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.
Mixture Models

@ Mixture models suppose that our dataset X was created by sampling iid from K
distinct populations (called mixture components).

@ Samples in population k can be modelled using a distribution F,,, with density
S (x|ux), where py is the model parameter for the k-th component. For a concrete
example, consider a Gaussian with unknown mean ; and known diagonal
covariance o”1,

2,—-2 1 2
o) = 2 exp (= ozl = ).
@ Generative model: fori =1,2,...,n:
o First determine the assignment variable independently for each data item i:
Z; ~ Discrete(m, . .., Tk) e, P(Zi=k) =m
where mixing proportions are m, > 0 for each k and >f_ m = 1.

o Given the assignment Z; = k, then X; = (Xl.('), e ,X,.(’”)T is sampled
(independently) from the corresponding k-th component:

Xi|Zi = k ~ f(x|pu)

@ We observe X; = x; for each i but not Z’s (latent variables), and would like to
infer the parameters {1 }5_, and {m }&_, (o> can also be estimated).
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.
Mixture Models

@ Unknowns to learn given data are

o Parameters: 0 = (m, qi)k_,, where 7y, ..., g € [0,1], pu1, . .., ux € R?, and
o Latent variables: z, ..., z..

@ The joint probability over all cluster indicator variables {Z;} are:
n K
1(zi=k
p Zl i— 1 H 7('1' H H ﬂ'k ( )
i=1 k=1
@ The joint density at observations X; = x; given Z; = z; are:

n K

px((x)imy [(Zi = 2)izy) = Hf(ximzi) =TT T Geiliua)* ="

i=1 k=1

Department of Statistics, Oxford SC4/SM8 ATSML, HT2018 5/36



Mixture Models: Joint pmf/pdf of observed and latent
variables

@ Unknowns to learn given data are

o Parameters: 0 = (m, pu)f_,, where y,..., 7 € [0,1], pu1, . .., ux € R?, and
o Latent variables: zi, .. ., z,..

@ The joint probability mass function/density’ is:

n

K
pxz((xiszi)i=y) = pz((z)i=)px ((x)im [(Zi = T T G il ) ) =2
i=1 k=1
@ And the marginal density of x; (resulting model on the observed data) is:

K K

p(xi) = Z i =J,Xi) Z (i 147)-

j=1 j=1
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Probabilistic Unsupervised Learning Mixture Models

Mixture Models: Gaussian Mixtures with Unequal
Covariances

figure from Murphy, 2012, Ch. 11.
Here 60 = (m, Ek),f:l are all the model parametes and

£l Z0) = @m) e (=5 ) T ).

p(x) = > mf (] (o )

k=1
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Mixture Models: Responsibility

@ Suppose we know the parameters 0 = (my, pu)K_;.
@ Z; is a random variable and its conditional distribution given data set X is:
p(Zi = k,x;) if (i )

Qi := p(Z;i = klx;) = p(x) - Zle mif (x| 1)

@ The conditional probability Q; is called the responsibility of mixture
component k for data point x;.

@ These conditionals softly partitions the dataset among the
components: 5, Oy = 1.
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Mixture Models: Maximum Likehood

@ How can we learn about the parameters 6 = (my, i )X_, from data?

@ Standard statistical methodology asks for the maximum likelihood
estimator (MLE).

@ The goal is to maximise the marginal probability of the data over the
parameters

n

O = argmaxp(X|9) = argmax HP il (7, p)i=1)

(ﬂ'k /U\)A 1i=1

= argmax H Zﬂ'kf (x| o)

(Tesb) by =1 k=1

= argmax Zlogzmj (x| o) -

(T m)fy =1 k=1

::Z((‘/rk,p«k);(K:])
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Mixture Models: Maximum Likehood

@ Marginal log-likelihood:

O((mas pa)izy) = log p(X| (i, )iy Zlomef (x| paxc)

@ The gradient w.r.t. py:

n

Vo (e, ) )) = kalfi
sl (s b)) ;Zleﬁjf(xi‘ﬂj) i 10g £ (xi 1)

— Z OV, log f (x| ).

i=1

@ Difficult to solve, as Q. depends implicitly on fi.
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Likelihood Surface for a Simple Example

If latent variables z;’s were all observed, we would have a unimodal likelihood
surface but when we marginalise out the latents, the likelihood surface
becomes multimodal: no unique MLE.

35 195

30

25

20

(left) n = 200 data points from a mixture of two 1D Gaussians with

T = Ty = 0.5, o =5and ny = 10,/1,2 = —10.

