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Dual C-SVM

maximize
n∑

i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj,

subject to the constraints

0 ≤ αi ≤ C,
n∑

i=1

yiαi = 0

From α, obtain the hyperplane with

w =

n∑
i=1

αiyixi.

Offset b can be obtained from any of the margin SVs (for which αi ∈ (0,C)):
1 = yi

(
w>xi + b

)
.
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Dual form and Inner Products

We have stumbled across something quite interesting. Dual program

max
α

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjx>i xj subject to

{∑n
i=1 αiyi = 0

0 � α � C

only depends on inputs xi through their inner products (similarities) with other
inputs.
Decision function

f (x) = sign(w>x + b) = sign(

n∑
i=1

αiyix>i x + b)

also depends only on the similarity of a test point x to the training points xi.
Thus, we do not need explicit inputs - just their pairwise similarities.
Key property: even if p > n, it is still the case that w ∈ span {xi : i = 1, . . . , n}
(normal vector of the hyperplane lives in the subspace spanned by the
datapoints).
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Beyond Linear Classifiers
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No linear classifier separates red from blue.
Linear separation after mapping to a higher dimensional feature space:

R2 3
(

x(1) x(2)
)>

= x 7→ ϕ(x) =
(

x(1) x(2) x(1)x(2)
)> ∈ R3
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Non-Linear SVM
Consider the dual C-SVM with explicit non-linear transformation
x 7→ ϕ(x):

max
α

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjϕ(xi)
>ϕ(xj) subject to

{∑n
i=1 αiyi = 0

0 � α � C
Suppose p = 2, and we would like to introduce quadratic non-linearities,

ϕ(x) =
(

1,
√

2x(1),
√

2x(2),
√

2x(1)x(2),
(

x(1)
)2
,
(

x(2)
)2
)>

.

Then

ϕ(xi)
>ϕ(xj) = 1 + 2x(1)

i x(1)
j + 2x(2)

i x(2)
j + 2x(1)

i x(2)
i x(1)

j x(2)
j

+
(

x(1)
i

)2 (
x(1)

j

)2
+
(

x(2)
i

)2 (
x(2)

j

)2
= (1 + x>i xj)

2

Since only inner products are needed, non-linear transform need not be
computed explicitly - inner product between features can be a simple
function (kernel) of xi and xj: k(xi, xj) = ϕ(xi)

>ϕ(xj) = (1 + x>i xj)
2

d-order interactions can be implemented by k(xi, xj) = (1 + x>i xj)
d

(polynomial kernel). Never need to compute explicit feature expansion
of dimension

(p+d
d

)
where this inner product happens!
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Kernel SVM: Kernel trick

Kernel SVM with k(xi, xj). Non-linear transformation x 7→ ϕ(x) still present,
but implicit (coordinates of the vector ϕ(x) are never computed).

max
α

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjk(xi, xj) subject to

{∑n
i=1 αiyi = 0

0 � α � C

Prediction? f (x) = sign
(
w>ϕ(x) + b

)
, where w =

∑n
i=1 αiyiϕ(xi) and offset

b obtained from a margin support vector xj with αj ∈ (0,C).
No need to compute w either! Just need

w>ϕ(x) =
n∑

i=1

αiyiϕ(xi)
>ϕ(x) =

n∑
i=1

αiyik(xi, x).

Get offset from

b = yj − w>ϕ(xj) = yj −
n∑

i=1

αiyik(xi, xj)

for any margin support-vector xj (αj ∈ (0,C)).
Fitted a separating hyperplane in a high-dimensional feature space
without ever mapping explicitly to that space.
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Kernel trick in general

In a learning algorithm, if only inner products x>i xj are explicitly used,
rather than data items xi, xj directly, we can replace them with a kernel
function k(xi, xj) = 〈ϕ(xi), ϕ(xj)〉, where ϕ(x) could be nonlinear, high-
and potentially infinite-dimensional features of the original data.

Kernel ridge regression
Kernel logistic regression
Kernel PCA, CCA, ICA
Kernel K-means
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Kernel and its RKHS

Kernel Methods and
Reproducing Kernel Hilbert Spaces
slides based on Arthur Gretton’s Reproducing kernel Hilbert spaces in Machine
Learning course
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Kernel and its RKHS

Kernel: an inner product between feature maps

Definition (kernel)

Let X be a non-empty set. A function k : X × X → R is a kernel if there
exists a Hilbert space and a map ϕ : X → H such that ∀x, x′ ∈ X ,

k(x, x′) := 〈ϕ(x), ϕ(x′)〉H .

