
SC4/SM8 Advanced Topics in Statistical Machine Learning
Problem Sheet 1

1. Suppose we do PCA, projecting each xi into zi = V >1:kxi where V1:k = [v1, . . . , vk], i.e., the first
k principal components. We can reconstruct xi from zi as x̂i = V1:kzi.

(a) Show that ‖x̂i − x̂j‖2 = ‖zi − zj‖2.

(b) Show that the error in the reconstruction equals:

n∑
i=1

‖xi − x̂i‖22 = (n− 1)

p∑
j=k+1

λj

where λk+1, . . . , λp are the p−k smallest eigenvalues. Thus, the more principal components
we use for the reconstruction, the more accurate it is. Further, using the top k principal
components is optimal in the sense of least reconstruction error.

2. Let x1, . . . , xn be a dataset of p-dimensional vectors and C = {C1, C2, . . . , CK} a partition of
{1, . . . , n}. For each cluster Ck, denote nk = |Ck| and define

x̄k =
1

nk

∑
i∈Ck

xi to be the within-cluster mean

x̄ =
1

n

K∑
k=1

nkx̄k =
1

n

n∑
i=1

xi to be the overall mean

and

T =
K∑
k=1

∑
i∈Ck

(xi − x̄)(xi − x̄)> to be the total deviance matrix, i.e. to the overall mean

W =
K∑
k=1

∑
i∈Ck

(xi − x̄k)(xi − x̄k)> to be the within-cluster deviance matrix, i.e. to the cluster means

B =
K∑
k=1

nk(x̄k − x̄)(x̄k − x̄)> to be the between-cluster deviance matrix

where T,W and B are all p× p matrices.

(a) Verify that T = W +B.

(b) Explain how the K-means objective is related to W .

(c) How does T change during the course of the K-means algorithm? How does B change?

3. For a given loss function L, the risk R is given by the expected loss

R(f) = E [L(Y, f(X))] ,

where we consider real-valued responses, i.e. f : X → R. Derive the optimal regression functions
(which minimize the associated risk) for the following losses:

(a) The squared error loss
L(Y, f(X)) = (Y − f(X))2
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(b) The absolute (L1) loss
L(Y, f(X)) = |Y − f(X)|

(c) The τ -pinball loss, τ ∈ (0, 1)

L(Y, f(X)) = 2 max {τ(Y − f(X)), (τ − 1)(Y − f(X))}

4. In binary classification, suppose that P(Y = −1) is very small, so that the constant classifier
f(x) = +1, ∀x, has a small risk under the 0/1 loss. Consider the following loss instead:

Lα,β(Y, f(X)) =


α if Y = −1, f(X) = +1,

β if Y = +1, f(X) = −1,

0 otherwise.

Find α and β that result in the following risk

R(f) = P(f(X) = +1|Y = −1) + P(f(X) = −1|Y = +1).

5. The figure below shows a binary classification dataset and the optimal the decision boundary and
margins of a soft-margin C-SVM for some value C.
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(i) Which of the points a,. . . ,k are support vectors? Which ones are margin support vectors?

(ii) For points a, b and d what are the range of possible values for the corresponding dual vari-
ables?

6. Parameter C in C-SVM can sometimes be hard to interpret. An alternative parametrization is
given by ν-SVM:

min
w,b,ρ,ξ

(
1

2
‖w‖2 − νρ+

1

n

n∑
i=1

ξi

)
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subject to

ρ ≥ 0,

ξi ≥ 0,

yi

(
w>xi + b

)
≥ ρ− ξi.

(note that we now directly adjust the constraint threshold ρ).

Using complementary slackness, show that ν is an upper bound on the proportion of non-margin
support vectors (margin errors) and a lower bound on the proportion of all support vectors with
non-zero weight (both those on the margin and margin errors). You can assume that ρ > 0 at the
optimum (non-zero margin).

7. (Kernel Ridge Regression) Let (xi, yi)
n
i=1 be our dataset, with xi ∈ Rp and yi ∈ R. Classical

linear regression can be formulated as empirical risk minimization, where the model is to predict
y using a class of functions f(x) = w>x, for some vector w ∈ Rp and we use the squared loss,
i.e. we minimize

Remp(w) =
1

n

n∑
i=1

(yi − w>xi)2.

(a) Show that the optimal parameter is

ŵ = (X>X)−1X>y

where X is a n× p matrix with ith row given x>i , and y is a n× 1 matrix with ith entry yi.

(b) Consider regularizing our empirical risk by incorporating an L2 regularizer. That is, find w
minimizing

1

n

n∑
i=1

(yi − w>xi)2 +
λ

n
‖w‖22

Show that the optimal parameter is given by the ridge regression estimator

ŵ = (X>X + λI)−1X>y

(c) Suppose that we now wish to introduce nonlinearities into the model, by transforming x 7→
ϕ(x). Show how this transformation may be achieved using the kernel trick. That is, let Φ
be a matrix with ith row given by ϕ(xi)

>. The optimal parameters ŵ would then be given
by (previous part):

ŵ = (Φ>Φ + λI)−1Φ>y.

Can we make predictions without computing ŵ?

First, express the predicted y values on the training set, Φŵ, only in terms of y and the Gram
matrix K = ΦΦ>, with Kij = ϕ(xi)

>ϕ(xj) = k(xi, xj) where k is some kernel function.
Then, compute an expression for the value of y? predicted by the model at an unseen test
vector x?.

[Hint: You will find the Woodbury matrix inversion formula useful:

(A+ UBV )−1 = A−1 −A−1U(B−1 + V A−1U)−1V A−1

where A and B are square invertible matrices of size n × n and p × p respectively, and U
and V are n× p and p× n rectangular matrices.]
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