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Supervised Learning

Unsupervised learning:
To “extract structure” and postulate hypotheses about data generating
process from “unlabelled” observations x1, . . . , xn.
Visualize, summarize and compress data.

Supervised learning:
In addition to the observations of X, we have access to their response
variables / labels Y ∈ Y: we observe {(xi, yi)}n

i=1.
Types of supervised learning:

Classification: discrete responses, e.g. Y = {+1,−1} or {1, . . . ,K}.
Regression: a numerical value is observed and Y = R.

The goal is to accurately predict the response Y on new observations of X,
i.e., to learn a function f : Rp → Y, such that f (X) will be close to the true
response Y.
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Loss and Risk

Loss function

Suppose we made a prediction Ŷ = f (X) ∈ Y based on observation of X.
How good is the prediction? We can use a loss function L : Y ×Y 7→ R+

to formalize the quality of the prediction.
Typical loss functions:

Misclassification loss (or 0-1 loss) for classification

L(y, f (x)) =
{

0 f (x) = y
1 f (x) 6= y

.

Squared loss for regression

L(y, f (x)) = (f (x)− y)2 .

Many other choices are possible.
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Loss and Risk

Loss functions for binary classification

Classes are denoted −1 and +1. Class prediction is sign(f (x)), whereas the
magnitude of f (x) represents the “confidence".

0/1 loss L(y, f (x)) = 1{yf (x) ≤ 0},
(also called misclassification loss, optimal solution is called the Bayes
classifier and is given by f (x) = argmaxk∈{0,1} P(Y = k|X = x)),
hinge loss L(y, f (x)) = (1− yf (x))+
(used in support vector machines - leads to sparse solutions),
exponential loss L(y, f (x)) = e−yf (x)

(used in boosting algorithms - Adaboost),
logistic loss L(y, f (x)) = log

(
1 + e−yf (x)

)
(used in logistic regression, associated with a probabilistic model).

The loss can penalize misclassification (wrong sign) as well as the
overconfident misclassification (wrong sign and large magnitude) and even
underconfident correct classification (correct sign but small magnitude).
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Loss and Risk
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Figure: Loss functions for binary classification
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Loss and Risk

Loss functions for regression

squared loss: L(y, f (x)) = (y− f (x))2

(least squares regression: optimal f is the conditional mean E[Y|X = x]),
absolute loss: L(y, f (x)) = |y− f (x)|
(less sensitive to outliers: optimal f is the conditional median
med[Y|X = x]),
τ -pinball loss: L(y, f (x)) = 2 max{τ(y− f (x)), (τ −1)(y− f (x))} for τ ∈ (0, 1)
(quantile regression: optimal f is the τ -quantile of p(y|X = x)),

ε-insensitive (Vapnik) loss: L(y, f (x)) =

{
0, if |y− f (x)| ≤ ε,
|y− f (x)| − ε, otherwise.

(support vector regression - leads to sparse solutions).
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Loss and Risk
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Figure: Loss functions for regression
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Loss and Risk

Risk

paired observations {(xi, yi)}n
i=1 viewed as i.i.d. realizations of a random

variable (X,Y) on X × Y with joint distribution PXY

Risk
For a given loss function L, the risk R of a learned function f is given by the
expected loss

R(f ) = EPXY [L(Y, f (X))] ,

where the expectation is with respect to the true (unknown) joint distribution of
(X,Y).