Almost no conditions on X (eg, X itself need not have an inner product,
e.g., documents).
Think of kernel as a similarity measure between features

What are some simple kernels? E.g., for text documents? For images?

A single kernel can correspond to multiple sets of underlying features.

ϕ1(x) = x and ϕ2(x) =
(

x/
√

2 x/
√

2
)>
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Kernel and its RKHS

Positive semidefinite functions

If we are given a “measure of similarity” with two arguments, k(x, x′), how can
we determine if it is a valid kernel?

1 Find a feature map?
Sometimes not obvious (especially if the feature vector is infinite
dimensional)

2 A simpler direct property of the function: positive semidefiniteness.
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Kernel and its RKHS

Positive semidefinite functions

Definition (Positive semidefinite functions)

A symmetric function κ : X × X → R is positive semidefinite if
∀n ≥ 1, ∀(a1, . . . an) ∈ Rn, ∀(x1, . . . , xn) ∈ X n,

n∑
i=1

n∑
j=1

aiajκ(xi, xj) ≥ 0.

Kernel k(x, y) := 〈ϕ(x), ϕ(y)〉H for a Hilbert space H is positive
semidefinite.

n∑
i=1

n∑
j=1

aiajk(xi, xj) =

n∑
i=1

n∑
j=1

〈aiϕ(xi), ajϕ(xj)〉H

=

∥∥∥∥∥
n∑

i=1

aiϕ(xi)

∥∥∥∥∥
2

H

≥ 0.
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Kernel and its RKHS

Positive semidefinite functions are kernels

Moore-Aronszajn Theorem

Every positive semidefinite function is a kernel for some Hilbert space H.

H is usually thought of as a space of functions
(Reproducing kernel Hilbert space - RKHS)

Gaussian RBF kernel k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖2
)

has an infinite-

dimensional H with elements h(x) =
∑m

i=1 αik(xi, x) and their pointwise limits.
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Kernel and its RKHS

Reproducing kernel

Definition (Reproducing kernel)

Let H be a Hilbert space of functions f : X → R defined on a non-empty set
X . A function k : X ×X → R is called a reproducing kernel of H if it satisfies

∀x ∈ X , kx = k(·, x) ∈ H,
∀x ∈ X , ∀f ∈ H, 〈f , k(·, x)〉H = f (x) (the reproducing property).

In particular, for any x, y ∈ X , k(x, y) = 〈k (·, y) , k (·, x)〉H = 〈k (·, x) , k (·, y)〉H.

Can forget all about ϕ(x) and just treat k(·, x) as a feature of x (it is a perfectly
valid Hilbert-space valued feature)!
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Kernel and its RKHS

RKHS

Definition (Reproducing kernel Hilbert space)

A Hilbert space H of functions f : X → R, defined on a non-empty set X is
said to be a Reproducing Kernel Hilbert Space (RKHS) if evaluation
functionals δx : H → R, δxf = f (x) are continuous ∀x ∈ X .

Theorem (Norm convergence implies pointwise convergence)

If limn→∞ ‖fn − f‖H = 0, then limn→∞ fn(x) = f (x), ∀x ∈ X .

If two functions f , g ∈ H are close in the norm of H, then f (x) and g(x) are
close for all x ∈ X
This is a property of particularly “nice” functional spaces. For example,
does not hold on spaces endowed with L2 norm: xn on [0, 1] converges to
0 in L2 but not pointwise.
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Kernel and its RKHS

Back to SVMs

Maximum margin classifier in RKHS: Looking for a decision function of form
sign(f (x)) where f ∈ Hk. Because we are in an RKHS, f (x) = 〈f , k(·, x)〉Hk .

min
f∈Hk

(
1
2
‖f‖2
Hk

+ C
n∑

i=1

(
1− yi 〈f , k(·, xi)〉Hk

)
+

)
for the RKHS H with kernel k(x, x′). Maximizing the margin equivalent to
minimizing ‖f‖2

H: for many RKHSs a smoothness constraint on function f
(more about this later).
Why can we solve this infinite-dimensional optimization problem? Because we
know that f ∈ span {k(·, xi) : i = 1, . . . , n} – Representer Theorem.
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Representer Theorem

Representer Theorem
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Representer Theorem

Representer theorem

Standard supervised learning setup: we are given a set of paired
observations (x1, y1), . . . (xn, yn).
Goal: find the function f ∗ in the RKHS H which solves the regularized
empirical risk minimization problem.

