SC4/SM8 Advanced Topics in Statistical Machine Learning
Kernel Methods

Dino Sejdinovic
Department of Statistics
Oxford

Slides and other materials available at:
http://www.stats.ox.ac.uk/~sejdinov/atsml/

Department of Statistics, Oxford SC4/SM8 ATSML, HT2018 1/48


http://www.stats.ox.ac.uk/~sejdinov/atsml/

|
Dual C-SVM

maximize E ; — E E aajy,ij X,

i=1 Il]l

subject to the constraints

0<o; <C, Z)’iaizo

i=1

From «, obtain the hyperplane with

n
w = E Q;YiXi.
i=1

Offset b can be obtained from any of the margin SVs (for which «; € (0, C)):
1=y (wa,- + b).
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Dual form and Inner Products

We have stumbled across something quite interesting. Dual program

" 1 " . Z?: QY = 0
max ;ai —3 UZZI aiajy,-ijrx_,v subject to {O X (11 Zc
only depends on inputs x; through their inner products (similarities) with other
inputs.

Decision function

f(x) =sign(w'x+b) = sign(z ayix; x 4 b)

i=1

also depends only on the similarity of a test point x to the training points x;.
Thus, we do not need explicit inputs - just their pairwise similarities.

Key property: even if p > n, it is still the case that w € span{x; : i =1,...,n}
(normal vector of the hyperplane lives in the subspace spanned by the
datapoints).
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Beyond Linear Classifiers

@ No linear classifier separates red from blue.
@ Linear separation after mapping to a higher dimensional feature space:

R25 (0 sV —p o o) =( x0 @ O\ ¢ R3
> x o(x)
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N
Non-Linear SVM

@ Consider the dual C-SVM with explicit non-linear transformation
x = px):

n
Laiyi=0
max Z o — Z aiagyyie(x) T o(x)  subject to (?—; lx(:yC

° Supposep =2, and" we would like to introduce quadratic non-linearities,
T
px) = (1, \/Exm, \ﬁxm7 \@x(l)xm, (x<l>) , (x(z)) )

Then
w(xl_)%(xl)_1+2x<1>x(1>+2x<2> (2>+2x(1>x(2)x<1)x<2>

() (1) () (7)) =

@ Since only inner products are needed, non-linear transform need not be
computed explicitly - inner product between features can be a simple
function (kernel) of x; and x;: k(x;, x;) = ¢(x;) T o(x;) = (1 +x, x;)?

@ d-order interactions can be implemented by k(x;, x;) = (1 + x; x;)¢
(polynomial kernel). Never need to compute explicit feature expansion

of dimension (") where this inner product happens!
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N
Kernel SVM: Kernel trick

@ Kernel SVM with k(x;, x;). Non-linear transformation x — ¢(x) still present,
but implicit (coordinates of the vector ¢(x) are never computed).

{Z:’_1 ;i =0

n 1 n
max Z o — = Z a;;y;yik(x;, x;)  subject to
a — 2 0<a=C

ij=1
@ Prediction? f(x) = sign (w'¢(x) + b), where w = 3" ay;¢o(x;) and offset
b obtained from a margin support vector x; with a; € (0, C).
@ No need to compute w either! Just need

o) =3 awieln) () = 3 amik(xi,x).

o Get offset from

b=yi—w o) =y— Y aykx,x)
i=1
for any margin support-vector x; (o; € (0, C)).
@ Fitted a separating hyperplane in a high-dimensional feature space

without ever mapping explicitly to that space.
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Kernel trick in general

@ In a learning algorithm, if only inner products x; x; are explicitly used,
rather than data items x;, x; directly, we can replace them with a kernel
function k(x;, x;) = (@(x;), ©(x;)), where ¢(x) could be nonlinear, high-
and potentially infinite-dimensional features of the original data.

Kernel ridge regression

Kernel logistic regression

Kernel PCA, CCA, ICA

Kernel K-means
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Kernel and its RKHS

Kernel Methods and
Reproducing Kernel Hilbert Spaces

slides based on Arthur Gretton’s Reproducing kernel Hilbert spaces in Machine
ILearning/course

8/48
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Kernel: an inner product between feature maps
Definition (kernel)

Let X be a non-empty set. A functionk : X x X — R is a kernel if there
exists a Hilbert space and a map ¢ : X — H such that Vx,x’ € X,

k(x, ') := (p(x), ()}, -

@ Almost no conditions on X (eg, X itself need not have an inner product,
e.g., documents).

