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Spectral Clustering

Nonlinear cluster structures

" K-means on two circles " Spectral clustering on two circles
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K-means algorithm will often fail when applied to data with elongated or
non-convex cluster structures.
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Clustering and Graph Cuts

@ Construct a weighted undirected similarity graph G = ({1,...,n}, W),
where vertices correspond to data items and W is the matrix of edge
weights corresponding to pairwise item similarities.

@ Partition the graph vertices into C, C,, .. ., Cx to minimize the graph cut.

@ The unnormalized graph cut across clusters is given by

K
cut(Cy,...,Cx) =y _ cut(Cy, Ci),

where Cy is the complement of C; and cut(A, B) = 3=, ;c wij is the sum
of the weights separating vertex subset A from the vertex subset B, where
A and B are disjoint.

@ Typically results with singleton clusters, so one needs to balance the cuts
by the cluster sizes in the partition. One approach is to consider the
notion of “ratio cut"

K
_ cut(Cr, Cr)
ratio-cut (Cy, .. ., E ‘Ck .
k
k=1
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Graph Laplacian

The (unnormalized) Laplacian of a graph G = ({1,...,n},W)isann xn
matrix given by
L=D-W,

where D is a diagonal matrix with D;; = deg(i), and deg(i) denotes the degree
of vertex i defined as

deg(i) = Y wj.
=1

@ Laplacian always has the column vector 1 as an eigenvector with
eigenvalue 0 (since all rows sum to zero)

@ (exercise) Laplacian is a positive semi-definite matrix so all the
eigenvalues are non-negative.
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Laplacian and Ratio Cuts

Lemma
For a given partition Cy, Cs, . . ., Cx define the column vectors h, € R" as

1
i = ——=1gecy-
\/@ {ieC}
Then
K
ratio-cut (Cy,...,Cx) = »  h{ Lhy. (1)
k=1

To minimize the ratio cut, search for orthonormal vectors &, with entries either
0 or 1/4/|Cx| which minimize the RHS in (1).
Equivalent to integer programming so computationally hard.
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Laplacian and Ratio Cuts

Lemma
For a given partition Cy, Cs, . . ., Cx define the column vectors h, € R" as

1
hii = ——=1{iecyy-
V| Cil '
Then

K
ratio-cut (Cy,...,Cx) = »  h{ Lhy. (1)
k=1

Relaxation: Search for any collection of orthonormal vectors 7, in R” that
minimize RHS in (1) — which corresponds to the eigendecomposition of the
Laplacian.
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Laplacian and Connected Components

If the original graph is disconnected, in addition to 1, there would be other
0-eigenvectors of L, corresponding to the indicators of the connected
components of the graph (Murphy — Theorem 25.4.1).
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Laplacian and Connected Components

Spectral clustering treats the constructed graph as a “small perturbation” of a
disconnected graph.
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Eigenvectors as dimensionality reduction

Spectral Clustering. Eigendecompose L and take the K eigenvectors
corresponding to the K smallest eigenvalues — this gives a new "data matrix"

Z = [uy,... ug] € R™K

on which we can apply a more conventional clustering algorithm, such as
K-means.
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Further reading

@ von Luxburg: Tutorial on Spectral Clustering
@ Clustering on scikit-learn
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https://arxiv.org/abs/0711.0189
http://scikit-learn.org/stable/modules/clustering.html

Laplacian matrices for Manifold Regularization

@ Manifold regularization [Belkin et al, 2006] is useful in semisupervised learning.
Assuming we have a labelled set of examples {(x;, y:)/—;} and an unlabelled set
of inputs {x,+:}i—,, we form an (n + u) x (n + u) Laplacian matrix L and consider
the ERM with an additional (intrinsic) regularizer

1 n+u n+u
f'Lf= 3 SO wilf(n) = f(x)?
i=1 j=1
for the vector f = [f(x1),...,f(x.+.)] " of function values on all inputs

L1 ol 12 T
min - ;L(yz,f(xx)) + AlFI3 + AufTLE

@ The additional regularizer penalizes large differences between function values at
the neighbouring vertices.
@ If H = H, is an RKHS for a kernel k, representer theorem still applies, but with the
solution spanned using all inputs:
n—+u

f* = E oz,'k(xi, )
i=1
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