min
f∈H

R̂(f ) + Ω
(
‖f‖2
H

)
,

where empirical risk is

R̂(f ) =
1
n

n∑
i=1

L(yi, f (xi), xi),

and Ω is a non-decreasing function.
Classification: L could be a hinge loss L(y, f (x), x) = (1− yf (x))+ or a
logistic loss L(y, f (x), x) = log (1 + exp(−yf (x)).
Regression: L(y, f (x), x) = (y− f (x))2.
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Representer Theorem

Representer theorem

Theorem (Representer Theorem)

There is a solution to
min
f∈H

R̂(f ) + Ω
(
‖f‖2
H

)
that takes the form

f ∗ =

n∑
i=1

αik(·, xi).

If Ω is strictly increasing, all solutions have this form.
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Representer Theorem

Representer theorem: proof

Proof: Denote fs projection of f onto the subspace

span {k(·, xi) : i = 1, . . . , n}

such that
f = fs + f⊥,

where fs =
∑n

i=1 αik(·, xi) and f⊥ is orthogonal to span {k(·, xi) : i = 1, . . . , n}.
Regularizer:

‖f‖2
H = ‖fs‖2

H + ‖f⊥‖2
H ≥ ‖fs‖

2
H ,

then
Ω
(
‖f‖2
H

)
≥ Ω

(
‖fs‖2

H

)
.
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Representer Theorem

Representer theorem: proof

Proof (cont.): Individual terms f (xi) in the loss:

f (xi) = 〈f , k(·, xi)〉H = 〈fs + f⊥, k(·, xi)〉H = 〈fs, k(·, xi)〉H ,

so
L(yi, f (xi), xi) = L(yi, fs(xi), xi)∀i =⇒ R̂(f ) = R̂(fs).

Hence
The empirical risk only depends on the components of f lying in the
subspace spanned by canonical features.
Regularizer Ω(. . .) is minimized when f = fs.
If Ω is strictly non-decreasing, then ‖f⊥‖H = 0 is required at the minimum.
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Kernel Ridge Regression

Kernel Ridge Regression
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Kernel Ridge Regression

Regularised Least Squares

We are given n training points {xi}n
i=1 in Rp: Define some λ > 0. Our goal is:

w∗ = arg min
w∈Rp

(
n∑

i=1

(yi − x>i w)2 + λ‖w‖2

)
= arg min

w∈Rp

(
‖y− Xw‖2

+ λ‖w‖2
)
,

Solution is:

w∗ =
(
X>X + λI

)−1
X>y,

which is the standard regularised least squares solution.
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Kernel Ridge Regression

Kernel ridge regression

Use features φ(xi) in the place of xi:

w∗ = arg min
w∈H

(
n∑

i=1

(yi − 〈w, φ(xi)〉H)
2

+ λ‖w‖2
H

)
.

E.g. for finite dimensional feature spaces,

φp(x) =


x
x2

...
x`

 φs(x) =


sin(x)
cos(x)
sin(2x)

...
cos
(
`
2 x
)


In finite dimensions, w is a vector of length ` giving weight to each of these
features so that learned function is fw(x) = w>φ(x). Feature vectors can also
have infinite length.
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Kernel Ridge Regression

Kernel ridge regression

Recall that feature maps φ and feature spaces H are not unique, but RKHS
Hk is. Thus, we can identify w with the function fw (there is an isometry
between w and fw: ‖w‖H = ‖fw‖Hk regardless of the choice of the feature
space H) and write

f ∗ = arg min
f∈Hk

(
n∑

i=1

(yi − 〈f , k(·, xi)〉H)
2

+ λ‖f‖2
Hk

)

= arg min
f∈Hk

(
n∑

i=1

(yi − f (xi))
2

+ λ‖f‖2
Hk

)
.
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Kernel Ridge Regression

Kernel ridge regression

Recall the representer theorem: f is a linear combination of feature space
mappings of data points

f =

n∑
i=1

αik(·, xi).

Then
n∑

i=1

(
yi − 〈f , k(·, xi)〉Hk

)2
+ λ‖f‖2

Hk
= ‖y−Kα‖2

+ λα>Kα

= y>y− 2y>Kα+ α>
(
K2 + λK

)
α

Differentiating wrt α and setting this to zero, we get

α∗ = (K + λIn)−1y.

