SC4/SM8 Advanced Topics in Statistical Machine Learning Support Vector Machines

Dino Sejdinovic Department of Statistics Oxford

Slides and other materials available at:

<http://www.stats.ox.ac.uk/~sejdinov/atsml/>

Support Vector Machines

These slides are based on Arthur Gretton's UCL [course](http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/rkhscourse.html) on Advanced Topics in Machine Learning

Optimization and the Lagrangian

Optimization problem on $x \in \mathbb{R}^d$ / primal,

minimize $f_0(x)$ subject to $f_i(x) \leq 0$ $i = 1, ..., m$ $h_i(x) = 0$ $j = 1, ..., r$.

domain $\mathcal{D} := \bigcap_{i=0}^m \text{dom} f_i \ \cap \ \bigcap_{j=1}^r \text{dom} h_j$ (nonempty).

p ∗ : the (primal) optimal value

Idealy we would want an unconstrained problem

minimize
$$
f_0(x) + \sum_{i=1}^{m} I_{-}(f_i(x)) + \sum_{j=1}^{r} I_0(h_j(x)),
$$

\nwhere $I_{-}(u) = \begin{cases} 0, & u \le 0 \\ \infty, & u > 0 \end{cases}$ and $I_0(u) = \begin{cases} 0, & u = 0 \\ \infty, & u \ne 0 \end{cases}$

The <mark>Lagrangian</mark> $L\,:\,\mathbb{R}^d\times\mathbb{R}^m\times\mathbb{R}^r\to\mathbb{R}$ is an (easier to optimize) lower bound on the original problem:

$$
L(x, \lambda, \nu) := f_0(x) + \sum_{i=1}^m \underbrace{\lambda_i f_i(x)}_{\leq I - (f_i(x))} + \sum_{j=1}^r \underbrace{\nu_j h_j(x)}_{\leq I_0(h_j(x))},
$$

The vectors λ and ν are called **Lagrange multipliers** or **dual variables**. To ensure a lower bound, we require $\lambda \succeq 0$. $I_-(\cdot)$ $I_0(\cdot)$

 $f_i(x)$

 $h_i(x)$

Simplest example: minimize over *x* the function $L(x, \lambda) = f_0(x) + \lambda f_1(x)$

Reminders:

- **●** *f*₀ is function to be minimized.
- \bullet $f_1 \leq 0$ is inequality constraint
- $\bullet \ \lambda \geq 0$ is Lagrange multiplier
- p^* is minimum f_0 in **constraint set**

Simplest example: minimize over *x* the function $L(x, \lambda) = f_0(x) + \lambda f_1(x)$

Reminders:

- **●** *f*₀ is function to be minimized.
- \bullet $f_1 \leq 0$ is inequality constraint
- $\bullet \ \lambda \geq 0$ is Lagrange multiplier
- p^* is minimum f_0 in **constraint set**

Simplest example: minimize over *x* the function $L(x, \lambda) = f_0(x) + \lambda f_1(x)$

Reminders:

- **●** *f*₀ is function to be minimized.
- \bullet $f_1 \leq 0$ is inequality constraint
- $\bullet \ \lambda \geq 0$ is Lagrange multiplier
- p^* is minimum f_0 in **constraint set**

Lagrange dual: lower bound on optimum *p* ∗

The **Lagrange dual function:** minimize Lagrangian When $\lambda \geq 0$ and $f_i(x) \leq 0$, Lagrange dual function is

$$
g(\lambda, \nu) := \min_{x \in \mathcal{D}} L(x, \lambda, \nu).
$$

A **dual feasible** pair (λ, ν) is a pair for which $\lambda \succeq 0$ and $(\lambda, \nu) \in \text{dom}(g)$. **We will show:** for any $\lambda \succeq 0$ and ν ,

 $g(\lambda, \nu) \leq f_0(x)$

wherever

$$
f_i(x) \le 0
$$

$$
h_j(x) = 0
$$

(including at optimal point $f_0(x^*) = p^*$).