@ Think of kernel as a similarity measure between features
What are some simple kernels? E.g., for text documents? For images?

@ A single kernel can correspond to multiple sets of underlying features.

P =x ad @ =(x/VZ x/V2)
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Positive semidefinite functions

If we are given a “measure of similarity” with two arguments, k(x,x’), how can
we determine if it is a valid kernel?

@ Find a feature map?

@ Sometimes not obvious (especially if the feature vector is infinite
dimensional)

@ A simpler direct property of the function: positive semidefiniteness.
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Positive semidefinite functions

Definition (Positive semidefinite functions)

A symmetric function k : X x X — R is positive semidefinite if
Vn>1, V(ai,...a,) € R V(xq,...,x,) € X",

i i a;a;rk(x;, x;) > 0.

i=1 j=1

@ Kernel k(x,y) := (¢(x), ¢(y)),, for a Hilbert space # is positive
semidefinite.

n

Zzaiajk(xiaxj) = ZZ(%@(M%“M(%‘))H

i=1 j=1 =1 j=1

n
ZWP(X:’)
i=1
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Positive semidefinite functions are kernels

Moore-Aronszajn Theorem
Every positive semidefinite function is a kernel for some Hilbert space #. J

@ H is usually thought of as a space of functions
(Reproducing kernel Hilbert space - RKHS)

1
2~2

dimensional H with elements i(x) = >~ | «k(x;, x) and their pointwise limits.

Gaussian RBF kernel k(x,x") = exp (f l|lx — x’||2) has an infinite-

1
0.8

0.6
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Reproducing kernel

Definition (Reproducing kernel)

Let H be a Hilbert space of functions f : X — R defined on a non-empty set
X. Afunctionk: X x X — R is called a reproducing kernel of # if it satisfies

@ Vxe X, ky=k(-,x) € H,
@ Vxec X,VfeH, (f k(,x)), =f(x)(the reproducing property).

In particular, for any x,y € X, k(x,y) = (k(,y) ,k (-, x)) 1 = (k (-, %),k (-,9)) .-

Can forget all about ¢(x) and just treat (-, x) as a feature of x (it is a perfectly
valid Hilbert-space valued feature)!
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Kernel and its RKHS

Definition (Reproducing kernel Hilbert space)

A Hilbert space # of functions f : X — R, defined on a non-empty set X is
said to be a Reproducing Kernel Hilbert Space (RKHS) if evaluation
functionals ¢, : H — R, d,f = f(x) are continuous Vx € X.

Theorem (Norm convergence implies pointwise convergence)
Iflim, o ||fs — fll5, = 0, then lim,_, . f,(x) = f(x), Vx € X.

@ If two functions f, g € H are close in the norm of #, then f(x) and g(x) are
closeforallx e X

@ This is a property of particularly “nice” functional spaces. For example,
does not hold on spaces endowed with L, norm: x" on [0, 1] converges to
0 in L, but not pointwise.
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Back to SVMs

Maximum margin classifier in RKHS: Looking for a decision function of form
sign(f(x)) where f € H,. Because we are in an RKHS, f(x) = (f,k(-,x))%,-

min (;IVII% + C; (1=x k(-,xi)>m)+>

for the RKHS A with kernel k(x, x"). Maximizing the margin equivalent to
minimizing ||f||3,: for many RKHSs a smoothness constraint on function f
(more about this later).

Why can we solve this infinite-dimensional optimization problem? Because we
know that f € span {k(-,x;) : i =1,...,n} — Representer Theorem.
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Representer Theorem

Representer Theorem |
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Representer theorem

Standard supervised learning setup: we are given a set of paired
observations (x1,y1), ... (X4, ¥n)-

Goal: find the function f* in the RKHS H which solves the regularized
empirical risk minimization problem.

min R() +9 (I,

where empirical risk is
. 1 —
R(f) = ; ZL(yiaf(xi)7xi)a
i=1

and Q) is a non-decreasing function.