Recall: ∂α>Uα
∂α = (U + U>)α, ∂v>α

∂α = ∂α>v
∂α = v
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Kernel Ridge Regression

Parameter selection for KRR

Given the objective

f ∗ = arg min
f∈Hk

(
n∑

i=1

(yi − f (xi))
2

+ λ‖f‖2
Hk

)
.

How do we choose
The regularization parameter λ?
The kernel parameter: for Gaussian kernel, σ in

k(x, y) = exp
(
−‖x− y‖2

σ

)
.

Beware: Gaussian kernel has many different parametrisations in the literature
and software packages!
Typically use cross-validation.
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Kernel Ridge Regression

Choice of λ
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Kernel Ridge Regression

Choice of σ
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Operations with Kernels

Kernel families and operations with kernels
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Operations with Kernels

Examples of kernels

Linear: k(x, x′) = x>x′.
Polynomial: k(x, x′) = (c + x>x′)m, c ∈ R, m ∈ N.

Periodic (1d): k(x, x′) = exp
(
− 2 sin2(π|x−x′|/p)

γ2

)
, period p, γ > 0.

Exponential: k(x, x′) = exp( x>x′
γ ), γ > 0.

Gaussian RBF: k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖2
)

, γ > 0.

Laplace: k(x, x′) = exp
(
− 1
γ ‖x− x′‖

)
, γ > 0.

Rational quadratic: k(x, x′) =

(
1 +
‖x−x′‖2

2αγ2

)−α
, α, γ > 0.

Brownian covariance: k(x, x′) = 1
2 (‖x‖γ + ‖x′‖γ − ‖x− x′‖γ), γ ∈ [0, 2].

all norms are 2-norms unless specified otherwise

Department of Statistics, Oxford SC4/SM8 ATSML, HT2018 30 / 48



Operations with Kernels

Matérn Family

k(x, x′) =
21−ν

Γ(ν)

(√
2ν
γ
‖x− x′‖

)ν
Kν

(√
2ν
γ
‖x− x′‖

)
, ν > 0, γ > 0,

where Kν is the modified Bessel function of the second kind of order ν.

ν = 1/2: k(x, x′) = exp
(
− 1
γ ‖x− x′‖

)
ν = 3/2: k(x, x′) =

(
1 +

√
3
γ ‖x− x′‖

)
exp

(
−
√

3
γ ‖x− x′‖

)
ν = 5/2: k(x, x′) =

(
1 +

√
5
γ ‖x− x′‖+ 5

3γ2 ‖x− x′‖2
)

exp
(
−
√

5
γ ‖x− x′‖

)
as ν →∞, converges to Gaussian RBF k(x, x′) = exp

(
− 1

2γ2 ‖x− x′‖2
)

Matérn family norms penalize the derivatives of f . In particular, for
ν = s + 1/2, it penalizes the derivatives up to order s + 1, e.g. for ν = 3/2 and
in one dimension:

‖f‖2
Hk
∝
ˆ

f ′′(x)2dx +
6
γ2

ˆ
f ′(x)2dx +

9
γ4

ˆ
f (x)2dx
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Operations with Kernels

New kernels from old: sums, transformations

The great majority of useful kernels are built from simpler kernels.

Lemma (Sums of kernels are kernels)

Given α > 0 and k, k1 and k2 all kernels on X , then αk and k1 + k2 are kernels
on X .

To prove this, just check inner product definition (features get scaled with
√
α

or concatenated). A difference of kernels need not be a kernel (why?)

Lemma (Space transformation)

Let X and X̃ be sets, and consider any map s : X → X̃ . Let k̃ be a kernel on
X̃ . Then k(x, x′) = k̃(s(x), s(x′)) is a kernel on X .

Proof: if ϕ̃ is a feature map for k̃, then ϕ = ϕ̃ ◦ s is a feature map for k.
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Operations with Kernels

New kernels from old: products

Lemma (Products of kernels are kernels)

Given k1 on X1 and k2 on X2, then k1 × k2 is a kernel on X1 ×X2.

Proof.
Sketch for finite-dimensional spaces only. Assume H1 corresponding to k1 is
Rm, and H2 corresponding to k2 is Rn. Define:

k1 := u>v for u, v ∈ Rm (e.g.: kernel between two images)
k2 := p>q for p, q ∈ Rn (e.g.: kernel between two captions)

Is the following a kernel?

