
SC4/SM8 Advanced Topics in Statistical Machine Learning
Problem Sheet 2

1. Denote σ(t) = 1/(1 + e−t). Verify that the ERM corresponding to the logistic loss over the
functions of the form f(x) = w>ϕ(x) can be written as

min
w

n∑
i=1

− log σ(yiw
>ϕ(xi)) + λ‖w‖22 (1)

and is a convex optimisation problem in w. By the representer theorem, we can write w =∑n
i=1 αiϕ(xi). Show that the criterion in (1) is also convex in the dual coefficients α ∈ Rn.

[Hint: σ′(t) = σ(t)σ(−t)]

2. Let k1 and k2 be positive definite kernels on Rp. Verify that the following are also valid kernels.

[Hint: it suffices to identify the corresponding feature.]

(a) x>x′,

(b) ck1(x, x′), for c ≥ 0,

(c) f(x)k1(x, x′)f(x′) for any function f : Rp → R,

(d) k1(x, x′) + k2(x, x
′),

(e) k1(x, x′)k2(x, x′),

(f) exp (k1(x, x
′)),

(g) exp
(
− 1

2γ2
‖x− x′‖22

)
.

3. Assume that kernel k is not strictly positive definite, but that there exist {ai}ni=1 and {xi}ni=1, such
that

n∑
i=1

n∑
j=1

aiajk(xi, xj) = 0.

Show that then

f(x) =

n∑
i=1

aik(xi, x) = 0 ∀x ∈ X .

Hence conclude that the RKHS functions of the form f(x) =
∑n

i=1 aik(xi, x) have zero norm
if and only if they are identically equal to zero. [Hint: assume contrary for some x = xn+1 and
consider

∑n+1
i=1

∑n+1
j=1 aiajk(xi, xj)]

4. (One-Class SVM) A Gaussian RBF kernel on X = Rp is given by

k(x, x′) = exp

(
− 1

2σ2
∥∥x− x′∥∥2) . (2)

(i) What is k(x, x) for this kernel? What can you conclude about the norm of the features
ϕ(x) of x? What values can the angles between ϕ(x) and ϕ(x′) take? Sketch the set
{ϕ(x) : x ∈ X} as if the features lived in a 2D space.
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(ii) Let {xi}ni=1 be a set of points in X = Rp (no labels are given). The one-class Support Vector
Machine (SVM) is a method for outlier detection which in its primal form is defined as

min
w,ξ,ρ

1

2
‖w‖2 + 1

νn

n∑
i=1

ξi − ρ, subject to 〈w,ϕ(xi)〉 ≥ ρ− ξi, ξi ≥ 0,

where ν is a given SVM parameter, features ϕ(x) correspond to the RBF kernel in (2), and
ξi’s are the non-negative slack variables. The fitted hyperplane 〈w,ϕ(x)〉 − ρ in the feature
space separates the majority of points from the origin (while pushing away from the origin
as much as possible) and is used to determine “atypical” x-instances.

Using the 2D intuition from (i), sketch the corresponding hyperplane in the feature space
and annotate with ρ, w and a non-zero slack ξj for an “outlier” xj . Would it make sense to
use the one-class SVM with a linear kernel?

(iii) Write the dual form of the one-class SVM, using Lagrangian duality.
[Hint: setting to zero the derivative of the Lagrangian with respect to w should give w =∑n

i=1 αiϕ(xi), where αi ≥ 0 are the Lagrange multipliers of the constraints 〈w,ϕ(xi)〉 ≥
ρ− ξi]

5. Under the assumption that your data are centred, show that you can compute the n × n Gram
matrix K such that Kij = x>i xj using the dissimilarity matrix D where Dij = ‖xi − xj‖2.

6. Show that

MMDk (P,Q) = sup
f∈Hk: ‖f‖Hk

≤1
|EX∼P f(X)− EY∼Qf(Y )| .

7. Let L be an unnormalized Laplacian matrix of a graph with C connected components. Verify that

(a) Column vector 1 is the eigenvector of L with eigenvalue 0.

(b) L is positive semi-definite.

(c) v is an eigenvector of L corresponding to 0-eigenvalue if and only if v ∈ span{e1, . . . , eC},
where

eci =

{
1, vertex i belongs to the connected component c,
0, otherwise.

8. Verify that for a given partition C1, C2, . . . , CK and column vectors hk ∈ Rn defined as hk,i =
1√
|Ck|

1{i∈Ck}, we have

ratio-cut (C1, . . . , CK) =
K∑
k=1

h>k Lhk.
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