@ Classification: L could be a hinge loss L(y,f(x),x) = (1 — yf(x))+ ora
logistic loss L(y,f(x),x) = log (1 + exp(—yf(x)).
@ Regression: L(y,f(x),x) = (y —f(x))*.

Department of Statistics, Oxford SC4/SM8 ATSML, HT2018 17/48



Representer theorem

Theorem (Representer Theorem)
There is a solution to

0. A 2
min &)+ (115,
that takes the form

= Z ik (-, x;).
i=1

If ) is strictly increasing, all solutions have this form.
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_ reresenerTreoem
Representer theorem: proof

Proof: Denote f; projection of f onto the subspace
span {k(-,x;) : i=1,...,n}

such that
f=f+rL

where f; = " | ak(+,x;) and £, is orthogonal to span {k(-,x;) : i =1,...,n}.

Regularizer: ) ) ) )
1150 = Wl + Wl = I3

then

Q(I15,) = 2 (I515,)
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Representer theorem: proof

Proof (cont.): Individual terms f(x;) in the loss:

f(xi) = <f7k<'7xi)>H = <fA +fLak('7xi)>’H = <ff7k("xi)>7-[7
o) K )
L(yi, f(x;),x:) = L(yi, fs(xi), x))Vi = R(f) = R(f;)-
Hence

@ The empirical risk only depends on the components of f lying in the
subspace spanned by canonical features.

@ Regularizer Q(...) is minimized when f = f;.
@ If Q2 is strictly non-decreasing, then [|f ||,, = 0 is required at the minimum.
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Kernel Ridge Regression

Kernel Ridge Regression |
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Regularised Least Squares

We are given n training points {x;}7_, in R”: Define some X > 0. Our goal is:

* T, )2 2
= m P — X; >\
w argwelﬂgl (E (yi — x; w)* + A|w]] >

i=1

arg min ((ly = Xw|[* + Aw|?)

Solution is:
wto= (XTX4+ M) Xy,

which is the standard regularised least squares solution.

Department of Statistics, Oxford SC4/SM8 ATSML, HT2018 22/48



Kernel ridge regression

Use features ¢(x;) in the place of x;:

w" = argmin <Z (i = (W, 6(xi)) )" + AIWH%) :

weH
i=1

E.g. for finite dimensional feature spaces,

. sin(x)
5 cos)
G@=|". | o= 5@
: :
* cos (5x)

In finite dimensions, w is a vector of length ¢ giving weight to each of these
features so that learned function is f,,(x) = w " ¢(x). Feature vectors can also
have infinite length.
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Kernel ridge regression

Recall that feature maps ¢ and feature spaces H are not unique, but RKHS
H, is. Thus, we can identify w with the function f,, (there is an isometry
between w and f,,: ||w||% = ||fw|lx, regardless of the choice of the feature
space ) and write

f* = argfrg?i_g (Z (yi_ <ka('7xi)>?-£)2+/\”f|%'lk>
i=1

= arg min <Z (i — f () + Alf”%ﬂ) :

i=1
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Kernel ridge regression

Recall the representer theorem: f is a linear combination of feature space
mappings of data points

f = Zaik(~,x,»).
i=1

Then

n

S 0 ko)) + A,

i=1

ly — KozH2 + Ao Ko
= yTy — ZyTKoz +al (K2 + /\K) «
Differentiating wrt o and setting this to zero, we get
af = (K+AL,) "'y,

. 9o Ua T w'a _ dav
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Parameter selection for KRR

Given the objective
f* = argmin (Z +/\|lf||m>

How do we choose
@ The regularization parameter \?
@ The kernel parameter: for Gaussian kernel, o in

K(x,y) = exp (—”x—Y) .

g

Beware: Gaussian kernel has many different parametrisations in the literature
and software packages!
Typically use cross-validation.
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Choice of )

A=0.1, 6=0.6 A=10, 6=0.6 A=1e-07, 6=0.6
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Kernel Ridge Regression

Choice of o

-1

A=0.1, 6=0.6 A=0.1, 0=2 A=0.1, 6=0.1

1 1
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Operations with Kernels

Kernel families and operations with kernels |
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Examples of kernels

@ Linear: k(x,x') = x'x.
@ Polynomial: k(x,x') = (c +x"x')",c € R, m € N.
sin® (7| x—x .
e Periodic (1d): k(x,x') = exp (—2(LV’”> period p, 7 > 0.
@ Exponential: k(x,x') = exp(*= i )y > 0.