K [(u, p); (v, q)] = k1 × k2

(e.g. kernel between one image-caption pair and another)
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Operations with Kernels

New kernels from old: products

Proof.
(continued)

k1k2 =
(
u>v

) (
q>p

)
= trace(u>vq>p)

= trace(pu>vq>)

= 〈A,B〉 ,

where A := pu>, B := qv> (features of image-caption pairs) Thus k1k2 is a
valid kernel, since inner product between A,B ∈ Rm×n is

〈A,B〉 = trace(AB>).

Another way: just note that the Kronecker product of positive definite
matrices is positive definite!
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Operations with Kernels

More products and Taylor expansions

Lemma (Products of kernels are kernels)

Given kernels k1 and k2 on X k1 × k2 is a kernel on X .

Proof: It is certainly a kernel on X × X , so just consider space transformation
s : X → X ×X with s(x) = (x, x).
Another way: just note that the Hadamard product of positive definite
matrices is positive definite!
As a corollary:

k(x, x′) = c +

d∑
j=1

aj〈x, x′〉d (1)

is certainly a kernel. Readily extends to

k(x, x′) = g (〈x, x′〉) (2)

for an analytic function g with nonnegative Taylor coefficients, e.g., exp.
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Operations with Kernels

Gaussian RBF is a kernel

As a product of an exponential kernel and a kernel with 1-d feature
x 7→ exp

(
−‖x‖

2

2γ2

)
.

k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖2
)

= exp

(
−‖x‖

2

2γ2

)
exp

(
−‖x

′‖2

2γ2

)
exp

(
1
γ2 〈x, x

′〉
)

All of the proofs above are constructive: they give a way of constructing new
features from old. But the resulting features quickly become very difficult to
interpret. There is another, much cleaner way to do this: Mercer’s Theorem.
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Operations with Kernels

Mercer’s theorem

Assume that X is a compact metric space, k : X × X → R a continuous
kernel and fix a finite measure ν on X with suppν = X .
To k we can associate a certain operator Tk on L2(X ; ν) which is compact,
positive and self-adjoint

[Tkf ](y) =

ˆ
f (x)k(x, y)ν(dx)

There exist an orthonormal set of continuous L2 functions {ej}j∈J and
{λj}j∈J (strictly positive eigenvalues with λj → 0; J at most countable).

Theorem (Mercer’s theorem)

∀x, y ∈ X with convergence uniform on X × X :

k(x, y) =
∑
j∈J

λjej(x)ej(y).
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Operations with Kernels

Mercer’s theorem

k(x, y) =
∑
j∈J

λjej(x)ej(y)

=
〈{√

λjej(x)
}
,
{√

λjej(y)
}〉

`2(J)

Another (Mercer) feature map:

ϕ : X → `2(J)

ϕ : x 7→
{√

λjej(x)
}

j∈J
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Operations with Kernels

Mercer’s Theorem and Smoothness
What does ‖f‖H have to do with smoothing? For the Gaussian kernel:

f (x) =

∞∑
r=1

arer(x), ‖f‖2
H =

∞∑
r=1

a2
r

λr
.

λr ∼ Br → 0, as r →∞ for B ∈ (0, 1) and er(x) are functions of increasing
complexity as r increases (r zero-crossings) – related to r-th order Hermite
polynomials. Figure from Rasmussen and Williams, 2006
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Kernel Embeddings of Distributions

RKHS Embeddings of Distributions
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Kernel Embeddings of Distributions

Kernel Trick and Kernel Mean Trick

implicit feature map x 7→ k(·, x) ∈ Hk

replaces x 7→ [ϕ1(x), . . . , ϕs(x)] ∈ Rs

〈k(·, x), k(·, y)〉Hk
= k(x, y)

inner products readily available
nonlinear decision boundaries, nonlinear
regression functions, learning on
non-Euclidean/structured data

[Cortes & Vapnik, 1995; Schölkopf & Smola,

2001]

RKHS embedding: implicit feature mean
[Smola et al, 2007; Sriperumbudur et al, 2010]

P 7→ µk(P) = EX∼Pk(·,X) ∈ Hk

replaces P 7→ [Eϕ1(X), . . . ,Eϕs(X)] ∈ Rs

〈µk(P), µk(Q)〉Hk
= EX∼P,Y∼Qk(X, Y)

inner products easy to estimate

multiple instance learning / learning on
distributions, nonparametric testing for
homogeneity, independence, conditional
independence, three-variable interaction
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Kernel Trick and Kernel Mean Trick

implicit feature map x 7→ k(·, x) ∈ Hk

replaces x 7→ [ϕ1(x), . . . , ϕs(x)] ∈ Rs

〈k(·, x), k(·, y)〉Hk
= k(x, y)

inner products readily available
nonlinear decision boundaries, nonlinear
regression functions, learning on
non-Euclidean/structured data