Lagrange dual is a lower bound on *p* ∗

Assume \tilde{x} is feasible, i.e. $f_i(\tilde{x}) \leq 0$, $h_i(\tilde{x}) = 0$, $\tilde{x} \in \mathcal{D}$, $\lambda \succeq 0$. Then

$$
\sum_{i=1}^{m} \lambda_i f_i(\tilde{x}) + \sum_{i=1}^{r} \nu_i h_i(\tilde{x}) \leq 0
$$

Thus

$$
g(\lambda, \nu) := \min_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^r \nu_i h_i(x) \right)
$$

$$
\leq f_0(\tilde{x}) + \sum_{i=1}^m \lambda_i f_i(\tilde{x}) + \sum_{i=1}^r \nu_i h_i(\tilde{x})
$$

$$
\leq f_0(\tilde{x}).
$$

This holds for every feasible \tilde{x} , hence lower bound holds.

Best lower bound: maximize the dual

Best lower bound $g(\lambda, \nu)$ on the optimal solution p^* of original problem: **Lagrange dual problem**

Dual feasible: (λ, ν) with $\lambda \succeq 0$ and $g(\lambda, \nu) > -\infty$. **Dual optimal**: solutions (λ^*, ν^*) to the dual problem, d^* is optimal value. **Weak duality** always holds:

Strong duality: (does **not** always hold, conditions given later):

$$
d^* = p^*.
$$

If strong duality holds: can solve the **dual problem** to find *p* ∗ .

How do we know if strong duality holds?

Conditions under which strong duality holds are called **constraint qualifications** (they are sufficient, but not necessary) **(Probably) best known sufficient condition: Strong duality holds if**

• Primal problem is **convex**, i.e. of the form

minimize $f_0(x)$ subject to $f_i(x) \leq 0$ $i = 1, \ldots, n$ $Ax = b$

for convex f_0, \ldots, f_m , and

• Slater's condition: there exists a strictly feasible point \tilde{x} , such that $f_i(\tilde{x}) < 0$, $i = 1, \ldots, n$ (reduces to the existence of any feasible point when inequality constraints are affine, i.e., $Cx \leq d$).

A consequence of strong duality...

Assume primal is equal to the dual. What are the consequences?

- *x* [∗] solution of original problem (minimum of *f*⁰ under constraints),
- (λ^*, ν^*) solutions to dual

$$
f_0(x^*) = g(\lambda^*, \nu^*)
$$

\n(assumed)
\n
$$
g(\lambda^*, \nu^*)
$$

\n
$$
= \min_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \nu_i^* h_i(x) \right)
$$

\n
$$
\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \nu_i^* h_i(x^*)
$$

\n
$$
\leq f_0(x^*),
$$

(4): (x^*, λ^*, ν^*) satisfies $\lambda^* \succeq 0, f_i(x^*) \le 0$, and $h_i(x^*) = 0$.

...is complementary slackness

From previous slide,

$$
\sum_{i=1}^{m} \lambda_i^* f_i(x^*) = 0,
$$
\n(1)

which is the condition of **complementary slackness**. This means

$$
\lambda_i^* > 0 \implies f_i(x^*) = 0,
$$

$$
f_i(x^*) < 0 \implies \lambda_i^* = 0.
$$

From λ_i , read off which inequality constraints are strict.

Classify two clouds of points, where there exists a hyperplane which linearly separates one cloud from the other without error.

Data given by $\{x_i, y_i\}_{i=1}^n$, $x_i \in \mathbb{R}^p$, $y_i \in \{-1, +1\}$

Classify two clouds of points, where there exists a hyperplane which linearly separates one cloud from the other without error.

Hyperplane equation $w^{\top}x + b = 0$. Linear discriminant given by

$$
\hat{y}(x) = sign(w^\top x + b)
$$

Classify two clouds of points, where there exists a hyperplane which linearly separates one cloud from the other without error.

For a datapoint close to the decision boundary, a small change leads to a change in classification. Can we make the classifier more robust?