The risk is unknown, but we can compute the empirical risk:

Rn(f ) =
1
n

n∑
i=1

L(yi, f (xi)).
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ERM

Hypothesis Space and Empirical Risk Minimization

The goal of learning is to find the function in hypothesis space H which
minimises the risk:

f? = argmin
f∈H

EX,Y [L(Y, f (X))]

Empirical Risk Minimization (ERM): minimize the empirical risk instead,
since we typically do not know PX,Y .

f̂ = argmin
f∈H

1
n

n∑
i=1

L(yi, f (xi))

Hypothesis space H is the space of functions f under consideration.
How complex should we allow functions f to be? If hypothesis space H is
“too large”, ERM can lead to overfitting.

f̂ (x) =

{
yi if x = xi,

0 otherwise

will have zero empirical risk, but is useless for generalization, since it has
simply “memorized” the dataset.
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ERM

Examples of Hypothesis Spaces

Say X ⊆ Rp.
all linear functions f (x) = w>x + b, parametrized by w ∈ Rp and b ∈ R
consider a specific nonlinear feature expansion ϕ : X → RD, with D > p
and use functions linear in those features: f (x) = w>ϕ(x) + b, but
nonlinear in the original inputs X , parametrized by w ∈ RD and b ∈ R. For
example, starting with X = R2, we can consider

ϕ

([
xi1
xi2

])
= [xi1, xi2, x2

i1,
√

2xi1xi2, x2
i2]
>, such that the resulting function can

depend on quadratic and interaction terms as well.
In this course, we will study an important type of hypothesis space:
Reproducing Kernel Hilbert Space (RKHS).
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ERM
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Figure: Underfitting and Overfitting
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ERM

Training and Test Performance

Training error is the empirical risk

R̂tr(f̂ ) =
1
n

n∑
i=1

L(yi, f̂ (xi))

of the learned function f̂ . For example, for 0-1 loss in classification, this
is the number of misclassified training examples which were used in
learning f̂ . Note that

EPXY R̂tr(f̂ ) 6= R(f̂ ).

Test error is the empirical risk on new, previously unseen observations
{x̃i, ỹi}m

i=1

R̂tst(f̂ ) =
1
m

m∑
i=1

L(ỹi, f̂ (x̃i))

which were NOT used in learning f .
Test error tells us how well the learned function generalizes to new data
(EPXY R̂tst(f̂ ) = R(f̂ )) and is in general larger than the training error.
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ERM

Training and Test Performance
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ERM

Regularisation

Flexible models for high-dimensional problems require many parameters.
With many parameters, learners can easily overfit.
regularisation: Limit flexibility of model to prevent overfitting.
Add term penalizing large values of parameters θ.

min
θ

R̂(fθ) + λ‖θ‖ρρ = min
θ

1
n

n∑
i=1

L(yi, fθ(xi)) + λ‖θ‖ρρ

where ρ ≥ 1, and ‖θ‖ρ = (
∑p

j=1 |θj|ρ)1/ρ is the Lρ norm of θ (also of
interest when ρ ∈ [0, 1), but is no longer a norm).
Also known as shrinkage methods—parameters are shrunk towards 0.
λ is a tuning parameter (or hyperparameter) and controls the amount
of regularisation, and resulting complexity of the model.
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ERM

Types of regularisation

Ridge regression / Tikhonov regularisation: ρ = 2 (Euclidean norm)
LASSO: ρ = 1 (Manhattan norm)
Sparsity-inducing regularisation: ρ ≤ 1 (nonconvex for ρ < 1)
Elastic net regularisation: mixed L1/L2 penalty:

min
θ

1
n

n∑
i=1

L(yi, fθ(xi)) + λ
[
(1− α)‖θ‖2

2 + α‖θ‖1
]

directly penalise some notion of smoothness of function f , e.g. for
X = R, the regularisation term can consist of the Sobolev norm

‖f‖2
W1 =

∫ +∞

−∞
f (x)2dx +

∫ +∞

−∞
f ′(x)2dx, (1)

which penalises functions with large derivative values.
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ERM

L1 promotes sparsity

Figure: The intersection between the L1 (left) and the L2 (right) ball with a hyperplane.

L1 regularisation often leads to optimal solutions with many zeros, i.e., the
regression function depends only on the (small) number of features with
non-zero parameters.
figure from M. Elad, Sparse and Redundant Representations, 2010.
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