[Cortes & Vapnik, 1995; Schölkopf & Smola,

2001]

RKHS embedding: implicit feature mean
[Smola et al, 2007; Sriperumbudur et al, 2010]

P 7→ µk(P) = EX∼Pk(·,X) ∈ Hk

replaces P 7→ [Eϕ1(X), . . . ,Eϕs(X)] ∈ Rs

〈µk(P), µk(Q)〉Hk
= EX∼P,Y∼Qk(X, Y)

inner products easy to estimate
multiple instance learning / learning on
distributions, nonparametric testing for
homogeneity, independence, conditional
independence, three-variable interaction

[Gretton et al, 2005; Gretton et al, 2006;

Fukumizu et al, 2007; DS, Bergsma &

Gretton, 2013; Szabo et al, 2015]
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Kernel Embeddings of Distributions

Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007]

between P and Q:

6 4 2 0 2 4 6
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

MMDk(P,Q) = ‖µk(P)− µk(Q)‖Hk
= sup

f∈Hk: ‖f‖Hk
≤1
|Ef (X)− Ef (Y)|

Characteristic kernels: MMDk(P,Q) = 0
iff P = Q (also metrizes weak*
[Sriperumbudur,2010]).

Gaussian RBF exp(− 1
2σ2 ‖x− x′‖2

2),
Matérn family, inverse multiquadrics.

Can encode structural properties in the
data: kernels on non-Euclidean domains,
networks, images, text...
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Kernel Embeddings of Distributions

Two-sample testing on nonstandard domains

k(dogi, fishj)

k(fishi, fishj)

k(dogi, dogj)

k(fishj , dogi)

Figure by Arthur Gretton

Average similarity within two samples
vs average similarity across two

samples.

MMD has been applied to:
independence tests on text data
[Gretton et al, 2009]

two-sample tests on graphs [Gretton

et al, 2012]

training generative neural
networks for image data [Dziugaite,

Roy and Ghahramani, 2015]

two-sample tests on persistence
diagrams in topological data
analysis [Kwitt et al, 2015]

similarity measure between
observed and simulated data in
ABC [Park, Jitkrittum and DS, 2015]

MMD2
k (P,Q) = E

X,X′ i.i.d.∼ P
k(X,X′) + E

Y,Y′ i.i.d.∼ Q
k(Y,Y ′)− 2EX∼P,Y∼Qk(X,Y).
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Kernel Embeddings of Distributions

Kernel dependence measures: HSIC
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Figure by Arthur Gretton

HSIC2(X, Y;κ) = ‖µκ(PXY)− µκ(PXPY)‖2
Hκ

Hilbert-Schmidt norm of the feature-space
cross-covariance [Gretton et al, 2009]

dependence witness is a smooth function in the
RKHS Hκ of functions on X × Y

k( , )!" #" !"l( , )#"

k( , )× l( , )!" #" !" #"

κ( , ) =!" #"!" #"

Independence testing framework that
generalises Distance Correlation (dcor) of
[Szekely et al, 2007]: HSIC with Brownian motion
kernels [DS et al, 2013]

Extends to multivariate interaction and joint
dependence measures [DS et al, 2013; Pfister et al,

2017]
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Kernel Embeddings of Distributions

Kernel dependence measures: HSIC (2)

k( , ) → K =

`(
The Sealyham Terrier is the
couch potato of the terrier
world - he loves to lay
around and take naps...

,Cairn Terriers are independent
little bundles of energy. They
are alert and active with the
trademark terrier temperament...

) → L =

Hilbert-Schmidt Independence Criterion (HSIC): similarity between the kernel

matrices
〈

K̃, L̃
〉

= Tr
(

K̃L̃
)

, where K̃ = HKH, and H = I− 1
n11

> is the

centering matrix. [Gretton et al, 2008; Fukumizu et al, 2008; Song et al, 2012]
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Kernel Embeddings of Distributions

Distribution Regression

supervised learning where labels are available at the group, rather than
at the individual level.