Classify two clouds of points, where there exists a hyperplane which linearly separates one cloud from the other without error.

Smallest distance from each class to the separating hyperplane $w^{\top}x + b$ is called the **margin.**

Department of Statistics, Oxford No. 2012 15 / 30 [SC4/SM8 ATSML, HT2018](#page-0-0) 15 000 SC4/SM8 ATSML, HT2018

Maximum margin classifier, linearly separable case

This problem can be expressed as follows:

$$
\max_{w,b} (\text{margin}) = \max_{w,b} \left(\frac{1}{\|w\|} \right)
$$

subject to

$$
\begin{cases} w^\top x_i + b \ge 1 & i : y_i = +1, \\ w^\top x_i + b \le -1 & i : y_i = -1. \end{cases}
$$

The resulting classifier is

 $\hat{y}(x) = \text{sign}(w^{\top}x + b),$

We can rewrite to obtain a **quadratic program**:

$$
\min_{w,b} \frac{1}{2} \|w\|^2
$$

subject to

$$
y_i(w^\top x_i + b) \geq 1.
$$

Maximum margin classifier: with errors allowed

Allow "errors": points within the margin, or even on the wrong side of the decision boundary. Ideally:

$$
\min_{w,b} \left(\frac{1}{2} ||w||^2 + C \sum_{i=1}^n \mathbb{I}[y_i (w^\top x_i + b) < 0] \right),
$$

where *C* controls the tradeoff between maximum margin and loss. Replace with **convex upper bound**:

$$
\min_{w,b}\left(\frac{1}{2}\|w\|^2+C\sum_{i=1}^n h\left(y_i\left(w^\top x_i+b\right)\right)\right).
$$

with hinge loss,

$$
h(\alpha) = (1 - \alpha)_+ = \begin{cases} 1 - \alpha, & 1 - \alpha > 0 \\ 0, & \text{otherwise.} \end{cases}
$$

Hinge loss

Hinge loss:

$$
h(\alpha) = (1 - \alpha)_+ = \begin{cases} 1 - \alpha, & 1 - \alpha > 0 \\ 0, & \text{otherwise.} \end{cases}
$$

Support vector classification

Substituting in the hinge loss, we get a standard regularised empirical risk minimisation problem - where regularisation naturally arises from the margin penalty.

$$
\min_{w,b}\left(\frac{1}{2}\|w\|^2 + C\sum_{i=1}^n h\left(y_i\left(w^\top x_i + b\right)\right)\right).
$$

Using substitution $\xi_i = h\left(y_i\left(w^\top x_i + b\right)\right)$, we obtain an equivalent formulation (standard C-SVM):

$$
\min_{w,b,\xi} \left(\frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i \right)
$$

subject to

$$
\xi_i \geq 0 \qquad y_i\left(w^\top x_i + b\right) \geq 1 - \xi_i
$$

Support vector classification

Duality

As a convex constrained optimization problem with affine constraints in w, b, ξ , strong duality holds.

minimize
$$
f_0(w, b, \xi) := \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i
$$

subject to $f_i(w, b, \xi) := 1 - \xi_i - y_i (w^\top x_i + b) \le 0, i = 1, ..., n$
 $f_{n+i}(w, b, \xi) := -\xi_i \le 0, i = 1, ..., n.$

Support vector classification: Lagrangian

The Lagrangian: $L(w, b, \xi, \alpha, \lambda) =$

$$
\frac{1}{2}||w||^2 + C\sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i (1 - \xi_i - y_i (w^\top x_i + b)) + \sum_{i=1}^n \lambda_i (-\xi_i)
$$

with dual variable constraints

$$
\alpha_i\geq 0, \qquad \lambda_i\geq 0.
$$

Minimize wrt the primal variables w, b , and ξ . Derivative wrt *w*:

$$
\frac{\partial L}{\partial w} = w - \sum_{i=1}^n \alpha_i y_i x_i = 0 \qquad w = \sum_{i=1}^n \alpha_i y_i x_i.
$$

Derivative wrt *b*:

$$
\frac{\partial L}{\partial b} = \sum_i y_i \alpha_i = 0.
$$

Support vector classification: Lagrangian

Derivative wrt *ξ_i*:

$$
\frac{\partial L}{\partial \xi_i} = C - \alpha_i - \lambda_i = 0 \qquad \alpha_i = C - \lambda_i.
$$

Since $\lambda_i \geq 0$.