(right) Observed data log likelihood surface ¢ (11, i12), all the other parameters
being assumed known.
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Mixture Models: Maximum Likehood

Recall we would like to solve:

Vﬂkf((ﬂlﬁ L) k D Z OV log f(xi|p) =

i=1

@ What if we ignore the dependence of Q. on the parameters?
@ Taking the mixture of Gaussian with covariance o*/ as example,

1
ZQ,M( 2 rog(2r0?) ~ 3zl - )

1 1 n i
= Z Qu(xi — ) = — <Z Quxi — e (X0, Qik)> -0
=l i=1

MML’7 Zz 1 Qi
¢ 21:1 Qlk
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Mixture Models: Maximum Likehood

@ The estimate is a weighted average of data points, where the estimated
mean of cluster k uses its responsibilities to data points as weights.

M7 _ >t Qixi
k = 5 -
> Qi

@ Makes sense: Suppose we knew that data point x; came from population
zi. Then Q;;, = 1 and Qy = 0 for k # z; and:

ML? _ Zi:z,':k Xi

S S avg{x; : z; = k}

@ Our best guess of the originating population is given by Q.
@ Soft K-Means algorithm?
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Mixture Models: Maximum Likehood

@ Gradient w.r.t. mixing proportion m; (including a Lagrange multiplier
A (X, m — 1) to enforce constraint 3, m, = 1).

Ve (e<<m,uk>f=l> =~ A - 1)
_ Z x1|uk

i=1 j lﬂjf(xlll"])

Z%—)\ 0o = TkO(iQik
i=1

ShY S >y Qi
? i
Note: E E QikZE E Ou aML? — L=l 2k
k=1 i=1 i=1 k=1 n
N——
=1

@ Again makes sense: the estimate is simply (our best guess of) the
proportion of data points coming from population k.
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Mixture Models: The EM Algorithm

@ Putting all the derivations together, we get an iterative algorithm for

learning about the unknowns in the mixture model.

o Start with some initial parameters (z(”), ()& .
o lteratefort=1,2,...:
o Expectation Step:

—1 —1
Vil )

0 .=
ik " 1 1
z,’ﬂ V()
o Maximization Step:
’]T(’) Zl 1 Q(t) () _ Zl 1 Qlk x’
k k n
n Zl:l Qz

@ Will the algorithm converge?
@ What does it converge to?
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Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians

An example with 3 clusters.
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Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians

After 1st E and M step.
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Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians

After 2nd E and M step.
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Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians

After 3rd E and M step.

Iteration 3
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Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians

After 4th E and M step.

Iteration 4
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Probabilistic Unsupervised Learning Mixture Models

Example: Mixture of 3 Gaussians

After 5th E and M step.

Iteration 5
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Probabilistic Unsupervised Learning EM Algorithm
EM Algorithm

@ In a maximum likelihood framework, the objective function is the log likelihood,

00) = log > mf (xilpue)
k=1

i=1
Direct maximisation is not feasible.
@ Consider another objective function F (0, ¢), where g is any probability distribution
on latent variables z, such that:
F(0,q) < £(0) for all 9, g,
1

max (0, ) = £(6)

F(0,q) is a lower bound on the log likelihood.

@ We can construct an alternating maximisation algorithm as follows:
Fort=1,2... until convergence:

¢ = argmax 707" q)
q

0" := argmax F(6,4")
0
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Probabilistic Unsupervised Learning EM Algorithm
EM Algorithm

@ The lower bound we use is called the variational free energy.
@ g is a probability mass function for a distribution over z := (z;)7_,.

F(0,q) =E,[logp(X,z|0) —log q(z)]

[(ZZ = k) (log 7 + logf(x,Iuk))> - IOgQ(Z)l
:Zq l( Z 1(z; = k) (log ¢ + logf(ximk))) - IOgCI(Z)l

i=1 k=1

Lemma
F(0,q) < £(9) for all ¢ and for all 6. J
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EM Algorithm - Solving for ¢

Lemma
F(6,q) = L(0) for q(z) = p(z|x, ). J

In combination with previous Lemma, this implies that ¢(z) = p(z|x, 6)
maximizes F (6, q) for fixed 0, i.e., the optimal ¢* is simply the conditional
distribution given the data and that fixed 6.