If we wish to make a prediction at a new location s∗, the
standard predictive equations for GP regression [26], derived
by conditioning a multivariate Gaussian distribution, tell us:

y∗ | s∗, X,y ∼ N (k∗(K+σ2I)−1y, k∗∗−k∗(K+σ2I)−1k∗>)
(11)

where Kij = k(si, sj) and k∗ = [k(s1, s
∗) . . . k(sn, s

∗)] and
k∗∗ = k(s∗, s∗). Thus we have a way of combining a prior
over f , parametrized by k(s, s′), with observed data to ob-
tain a posterior distribution over a new prediction y∗ at a
new location s∗. This is a very powerful method, as it en-
ables a fully Bayesian treatment of regression, a coherent
approach to kernel learning through the marginal likelihood
(for details see [26]), and posterior uncertainty intervals.

We can immediately see the connection between the ker-
nel ridge regression estimator in Eq. (7) and the posterior
mean of the GP in Eq. (11). (A superficial difference is that
in Eq. (7) our predictors are µ̂i while in Eq. (11) they are
generic locations si, but this difference will go away in Sec-
tion 5 when we propose using GP regression for distribution
regression.) The predictive mean of GP regression is ex-
actly equal to the kernel ridge regression estimator, with σ2

corresponding to λ. In ridge regression, a larger penalty λ
leads to a smoother fit (equivalently, less overfitting), while
in GP regression a larger σ2 favors a smoother GP poste-
rior because it implies more measurement error. For a full
discussion of the connections see [2, Sections 6.2.2-6.2.3].

4. ECOLOGICAL INFERENCE
In this section we state the ecological inference problem

that we intend to solve. We use the motivating example of
inferring Barack Obama’s vote share by demographic sub-
group (e.g. men versus women) in the 2012 US presidential
election, without access to any individual-level labels. Vote
totals by electoral precinct are publicly available, and these
provide the labels in our problem. Predictors are in the
form of demographic covariates about individuals (e.g. from
a survey with individual level data like the census). The
challenge is that the labels are aggregate, so it is impossi-
ble to know which candidate was selected by any particular
individual. This explains the terminology: “ecological cor-
relations” are correlations between variables which are only
available as aggregates at the group level [28]

We use the same notation as in Section 3.2. Let xji ∈ Rd
be a vector of covariates for individual i in region j. Let
wji be survey weights2. Let yi be labels in the form of two-
dimensional vectors (ki, ni) where ki is the number of votes
received by Obama out of ni total votes in region i. Then
our dataset is:(

{xj1}
N1
j=1, y1

)
,
(
{xj2}

N2
j=1, y2

)
, . . . ,

(
{xjn}Nn

j=1, yn
)

(12)

We will typically have a rich set of covariates available, in
addition to the demographic variables we are interested in
stratifying on, so the xji will be high-dimensional vectors
denoting gender, age, income, education, etc.

Our task is to learn a function f from a demographic sub-
group (which could be everyone) within region i to the prob-
ability that this demographic subgroup supported Obama,

2Covariates usually come from a survey based on a random
sample of individuals. Typically, surveys are reported with
survey weights wji for each individual to correct for oversam-
pling and non-response, which must be taken into account
for any valid inference (e.g. summary statistics, regression
coefficients, standard errors, etc.).

i.e. the number of votes this group gave Obama divided by
the total number of votes in this group.

5. OUR METHOD
In this section we propose our new ecological inference

method. Our approach is illustrated in a schematic in Figure
1 and formally stated in Algorithm 1.
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Figure 1: Illustration of our approach. Labels
y1, y2 and y3 are available at the group level giving
Obama’s vote share in regions 1, 2, and 3. Co-
variates are available at the individual level giv-
ing the demographic characteristics of a sample of
individuals in regions 1, 2, and 3. We project
the individuals from each group into feature space
using a feature map φ(x) and take the mean by
group to find high-dimensional vectors µ1, µ2 and µ3,
e.g. µ1 = 1

3
(φ(x11) + φ(x21) + φ(x31)). Now our prob-

lem is reduced to supervised learning, where we
want to learn a function f : µ → y. Once we have
learned f we make subgroup predictions for men
and women in region 3 by calculating mean embed-
dings for the men µm3 = 1

2
(φ(x33) + φ(x43)) and women

µw3 = 1
3
(φ(x13) + φ(x23) + φ(x53)) and then calculating

f(µm3 ) and f(µw3 ). For a more rigorous description
of our algorithm see Algorithm 1.

