SC4/SM8 Advanced Topics in Statistical Machine Learning Collaborative Filtering

Dino Sejdinovic Department of Statistics Oxford

Slides and other materials available at:

http://www.stats.ox.ac.uk/~sejdinov/atsml/

Ratings and Recommendations

movie \ user	Alice	Bob	Chuck	Dan	Eve
Happy Gilmore	?	2	5	1	4
Click	1	?	4	?	?
Ex Machina	?	4	?	?	2
Blade Runner	5	?	1	?	?
The Matrix	5	5	?	?	4

- Data: a partially observed matrix Y ∈ ℝ^{n1×n2} where y_{i,j} is the rating (e.g. between 1 and 5) of item *i* by user *j*.
- Most entries will be missing/unknown since most users will not have rated most movies.
- **Exposures**: $e_{i,j} = 1$ if the user *j* has rated movie *i* and $e_{i,j} = 0$ otherwise.

Features of items and users Content based recommendation

- each item *i* has a feature vector $\phi_i = [\phi_{i1}, \dots, \phi_{ik}]^\top \in \mathbb{R}^k$
- If ϕ_i observed, simply solve one linear model per user:

$$\min_{\psi_j} \sum_{i: e_{i,j}=1} (y_{i,j} - \phi_i^\top \psi_j)^2 + \lambda_{\psi} \|\psi_j\|_2^2, \quad j = 1, \dots, n_2.$$

- ψ_j is the corresponding vector of coefficients in the linear model corresponding to user *j* can be treated as a feature (**preference**) vector of user *j*.
- If ψ_j observed, but ϕ_i is hidden, solve one linear model per item:

$$\min_{\phi_i} \sum_{j: e_{i,j}=1} (y_{i,j} - \phi_i^\top \psi_j)^2 + \lambda_{\phi} \|\phi_i\|_2^2, \quad i = 1, \dots, n_1.$$

Alternating linear regressions

- Assume neither features are observed.
- Formulate recommendations solely based on the ratings matrix: alternating regression model.
- Often simply use stochastic gradient descent (SGD) updates: as soon as new rating becomes available:

$$\begin{aligned} \phi_i \leftarrow & (1 - \epsilon_t \lambda_\phi) \phi_i + \epsilon_t \psi_j (y_{ij} - \phi_i^\top \psi_j), \\ \psi_j \leftarrow & (1 - \epsilon_t \lambda_\psi) \psi_j + \epsilon_t \phi_i (y_{ij} - \phi_i^\top \psi_j). \end{aligned}$$

- **Collaborative**: predictions for each user can potentially depend on ratings of all other users.
- Potentially results in features/preferences which do not have a readily interpretable meaning.

Probabilistic Matrix Factorization

Introduced in [Salakhutdinov and Mnih, 2007], the generative model corresponding to CF can be described as follows:

- For each movie *i* = 1,..., *n*₁, sample independently the latent vector of features φ_i ~ N(0, σ²_φI_k) from a *k*-dimensional normal distribution,
- For each user *j* = 1,..., *n*₂, sample independently the latent vector of preferences ψ_j ~ N(0, σ²_ψ*I*_k) from a *k*-dimensional normal distribution,
- For each movie-user pair (*i*, *j*), sample e_{i,j} ~ Bernoulli(p) independently and if e_{i,j} = 1, sample y_{i,j}|φ_i, ψ_j ~ N(φ_i^Tψ_j, σ_y²).

Beyond Gaussian "ratings" likelihood

Binary ratings:

- Logistic link: $p(y_{i,j}|\phi_i,\psi_j) \sim \sigma(y_{i,j}\phi_i^{\top}\psi_j)$
- Probit link: $p(y_{i,j}|\phi_i,\psi_j) \sim \Phi(y_{i,j}\phi_i^{\top}\psi_j)$

"Count" ratings:

• Poisson link: $y_{i,j} \sim \text{Poisson}(\exp(\phi_i^\top \psi_j))$