 $\alpha_i \leq C$.

Now use complementary slackness:

Non-margin SVs (margin errors): $\alpha_i = C > 0$:

1 We immediately have $y_i(w^{\top}x_i + b) = 1 - \xi_i$.

2 Also, from condition $\alpha_i = C - \lambda_i$, we have $\lambda_i = 0$, so $\xi_i \geq 0$

Margin SVs: 0 < α*ⁱ* < *C*:

D We again have $y_i(w^{\top}x_i + b) = 1 - \xi_i$.

2 This time, from $\alpha_i = C - \lambda_i$, we have $\lambda_i > 0$, hence $\xi_i = 0$.

Non-SVs (on the correct side of the margin): $\alpha_i = 0$:

1 From $\alpha_i = C - \lambda_i$, we have $\lambda_i > 0$, hence $\xi_i = 0$.

$$
\text{Thus, } y_i \left(w^\top x_i + b \right) \geq 1
$$

The support vectors

We observe:

- **1** The solution is sparse: points which are neither on the margin nor "margin errors" have $\alpha_i = 0$
- ² The support vectors: only those points on the decision boundary, or which are margin errors, contribute.
- **Influence of the non-margin SVs is bounded, since their weight cannot** exceed *C*.

Support vector classification: dual function

Thus, our goal is to maximize the dual,

$$
g(\alpha, \lambda) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^n \xi_i + \sum_{i=1}^n \alpha_i (1 - y_i (w^\top x_i + b) - \xi_i)
$$

+
$$
\sum_{i=1}^n \lambda_i (-\xi_i)
$$

=
$$
\frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j x_i^\top x_j + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j x_i^\top x_j
$$

-
$$
-b \sum_{i=1}^n \alpha_i y_i + \sum_{i=1}^n \alpha_i - \sum_{i=1}^n \alpha_i \xi_i - \sum_{i=1}^n (C - \alpha_i) \xi_i
$$

=
$$
\sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j y_i y_j x_i^\top x_j.
$$

Dual C-SVM

$$
\text{maximize } \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\top} x_j,
$$

subject to the constraints

$$
0 \leq \alpha_i \leq C, \quad \sum_{i=1}^n y_i \alpha_i = 0
$$

This is a quadratic program. From α , obtain the hyperplane with

$$
w = \sum_{i=1}^{n} \alpha_i y_i x_i
$$

(follows from complementary slackness in the derivation of the dual). Offset *b* can be obtained from any of the margin SVs (for which $\alpha_i \in (0, C)$): $1 = y_i (w^{\top} x_i + b).$

Solution depends on data through inner products only

Dual program

$$
\max_{\alpha} \quad \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^{\top} x_j \qquad \text{subject to} \quad \begin{cases} \sum_{i=1}^{n} \alpha_i y_i = 0\\ 0 \le \alpha \le C \end{cases}
$$

only depends on inputs x_i through their inner products (similarities) with other inputs. Decision function

$$
\hat{y}(x) = sign(w^{\top}x + b) = sign(\sum_{i=1}^{n} \alpha_i y_i x_i^{\top} x + b)
$$

also depends only on the similarity of a test point *x* to the training points *xⁱ* . Thus, we do not need explicit inputs - just their pairwise similarities. Key property: even if $p > n$, it is still the case that $w \in \text{span } \{x_i : i = 1, ..., n\}$ (normal vector of the hyperplane lives in the subspace spanned by the datapoints).

