SC4/SM8 Advanced Topics in Statistical Machine Learning Problem Sheet 2

1. Denote $\sigma(t) = 1/(1 + e^{-t})$. Verify that the ERM corresponding to the logistic loss over the functions of the form $f(x) = w^{\top} \varphi(x)$ can be written as

$$
\min_{w} \sum_{i=1}^{n} -\log \sigma(y_i w^{\top} \varphi(x_i)) + \lambda \|w\|_2^2 \tag{1}
$$

and is a convex optimisation problem in w. By the representer theorem, we can write $w =$ $\sum_{i=1}^n \alpha_i \varphi(x_i)$. Show that the criterion in [\(1\)](#page-0-0) is also convex in the dual coefficients $\alpha \in \mathbb{R}^n$. [*Hint*: $\sigma'(t) = \sigma(t)\sigma(-t)$]

2. Let k_1 and k_2 be positive definite kernels on \mathbb{R}^p . Verify that the following are also valid kernels.

[*Hint: it suffices to identify the corresponding feature.*]

- (a) $x^{\top}x'$,
- (b) $ck_1(x, x')$, for $c \ge 0$,
- (c) $f(x)k_1(x, x')f(x')$ for any function $f : \mathbb{R}^p \to \mathbb{R}$,
- (d) $k_1(x, x') + k_2(x, x'),$
- (e) $k_1(x, x')k_2(x, x'),$
- (f) $\exp(k_1(x, x'))$,
- (g) $\exp\left(-\frac{1}{2\gamma}\right)$ $\frac{1}{2\gamma^2} \|x - x'\|_2^2.$
- 3. Assume that kernel k is not strictly positive definite, but that there exist $\{a_i\}_{i=1}^n$ and $\{x_i\}_{i=1}^n$, such that

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j k(x_i, x_j) = 0.
$$

Show that then

$$
f(x) = \sum_{i=1}^{n} a_i k(x_i, x) = 0 \quad \forall x \in \mathcal{X}.
$$

Hence conclude that the RKHS functions of the form $f(x) = \sum_{i=1}^{n} a_i k(x_i, x)$ have zero norm if and only if they are identically equal to zero. [*Hint: assume contrary for some* $x = x_{n+1}$ *and* $\textit{consider} \sum_{i=1}^{n+1} \sum_{j=1}^{n+1} a_i a_j k(x_i, x_j)]$

4. (One-Class SVM) A Gaussian RBF kernel on $\mathcal{X} = \mathbb{R}^p$ is given by

$$
k(x, x') = \exp\left(-\frac{1}{2\sigma^2} ||x - x'||^2\right).
$$
 (2)

(i) What is $k(x, x)$ for this kernel? What can you conclude about the norm of the features $\varphi(x)$ of x? What values can the angles between $\varphi(x)$ and $\varphi(x')$ take? Sketch the set $\{\varphi(x): x \in \mathcal{X}\}\$ as if the features lived in a 2D space.

(ii) Let $\{x_i\}_{i=1}^n$ be a set of points in $\mathcal{X} = \mathbb{R}^p$ (no labels are given). The one-class Support Vector Machine (SVM) is a method for outlier detection which in its primal form is defined as

$$
\min_{w,\xi,\rho} \frac{1}{2} ||w||^2 + \frac{1}{\nu n} \sum_{i=1}^n \xi_i - \rho, \quad \text{subject to } \langle w, \varphi(x_i) \rangle \ge \rho - \xi_i, \ \xi_i \ge 0,
$$

where ν is a given SVM parameter, features $\varphi(x)$ correspond to the RBF kernel in [\(2\)](#page-0-1), and ξ_i 's are the non-negative slack variables. The fitted hyperplane $\langle w, \varphi(x) \rangle - \rho$ in the feature space separates the majority of points from the origin (while pushing away from the origin as much as possible) and is used to determine "atypical" x -instances.

Using the 2D intuition from (i), sketch the corresponding hyperplane in the feature space and annotate with ρ , w and a non-zero slack ξ_i for an "outlier" x_i . Would it make sense to use the one-class SVM with a linear kernel?

- (iii) Write the dual form of the one-class SVM, using Lagrangian duality. [*Hint: setting to zero the derivative of the Lagrangian with respect to* w *should give* w = $\sum_{i=1}^n \alpha_i \varphi(x_i)$, where $\alpha_i \geq 0$ are the Lagrange multipliers of the constraints $\langle w, \varphi(x_i) \rangle \geq 0$ $\rho - \xi_i$]
- 5. Under the assumption that your data are centred, show that you can compute the $n \times n$ Gram matrix **K** such that $\mathbf{K}_{ij} = x_i^{\top} x_j$ using the dissimilarity matrix **D** where $\mathbf{D}_{ij} = ||x_i - x_j||_2$.
- 6. Show that

$$
\text{MMD}_{k}(P,Q) = \sup_{f \in \mathcal{H}_{k}: ||f||_{\mathcal{H}_{k}} \leq 1} \left| \mathbb{E}_{X \sim P} f(X) - \mathbb{E}_{Y \sim Q} f(Y) \right|.
$$

- 7. Let L be an unnormalized Laplacian matrix of a graph with C connected components. Verify that
	- (a) Column vector 1 is the eigenvector of \bf{L} with eigenvalue 0.
	- (b) L is positive semi-definite.
	- (c) v is an eigenvector of **L** corresponding to 0-eigenvalue if and only if $v \in \text{span}\{e_1, \ldots, e_C\}$, where

$$
e_{ci} = \begin{cases} 1, & \text{vertex } i \text{ belongs to the connected component } c, \\ 0, & \text{otherwise.} \end{cases}
$$

8. Verify that for a given partition C_1, C_2, \ldots, C_K and column vectors $h_k \in \mathbb{R}^n$ defined as $h_{k,i} =$ $\frac{1}{\sqrt{2}}$ $\frac{1}{|C_k|} \mathbf{1}_{\{i \in C_k\}}$, we have

ratio-cut
$$
(C_1, ..., C_K) = \sum_{k=1}^K h_k^{\top} \mathbf{L} h_k
$$
.