Gaussian RBF: k(x,x') = exp ( =2 ) v > 0.

Laplace: k(x,x’) = exp (—% Ilx — x’||), ~v > 0.

Rational quadratic: k(x,x') = <1 + ”* . ” ) ,a,v > 0.

Brownian covariance: k(x,x') = 1 (||x||7 + I = J]x = X)|7), v € [0, 2].

all norms are 2-norms unless specified otherwise
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Matérn Family

2 (/2 AV
k)= = (Y =) | & [ Y2 =¥ ), v>0,4>0,
L)\ ~ ¥
where K, is the modified Bessel function of the second kind of order v.
o v =1/2: k(x,x') = exp (-% Ix —x’||)
o v =3/2: k(x,x) = (1 +¥ Hx—x’H) exp (—é ||x—x’H)
0 v =5/2 k(r.¥) = (145 x =¥l + 5% = ¥ ) exp (=L i — ')
@ as v — oo, converges to Gaussian RBF k(x,x’) = exp (—ﬁ Ilx — x’||2)

Matérn family norms penalize the derivatives of f. In particular, for
v = s+ 1/2, it penalizes the derivatives up to order s + 1, e.g. for v = 3/2 and
in one dimension:

9
112, o / F(x)dx + 3 / 7+ / F(x)dx
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New kernels from old: sums, transformations

The great majority of useful kernels are built from simpler kernels.

Lemma (Sums of kernels are kernels)

Given o > 0 and k, k, and k, all kernels on X, then ok and k; + k, are kernels
onX.

To prove this, just check inner product definition (features get scaled with \/a
or concatenated). A difference of kernels need not be a kernel (why?)

Lemma (Space transformation)

Let X and X be sets, and consider any maps : X — X. Letk be a kernel on
X. Then k(x,x") = k(s(x),s(x")) is a kernel on X.

Proof: if ( is a feature map for k, then ¢ = ¢ o s is a feature map for «.
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New kernels from old: products

Lemma (Products of kernels are kernels)
Given k, on X, and k, on X,, then k; x k, is a kernel on X; x X,.

Proof.

Sketch for finite-dimensional spaces only. Assume #, corresponding to k; is
R™, and #, corresponding to k, is R". Define:

@ ky :=u'"vforuveR" (e.g.: kernel between two images)
@ ky:=plgforp,qcR"(e.g.: kernel between two captions)
Is the following a kernel?

K [(u,p); (v,q)] = k1 x ka

(e.g. kernel between one image-caption pair and another)
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New kernels from old: products

Proof.
(continued)

kik, = (uTv) (qu)
trace(u' vq ' p)
B

trace(pu ' vgq
(A,B),

where A :=pu', B := gqv' (features of image-caption pairs) Thus kk, is a
valid kernel, since inner product between A, B € R™*" is

(A, B) = trace(AB").

Another way: just note that the Kronecker product of positive definite
matrices is positive definite!
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More products and Taylor expansions

Lemma (Products of kernels are kernels)
Given kernels k; and k, on X k; x k, is a kernel on X. J

Proof: It is certainly a kernel on X x X, so just consider space transformation
s X — X x X with s(x) = (x,x).

Another way: just note that the Hadamard product of positive definite
matrices is positive definite!

As a corollary:

d
k(x,x") :c+Za]~<x,x'>d (1)
j=1
is certainly a kernel. Readily extends to

k(x,x") = g ((x,x)) (2)

for an analytic function g with nonnegative Taylor coefficients, e.g., exp.
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Gaussian RBF is a kernel

As a product of an exponential kernel and a kernel with 1-d feature

X — exp (——H;;HZ)
1 02
€xp —2772 [l — x|

exp <—2):/2> exp ( I ;H )exp ( v (x,x’>>

All of the proofs above are constructive: they give a way of constructing new
features from old. But the resulting features quickly become very difficult to
interpret. There is another, much cleaner way to do this: Mercer’s Theorem.

k(x, x)
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Mercer’s theorem

@ Assume that X" is a compact metric space, k : X x X — R a continuous
kernel and fix a finite measure v on X" with suppr = X.

