SC4/SM8 Advanced Topics in Statistical Machine Learning
Problem Sheet 1

1. Suppose we do PCA, projecting each x; into z; = VlTkacz where V., = [v1, ..., vi], i.e., the first
k principal components. We can reconstruct x; from z; as &; = Vi.x2;.

(a) Show that ||Z; — Zj||2 = ||z — 2|2

(b) Show that the error in the reconstruction equals:
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where Ajy1,. .., Ay are the p—Fk smallest eigenvalues. Thus, the more principal components
we use for the reconstruction, the more accurate it is. Further, using the top % principal
components is optimal in the sense of least reconstruction error.

2. Let xy,...,x, be a dataset of p-dimensional vectors and C' = {C1,Co,...,Ck} a partition of
{1,...,n}. For each cluster C, denote nj, = |C}| and define
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T =— T; to be the within-cluster mean
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Tr=— Nl = — T; to be the overall mean
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and

K
T = Z Z (i —2)(x; —2)" to be the total deviance matrix, i.e. to the overall mean
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W = Z Z (x; — Tk)(x; — X)) to be the within-cluster deviance matrix, i.e. to the cluster means

k=1ieCy

K
B = Z ng(Zr — ) (T — 7) " to be the between-cluster deviance matrix

k=1

where T', W and B are all p x p matrices.
(a) Verify that T =W + B.
(b) Explain how the K-means objective is related to W.
(c) How does 7" change during the course of the K-means algorithm? How does B change?
3. For a given loss function L, the risk R is given by the expected loss
R(f) = E[L(Y, f(X))],

where we consider real-valued responses, i.e. f : X — R. Derive the optimal regression functions
(which minimize the associated risk) for the following losses:

(a) The squared error loss
L(Y, f(X)) = (Y = f(X))



(b) The absolute (L1) loss
L(Y, f(X)) = Y = f(X)]

(c) The T-pinball loss, 7 € (0, 1)

LY, f(X)) = 2max {7(Y — f(X)), (r = (Y = f(X))}

4. In binary classification, suppose that P(Y = —1) is very small, so that the constant classifier
f(z) = +1,Vz, has a small risk under the 0/1 loss. Consider the following loss instead:

a ifY =-1,f(X)=+1,
Laﬁ(}/vf(X)): 5 1fYZ+17f(X):_1a
0 otherwise.

Find « and § that result in the following risk

R(f)

P(f(X) = +1]Y = —1) + P(f(X) = —1]Y = +1).

5. The figure below shows a binary classification dataset and the optimal the decision boundary and
margins of a soft-margin C'-SVM for some value C'
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(1) Which of the points a,. ..,k are support vectors? Which ones are margin support vectors?

(ii) For points a, b and d what are the range of possible values for the corresponding dual vari-
ables?

6. Parameter C' in C-SVM can sometimes be hard to interpret. An alternative parametrization is

given by v-SVM:
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subject to

p = 0,
&.i 2 07
Yi (wT:ci + b) > p—&;.

(note that we now directly adjust the constraint threshold p).

Using complementary slackness, show that v is an upper bound on the proportion of non-margin
support vectors (margin errors) and a lower bound on the proportion of all support vectors with
non-zero weight (both those on the margin and margin errors). You can assume that p > 0 at the
optimum (non-zero margin).

. (Kernel Ridge Regression) Let (x;,y;)" ; be our dataset, with z; € RP and y; € R. Classical
linear regression can be formulated as empirical risk minimization, where the model is to predict
y using a class of functions f(z) = w' z, for some vector w € RP and we use the squared loss,
i.e. we minimize

(a)

(b)

(©)

m 1
R*™(w) = - Z(yZ —w'z)2.
i=1

Show that the optimal parameter is
W= (X"X)"1XTy

where X is a n X p matrix with ith row given xiT, and y is a n X 1 matrix with ith entry y;.
Consider regularizing our empirical risk by incorporating an Ly regularizer. That is, find w
minimizing
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Show that the optimal parameter is given by the ridge regression estimator

= X"X+A)"XTy

Suppose that we now wish to introduce nonlinearities into the model, by transforming = —
©(z). Show how this transformation may be achieved using the kernel trick. That is, let ®
be a matrix with ith row given by ¢(z;)". The optimal parameters < would then be given
by (previous part):

W= (2 '®+N) '@y

Can we make predictions without computing w?

First, express the predicted y values on the training set, ®w, only in terms of y and the Gram
matrix K = ®® ', with K;; = ¢(z;) "¢(z;) = k(z;, ;) where k is some kernel function.
Then, compute an expression for the value of y, predicted by the model at an unseen test
Vector .

[Hint: You will find the Woodbury matrix inversion formula useful:
(A+UBV) t=A"'— Al UuB+vAaAtu)ylva?

where A and B are square invertible matrices of size n X n and p X p respectively, and U
andV are n X p and p X n rectangular matrices.]



