input vector z, and the training set {z;, y; }7_;.
Comment on the difference between this model and d independent Gaussian process regressions.

4. We observe {(x;,y;)} ;. with z; € RP and y; € {0,1,2,...}. Consider a Gaussian process
model with a Poisson link. Denoting f = [f(z1),..., f(z,)], we have a prior f ~ N(0,K) and
the likelihood

erf(xi) exp(_ef(xb))

Pl =71 (@) = e S RS (M)

i.e. given f(x;), y; follows a Poisson distribution with rate \(z;) = e/(*). We will assume that
K is invertible.

(a) Compute the log-posterior log p(f|y) up to an additive constant and its gradient.

(b) Compute the Hessian and verify that it is negative definite. Briefly describe how you would
find a posterior mode fyiap of f.

(c) Construct a Laplace approximation to the posterior p(f|y) and compute the resulting ap-
proximation to the posterior predictive p(f(z,)|y) for a new input x,. Compare it to the
prediction p(f(x,)|fvap), based on the point estimate fyap of f. [Hint: you may find the
following version of Woodbury identity useful: (A= + D)™ = A — A(A+ D)~ A for
invertible matrices A and D]



5. Suppose you have some frequencies wi, . . . ,wy, ~ A to approximate a translation invariant kernel

k(xz,2') =k ("”‘Tx/) = [exp (iw" (z — 2')) M(w)dw with random Fourier features

ow(x) = T [exp(iwle), . ,exp(iw;x)]

Assume you wish to double the lengthscale parameter v. How would you modify the feature
representation?

You also have frequencies 71, . . . , 1) ~ v for another kernel I(z, z’) = [exp (in" (z — 2')) v(n)dn.
Describe two ways to construct a feature map approximation of the product kernel & (z, ')l(x, 2').

6. (Ex. 24) In lecture notes on Bayesian optimization, we derived the probability of improvement
and expected improvement acquisition function which ignore the noise in g. Derive the corrected
versions.