@ To k we can associate a certain operator T, on L,(X’; v) which is compact,
positive and self-adjoint

Tif](y) = / FOk(x, y)v(d)

@ There exist an orthonormal set of continuous L, functions {e¢; e and

{Aj}jej (strictly positive eigenvalues with \; — 0; J at most countable).

Theorem (Mercer’s theorem)
Vx,y € X with convergence uniform on X x X':

kxy) = ) Ne®)e).

j€J

Department of Statistics, Oxford SC4/SM8 ATSML, HT2018 37/48



Mercer’s theorem

kxy) = > Nex)ey)

j€J

(e} {Vrem})

20)

Another (Mercer) feature map:
0 X — )

I x = {\/)\»jej(x)}jej
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Mercer’s Theorem and Smoothness

What does ||f|| have to do with smoothing? For the Gaussian kernel:
oo (o ] 2
a;
flx) = Za,e,(x), Hf”%—t = Z N
r=1 r=1""
A~ B"—0,as r — oo for B € (0,1) and ¢,(x) are functions of increasing

complexity as r increases (r zero-crossings) — related to r-th order Hermite
polynomials. Figure from Rasmussen and Williams, 2006

0.4

0.2
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Kernel Embeddings of Distributions

RKHS Embeddings of Distributions |
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Kernel Trick and Kernel Mean Trick

@ implicit feature map x — k(-,x) € Hy o % e
replaces x — [¢1(x), ..., ¢ (x)] € R ° °. e
Y mi
° <k("x)7k('v)’)>7{k = k(x,y) . P
inner products readily available ° o
@ nonlinear decision boundaries, nonlinear Sl
regression functions, learning on [Cortes & Vapnik, 1995; Scholkopf & Smola,
non-Euclidean/structured data 2001]
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Kernel Embeddings of Distributions

Kernel Trick and Kernel Mean Trick

@ implicit feature map x — k(-,x) € Hy o % e
replaces x — [ (x), ..., ¢ (x)] € R ¢ gi—
) () map
° <k("x)7k('a)’)>7{k = k(x,y) . P
inner products readily available ° o
@ nonlinear decision boundaries, nonlinear Sl
regression functions, learning on [Cortes & Vapnik, 1995; Scholkopf & Smola,
non-Euclidean/structured data 2001]
@ RKHS embedding: implicit feature mean e (P) = ()]
[Smola et al, 2007; Sriperumbudur et al, 2010] X ~ P,
P j(P) = Expk(- X) € Hy o o
replaces P — [Ep;(X),...,Ep(X)] € R R §
11k (P) = 1 (Q)l14ss
® (1(P), 1(Q)) 5, = Exwrymok(X,Y) An o
inner products easy to estimate
@ multiple instance learning / learning on [Gretton et al, 2005; Gretton et al, 2006;
distributions, nonparametric testing for Fukumizu et al, 2007; DS, Bergsma &
homogeneity, independence, conditional Gretton, 2013; Szabo et al, 2015]

independence, three-variable interaction
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Maximum Mean Discrepancy

@ Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007]
between P and Q:

1

(P) = Ex[k(-, X)]

XwPl

m(Q) = Ev[k( Y)] *
Y~Q o —m

I 11tk (P) = 1x( Q) [4ss z

MMD«(P, Q) = [|ux(P) — m(Q)lly, = sup  [Ef(X) — Ef(Y)]
FEH: I, <1

@ Characteristic kernels: MMD,(P, Q) =0
iff P = QO (also metrizes weak*
[Sriperumbudur,2010]).

o Gaussian RBF exp(— 5. [lx — x'|[3),
Matérn family, inverse multiquadrics.

@ Can encode structural properties in the

data: kernels on non-Euclidean domains,
networks, images, text...
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Two-sample testing on nonstandard domains

MMD has been applied to:

@ independence tests on text data
[Gretton et al, 2009]

@ two-sample tests on graphs [Gretton
etal, 2012]

@ training generative neural
networks for image data [Dziugaite,
Roy and Ghahramani, 2015]

@ two-sample tests on persistence

"(_/%s) Q,W dlagrams |n. topological data

analysis [Kwitt et al, 2015]

@ similarity measure between
observed and simulated data in
ABC [Park, Jitkrittum and DS, 2015]

k(fish;, dog;) k(fish;, fish;

Figure by Arthur Gretton
Average similarity within two samples
vs average similarity across two
samples.