Recall the two-stage distribution regression approach in-
troduced in Section 3.2. Our method has a similar approach.
To begin, we use FastFood as introduced in Section 3.3 with
an RBF kernel to produce an explicit feature map φ and
calculate the mean embeddings3, one for each region i, of
Eq. (4) with survey weights:

µ̂1 =

∑
j w

j
1φ(xj1)∑
j w

j
1

, . . . , µ̂n =

∑
j w

j
nφ(xjn)∑
j w

j
n

(13)

3 Distribution regression with explicit random features was
previously considered in Oliva et al. [19] using Rahimi and
Recht [25] to speed up an earlier distribution regression
method based on kernel density estimation [22]. This ap-
proach has comparable statistical guarantees to distribution
regression using RKHS-mean embeddings but inferior em-
pirical performance [33]. As far as we are aware, using Fast-
Food kernel mean embeddings for distribution regression is
a novel approach.

Mooij, Peters, Janzing, Zscheischler and Schölkopf

Figure 6: Scatter plots of the cause-effect pairs in the CauseEffectPairs benchmark data.
We only show the pairs for which both variables are one-dimensional.

the performance of methods on simulated data where we can control the data-generating
process, and therefore can be certain about the ground truth.

Simulating data can be done in many ways. It is not straightforward to simulate data
in a “realistic” way, e.g., in such a way that scatter plots of simulated data look similar to
those of the real-world data (see Figure 6). For reproducibility, we describe in Appendix C
in detail how the simulations were done. Here, we will just sketch the main ideas.

We sample data from the following structural equation models. If we do not want to
model a confounder, we use:

EX ∼ pEX , EY ∼ pEY
X = fX(EX)

Y = fY (X,EY ),

and if we do want to include a confounder Z, we use:

EX ∼ pEX , EY ∼ pEY , EZ ∼ pEZ
Z = fZ(EZ)

X = fX(EX , EZ)

Y = fY (X,EY , EZ).

Here, the noise distributions pEX , pEY , pEZ are randomly generated distributions, and the
causal mechanisms fZ , fX , fY are randomly generated functions. Sampling the random

28

Figure from Flaxman et al, 2015 Figure from Mooij et al, 2014

classifying text based on word features [Yoshikawa et al, 2014; Kusner et al, 2015]

aggregate voting behaviour of demographic groups [Flaxman et al, 2015; 2016]

image labels based on a distribution of small patches [Szabo et al, 2016]

“traditional” parametric statistical inference by learning a function from sets
of samples to parameters: ABC [Mitrovic et al, 2016], EP [Jitkrittum et al, 2015]

identify the cause-effect direction between a pair of variables from a joint
sample [Lopez-Paz et al,2015]
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Kernel Embeddings of Distributions

Distribution Regression (2)

Multiple-Instance Learning: Input is a bag of Bi vectors {xi1, . . . , xiBi},
each xia ∈ X assumed to arise from a probability distribution Pi on X .
Represent the i-th bag by the corresponding empirical kernel embedding
mi = µk [Pi] = 1

Bi

∑Bi
a=1 k(·, xia) w.r.t. a kernel k on X .

Now treat the problem as having inputs mi ∈ Hk: just need to define a
kernel K on Hk.

Linear: K(mi,mj) = 〈mi,mj〉Hk =
1

BiBj

Bi∑
a=1

Bj∑
b=1

k(xia, xjb)

Gaussian: K(mi,mj) = exp
(
− 1

2γ2 ‖mi −mj‖2
Hk

)
.

Term ‖mi −mj‖2
Hk

can be thought of as a distance between empirical
measures corresponding to bags i and j (this is empirical Maximum Mean
Discrepancy (MMD)).
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Discussion

Kernel Methods – Discussion

Kernel methods allows for very flexible and powerful machine learning
models.
Nonparametric method: parameter space (e.g., normal vector w in SVM)
can be infinite-dimensional
Kernels can be defined over more complex structures than vectors, e.g.
graphs, strings, images, bags of instances, probability distributions.
In naïve implementation, computational cost is at least quadratic in the
number of observations, often O(n3) computation and O(n2) memory, but
there are various approximations with good scaling up properties.
Further reading:

Schölkopf and Smola, Learning with Kernels, 2001.
Rasmussen and Williams, Gaussian Processes for Machine Learning, 2006.
Steinwart and Christmann, Support Vector Machines, 2008.
Berlinet and Thomas-Agnan, Reproducing Kernel Hilbert Spaces in
Probability and Statistics, 2004.
Bishop, Pattern Recognition and Machine Learning, Chapter 6.
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