Department of Statistics, Oxford New York [SC4/SM8 ATSML, HT2018](#page-0-0) 27 / 30

Beyond Linear Classifiers

- No linear classifier separates red from blue.
- Linear separation after mapping to a **higher dimensional feature space**:

$$
\mathbb{R}^2 \ni \left(x^{(1)} \ x^{(2)} \right)^{\top} = x \ \mapsto \ \varphi(x) = \left(x^{(1)} \ x^{(2)} \ x^{(1)} x^{(2)} \right)^{\top} \in \mathbb{R}^3
$$

Non-Linear SVM

Consider the dual C-SVM with explicit non-linear transformation $x \mapsto \varphi(x)$:

$$
\max_{\alpha} \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j \varphi(x_i)^\top \varphi(x_j) \quad \text{subject to} \quad \begin{cases} \sum_{i=1}^{n} \alpha_i y_i = 0\\ 0 \leq \alpha \leq C \end{cases}
$$
\nSuppose $p = 2$, and we would like to introduce quadratic non-linearities,

$$
\varphi(x) = \left(1, \sqrt{2}x^{(1)}, \sqrt{2}x^{(2)}, \sqrt{2}x^{(1)}x^{(2)}, \left(x^{(1)}\right)^2, \left(x^{(2)}\right)^2\right)^{\top}.
$$

Then

$$
\varphi(x_i)^{\top} \varphi(x_j) = 1 + 2x_i^{(1)} x_j^{(1)} + 2x_i^{(2)} x_j^{(2)} + 2x_i^{(1)} x_i^{(2)} x_j^{(1)} x_j^{(2)} + \left(x_i^{(1)}\right)^2 \left(x_j^{(1)}\right)^2 + \left(x_i^{(2)}\right)^2 \left(x_j^{(2)}\right)^2 = (1 + x_i^{\top} x_j)^2
$$

- Since only inner products are needed, non-linear transform need not be computed explicitly - inner product between features can be a simple function (**kernel**) of x_i and x_j : $k(x_i, x_j) = \varphi(x_i)^\top \varphi(x_j) = (1 + x_i^\top x_j)^2$
- d -order interactions can be implemented by $k(x_i, x_j) = (1 + x_i^\top x_j)^d$ (**polynomial kernel**). Never need to compute explicit feature expansion of dimension $\binom{p+d}{d}$ where this inner product happens! Department of Statistics, Oxford [SC4/SM8 ATSML, HT2018](#page-0-0) 29 / 30

Kernel SVM: Kernel trick

Kernel SVM with $k(x_i, x_j)$. Non-linear transformation $x \mapsto \varphi(x)$ still present, but **implicit** (coordinates of the vector $\varphi(x)$ are never computed).

$$
\max_{\alpha} \quad \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_i \alpha_j y_i y_j k(x_i, x_j) \quad \text{subject to} \quad \begin{cases} \sum_{i=1}^{n} \alpha_i y_i = 0\\ 0 \le \alpha \le C \end{cases}
$$

- Prediction? $\hat{y}(x) = \text{sign}(w^\top \varphi(x) + b)$, where $w = \sum_{i=1}^n \alpha_i y_i \varphi(x_i)$ and offset *b* obtained from a margin support vector x_i with $\alpha_i \in (0, C)$.
	- No need to compute w either! Just need

$$
w^{\top} \varphi(x) = \sum_{i=1}^{n} \alpha_{i} y_{i} \varphi(x_{i})^{\top} \varphi(x) = \sum_{i=1}^{n} \alpha_{i} y_{i} k(x_{i}, x).
$$

Get offset from

$$
b = y_j - w^\top \varphi(x_j) = y_j - \sum_{i=1}^n \alpha_i y_i k(x_i, x_j)
$$

for any margin support-vector x_i ($\alpha_i \in (0, C)$).

Fitted a separating hyperplane in a high-dimensional feature space without ever mapping explicitly to that space.

Department of Statistics, Oxford [SC4/SM8 ATSML, HT2018](#page-0-0) 30 / 30