MMD;, (P, Q) = Ey visg KOX)+E, g K, Y) = 2B ynok(X, V).
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Kernel dependence measures: HSIC

#
/-

wrErEE

D AN
b X O 1

WESSURNCRE
cor vs. dcor

Dependence witness and sample

Figure by Arthur Gretton

Department of Statistics, Oxford

@ HSIC*(X, Y; k) = ||t (Pxy) — p(PxPy) |3,

@ Hilbert-Schmidt norm of the feature-space
cross-covariance [Gretton et al, 2009]

@ dependence witness is a smooth function in the
RKHS #,, of functionson X x )

K@,@) 1(9,[@)
.

~(C[ega) =
k(9,0) x 1(@,[@)

@ Independence testing framework that
generalises Distance Correlation (dcor) of
[Szekely et al, 2007]: HSIC with Brownian motion
kernels [DS et al, 2013]

@ Extends to multivariate interaction and joint
dependence measures [DS et al, 2013; Pfister et al,
2017]
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Kernel dependence measures: HSIC (2)

Hilbert-Schmidt Independence Criterion (HSIC): similarity between the kernel

matrices <K, £> =

Tr (fci)

, where K = HKH, and H=1- 1117 is the

centering matrix. [Gretton et al, 2008; Fukumizu et al, 2008; Song et al, 2012]
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Distribution Regression

@ supervised learning where labels are available at the group, rather than
at the individual level.

e SETTE Mmook
LY ¥ .-

| e S, i M ¥
) : e W B[ N S
; W g e e e H ﬂ / /
- AR L
" /‘; - oy fatuiespace O
o N e P o
o | If A i # L M
gy gy oy v o MIH‘!U"“‘”
Figure from Flaxman et al, 2015 Figure from Mooij et al, 2014

classifying text based on word features [Yoshikawa et al, 2014; Kusner et al, 2015]
aggregate voting behaviour of demographic groups [Flaxman et al, 2015; 2016]
image labels based on a distribution of small patches [Szabo et al, 2016]
“traditional” parametric statistical inference by learning a function from sets
of samples to parameters: ABC [Mitrovic et al, 2016], EP [Jitkrittum et al, 2015]

o identify the cause-effect direction between a pair of variables from a joint

sample [Lopez-Paz et al,2015]
Department of Statistics, Oxford SC4/SM8 ATSML, HT2018 46 /48



Distribution Regression (2)

@ Multiple-Instance Learning: Input is a bag of B; vectors {x,...,x,},
each x;, € X assumed to arise from a probability distribution P; on X.

@ Represent the i-th bag by the corresponding empirical kernel embedding
m; = i [Pi] = Bi/_ Zf":l k(-,xi,) w.r.t. a kernel k on X.

@ Now treat the problem as having inputs m; € Hy: just need to define a
kernel K on #H,.

Linear: K(mg,m;) = (m;, m;)y Xjpy)

a=1 b=1
. 1 2
Gaussian: K(m;, m;) = exp (—272 [lm; — mjm> .
Term |jm; — mj||§dk can be thought of as a distance between empirical

measures corresponding to bags i and j (this is empirical Maximum Mean
Discrepancy (MMD)).
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Kernel Methods — Discussion

@ Kernel methods allows for very flexible and powerful machine learning
models.

@ Nonparametric method: parameter space (e.g., normal vector w in SVM)
can be infinite-dimensional

@ Kernels can be defined over more complex structures than vectors, e.g.
graphs, strings, images, bags of instances, probability distributions.

@ In naive implementation, computational cost is at least quadratic in the
number of observations, often O(rn*) computation and O(n*) memory, but
there are various approximations with good scaling up properties.

@ Further reading:

Schélkopf and Smola, Learning with Kernels, 2001.

@ Rasmussen and Williams, Gaussian Processes for Machine Learning, 2006.

e Steinwart and Christmann, Support Vector Machines, 2008.

@ Berlinet and Thomas-Agnan, Reproducing Kernel Hilbert Spaces in

Probability and Statistics, 2004.

Bishop, Pattern Recognition and Machine Learning, Chapter 6.
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http://agbs.kyb.tuebingen.mpg.de/lwk/
http://www.gaussianprocess.org/gpml/
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