SC4/SM8 Advanced Topics in Statistical Machine Learning
Problem Sheet 2

1. Denote o(t) = 1/(1 + e*). Verify that the ERM corresponding to the logistic loss over the
functions of the form f(z) = w'¢(x) can be written as

mui]nz—logtf(yiw—r@(xi)) +)‘HwH% M
=1

and is a convex optimisation problem in w. By the representer theorem, we can write w =
o, cip(xi). Show that the criterion in (I) is also convex in the dual coefficients o € R”.
[Hint: o' (t) = o(t)o(—t)]

2. Let k1 and ko be positive definite kernels on RP. Verify that the following are also valid kernels.
[Hint: it suffices to identify the corresponding feature.)
(@) ="z
(b) cky(z,2'), forc >0,
(©) f(x)ki(x,2)f(2") for any function f : RP — R,
(d) ky(z,2") + ka(x,2'),
) ky(z, 2" )ko(z, ),
() exp (k1(z,2')),
@ exp (—kallz —'|3).

3. Assume that kernel & is not strictly positive definite, but that there exist {a; }} ; and {x;}!" ;, such

that o
ZZaiajk(xi,xj) =0.

i=1 j=1
Show that then
Zal zi,x) =0 VrelX.

Hence conclude that the RKHS functions of the form f(z) = > | a;k(z;, z) have zero norm

if and only if they are identically equal to zero. [Hint: assume contrary for some x = x4 and
consider E”H E”+11 aiajk(zi, ;)]

4. (One-Class SVM) A Gaussian RBF kernel on X' = RP? is given by

1
k(z,2) = exp (—W“$—xl|‘2> ) 2)

(i) What is k(x,z) for this kernel? What can you conclude about the norm of the features
@(x) of ? What values can the angles between (z) and ¢(z’) take? Sketch the set
{p(z) : = € X} as if the features lived in a 2D space.



(ii) Let {z;}-, be a set of points in X = RP (no labels are given). The one-class Support Vector
Machine (SVM) is a method for outlier detection which in its primal form is defined as

1 1 < .
min o lwll + — Zlfi —p,  subject to (w, p(x)) > p— &, & >0,
1=

where v is a given SVM parameter, features ¢(z) correspond to the RBF kernel in (2)), and
&;’s are the non-negative slack variables. The fitted hyperplane (w, ¢(x)) — p in the feature
space separates the majority of points from the origin (while pushing away from the origin
as much as possible) and is used to determine “atypical” z-instances.

Using the 2D intuition from (i), sketch the corresponding hyperplane in the feature space
and annotate with p, w and a non-zero slack &; for an “outlier” ;. Would it make sense to
use the one-class SVM with a linear kernel?

(iii) Write the dual form of the one-class SVM, using Lagrangian duality.
[Hint: setting to zero the derivative of the Lagrangian with respect to w should give w =
o cip(i), where o > 0 are the Lagrange multipliers of the constraints (w, ¢(x;)) >
p—&il

. Under the assumption that your data are centred, show that you can compute the n x n Gram

matrix K such that K;; = z z; using the dissimilarity matrix D where D;; = |lz; — 2/ 2.

. Show that

MMD (P,Q)=  sup  [Ex.pf(X)—Ey.qf(Y)l.
FEMR: 1l <1

. Let L be an unnormalized Laplacian matrix of a graph with C' connected components. Verify that
(a) Column vector 1 is the eigenvector of L with eigenvalue 0.
(b) L is positive semi-definite.

(c) v is an eigenvector of L corresponding to 0-eigenvalue if and only if v € span{ey, ..., ec},
where
{1, vertex ¢ belongs to the connected component c,
cl —

0, otherwise.

. Verify that for a given partition C1, Co, ..., Ck and column vectors hj, € R" defined as hy,; =
#1{1'60;@}’ we have

vV 1Ckl
K

ratio-cut (C1,...,Ck) = Z h;Lhk.
k=1