@ In mixture model,

q* (Z) _ p(Z, X‘a) Hzr‘l:] sz(xi‘ﬂzi) o - sz(xi“l‘&')

p(x0) 3o, Ty myf(alpy) b 2o i (il ae)
= [[r(zilx:, 0).
i=1
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EM Algorithm - Solving for 6

@ Setting derivative with respect to . to 0,

n

Vi F(0,9) = > q(2) Y 1z = k)V,, logf (xil )

i=1

= q(zi=k)Vy logf(xi|m) =0
i=1

@ This equation can be solved quite easily. E.g., for mixture of Gaussians,

* Z?:] Q(Zi = k)xi
He = n _
> i1 4(zi = k)

@ If it cannot be solved exactly, we can use gradient ascent algorithm
(generalized EM):

wy = i+« Zq(Z,‘ = k)vuk log f (2xi g )

i=1

@ Similar derivation for optimal 7, as before.
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Probabilistic Unsupervised Learning EM Algorithm
EM Algorithm

@ Start with some initial parameters (7", ")k .
o lterateforr=1,2,...
o Expectation Step:

ﬂ,ft_l)f(x,'\ugt_l))
—1 —1
S T Gl )

4" (z = k) = p(zi = k|x;,07") =

o Maximization Step:

0 _ 2”@ =k 0 _ X1 4@ = R,
¢ n CYLia @@=k
Theorem
EM algorithm does not decrease the log likelihood. J

Proof: (00~ 1) = F(0U~1,¢") < F(0W,4") < F(0U,q"D) = £(0).
@ Additional assumption, that V27 (6, ¢() are negative definite with
eigenvalues < —e < 0, implies that /() — #* where #* is a local MLE.
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Notes on Probabilistic Approach and EM Algorithm

Some good things:

@ Guaranteed convergence to locally optimal parameters.

@ Formal reasoning of uncertainties, using both Bayes Theorem and
maximum likelihood theory.

@ Rich language of probability theory to express a wide range of generative
models, and straightforward derivation of algorithms for ML estimation.
Some bad things:
@ Can get stuck in local minima so multiple starts are recommended.
@ Slower and more expensive than K-means.

@ Choice of K still problematic, but rich array of methods for model
selection comes to rescue.
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Flexible Gaussian Mixture Models

@ We can allow each cluster to have its own mean and covariance structure

to enable greater flexibility in the model.
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Probabilistic PCA

@ A probabilistic model related to PCA (also known as sensible PCA) has
the following generative model: fori = 1,2,...,n:
o Letk < n,p be given.
o Let Y; be a (latent) k-dimensional normally distributed random variable with 0
mean and identity covariance:

Yi ~ N(0,I)

o We model the distribution of the ith data point given Y; as a p-dimensional
normal:
X; ~ N (u+ LY:, 0°I)

where the parameters are a vector ;. € R”, a matrix L € R?** and ¢* > 0.

Tipping and Bishop, 1999
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Probabilistic PCA: EM vs MLE

@ EM algorithm can be used for ML estimation (lecture notes), but PPCA

can more directly give an MLE (which is not unique).

@ Let A\ > --- > ), be the eigenvalues of the sample covariance and
Vi € RP*K the top k eigenvectors as before. Let Q € R¥** be any
orthogonal matrix. Then an MLE is given by:

MLE _ - MLE
w =X (02) = %k Z;:k+1 Aj

IME — v diag((M — (M) L, (v — (02)ME) 0

@ However, EM can be faster, can be implemented online, can handle
missing data and can be extended to more complicated models!

Tipping and Bishop, 1999
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Probabilistic PCA

PPCA latents

principal sub
L principal subspace

4
4

figures from M. Sahani’s UCL course on Unsupervised Learning
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Probabilistic PCA

PPCA latents
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figures from M. Sahani’s UCL course on Unsupervised Learning
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Probabilistic PCA

PPCA latents
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Probabilistic PCA

PPCA latents
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Mixture of Probabilistic PCAs

@ We have learnt two types of unsupervised learning techniques:

e Dimensionality reduction, e.g. PCA, MDS, Isomap.
o Clustering, e.g. K-means, linkage and mixture models.

@ Probabilistic models allow us to construct more complex models from
simpler pieces.

@ Mixture of probabilistic PCAs allows both clustering and dimensionality
reduction at the same time.

Z; ~ Discrete(ry, . .., Tg)
Y; ~ N(0,1,)
Xi|Zi =k, Yi = yi ~ N (g + Ly;, 0°1,)

@ Allows flexible modelling of covariance structure without using too many
parameters.

Ghahramani and Hinton 1996


http://mlg.eng.cam.ac.uk/zoubin/papers/tr-96-1.pdf

Further reading

@ Hastie et al, 8.5
@ Bishop, Chapter 9
@ Roweis and Ghahramani: A unifying review of linear Gaussian models|
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