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Gaussian Processes GP Regression

Parametric vs Nonparametric models

Parametric models have a fixed finite number of parameters, regardless
of the dataset size. In the Bayesian setting, given the parameter vector θ,
the predictions are independent of the data D.

p(x̃, θ|D) = p(θ|D)p(x̃|θ)

Parameters can be thought of as a data summary: communication
channel flows from data to the predictions through the parameters.

Nonparametric models allow the number of “parameters” to grow with
the dataset size. Alternatively, predictions depend on the data (and the
hyperparameters).
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Gaussian Processes GP Regression

Regression
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We are given a dataset D = {(xi, yi)}n
i=1, xi ∈ Rp, yi ∈ R.

Regression: learn the underlying real-valued function f (x).
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Gaussian Processes GP Regression

Different Flavours of Regression

We can model response yi as a noisy version of the underlying function f
evaluated at input xi:

yi|f (xi) ∼ N (f (xi), σ
2)

Appropriate loss: L(y, f (x)) = (y− f (x))2

Frequentist Parametric approach: model f as fθ for some parameter
vector θ. Fit θ by ML / ERM with squared loss (linear regression).
Frequentist Nonparametric approach: model f as the unknown
parameter taking values in an infinite-dimensional space of functions. Fit
f by regularized ML / ERM with squared loss (kernel ridge regression)
Bayesian Parametric approach: model f as fθ for some parameter
vector θ. Put a prior on θ and compute a posterior p(θ|D) (Bayesian linear
regression).
Bayesian Nonparametric approach: treat f as the random variable
taking values in an infinite-dimensional space of functions. Put a prior
over functions f ∈ F , and compute a posterior p(f |D) (Gaussian Process
regression).
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Gaussian Processes GP Regression

Just work with the function values at
the inputs f = (f (x1), . . . , f (xn))>

What properties of the function can
we incorporate?

Multivariate normal prior on f:

f ∼ N (0,K)

Use a kernel function k to define K:

Kij = k(xi, xj)

Expect regression functions to be
smooth: If x and x′ are close by, then
f (x) and f (x′) have similar values, i.e.
strongly correlated.(

f (x)
f (x′)

)
∼ N

((
0
0

)
,

(
k(x, x) k(x, x′)
k(x′, x) k(x′, x′)

))

The prior p(f) encodes our prior
knowledge about the function.
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Model:

f ∼ N (0,K)

yi|fi ∼ N (fi, σ2)
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Gaussian Processes GP Regression

Gaussian Processes

What does a multivariate normal prior mean?
Imagine x forms an infinitesimally dense grid of data space. Simulate
prior draws

f ∼ N (0,K)

Plot fi vs xi for i = 1, . . . , n.
The corresponding prior over functions is called a Gaussian Process
(GP): any finite number of evaluations of which follow a Gaussian
distribution.
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Gaussian Processes GP Regression

Gaussian Processes

Different kernels lead to different function characteristics.

Carl Rasmussen. Tutorial on Gaussian Processes at NIPS 2006.
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Gaussian Processes GP Regression

Gaussian Processes

f|x ∼ N (0,K)

y|f ∼ N (f, σ2I)

Posterior distribution:

f|y ∼ N (K(K + σ2I)−1y,K−K(K + σ2I)−1K)

Posterior predictive distribution: Suppose x′ is a test set. We can extend
our model to include the function values f′ at the test set:(

f
f′

)
|x, x′ ∼ N

((
0
0

)
,

(
Kxx Kxx′

Kx′x Kx′x′

))
y|f ∼ N (f, σ2I)

where Kxx′ is matrix with (i, j)-th entry k(xi, x′j).
Some manipulation of multivariate normals gives:

f′|y ∼ N
(
Kx′x(Kxx + σ2I)−1y,Kx′x′ −Kx′x(Kxx + σ2I)−1Kxx′

)
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Gaussian Processes GP Regression

Gaussian Processes
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GP regression demo: http://www.tmpl.fi/gp/
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Gaussian Processes GP Regression

Hyperparameters: Maximum marginal likelihood

Marginal likelihood of the hyperparameter vector θ = (ν, σ2) (ν: kernel
parameters, σ2: noise in the observation model)

p(y|θ) =

ˆ
p(y|f, θ)p(f|θ)df = N

(
y; 0,Kν + σ2I

)
.

Writing Kθ+ = Kν + σ2I, marginal log-likelihood is

log p(y|θ) = −1
2

log |Kθ+| −
1
2

y>K−1
θ+y− n

2
log(2π). (1)

Typically a nonconvex function of θ.
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Gaussian Processes GP Regression

Hyperparameters: Bayesian treatment

Place a prior p(θ) on θ and draw samples {θj} from the posterior

p(θ|y) ∝ p(θ)p(y|θ) = p(θ)

ˆ
p(y|f, θ)p(f|θ)df.

Integrate uncertainty over hyperparameters into predictions:

p(f′|y) =

ˆ
p(f′|y, θ)p(θ|y)dθ

≈
∑

j

p(f′|y, θj).
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Gaussian Processes GP Classification

GP with a logistic link

Consider the binary classification model with classes −1 and +1. Need to
map Gaussian process into (0, 1) with a nonlinear activation/link function, e.g.

p(yi = +1|f (xi)) = σ(f (xi)) =
1

1 + e−f (xi)
. (2)

Non-conjugate so exact posterior inference intractable.

Department of Statistics, Oxford SC4/SM8 ATSML, HT2018 12 / 19



Gaussian Processes GP Classification

Laplace approximation

Find MAP f̂MAP by maximizing

log p(f|y) = const + log p (f) + log p (y|f)

= const− 1
2

f>K−1f +

n∑
i=1

logσ(yif (xi)).

Gradient:
∂ log p(f|y)

∂f
= −K−1f + gf

where the gradient of the likelihood is gf = ∂ log p(y|f)
∂f with

[gf]i = ∂ log p(y|f)
∂fi

= σ(−yif (xi))yi.
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Gaussian Processes GP Classification

Laplace approximation

Hessian:
∂2 log p(f|y)

∂f∂f>
= −K−1 − Df,

where Df = −∂
2 log p(y|f)
∂f∂f> is the negative Hessian of the log-likelihood, which is

an n× n diagonal matrix, (Df)ii = σ(f (xi))σ(−f (xi)) ≥ 0.
Approximation to the posterior of f:

p̃ (f|y) = N
(

f
∣∣∣ f̂MAP,

(
K−1 + Df̂MAP

)−1
)
.

Approximation to the predictive posterior:

p̃ (f′|y) = N
(

f′ |Kx′xK−1
xx f̂MAP,Kx′x′ −Kx′x

(
Kxx + D−1

f̂MAP

)−1
Kxx′

)
. (3)

Same mean as the plug-in predictive p
(

f′ |̂fMAP
)

but the plug-in
underestimates the variance.
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Gaussian Processes GP Classification

Probit model
Can use probit instead of logistic, i.e.

p(yi = +1|f (xi)) = Φ(f (xi)), (4)

where Φ(z) = 1√
2π

´ z
−∞ e−t2/2dt is the standard normal cdf.

Analogous derivations by considering the gradient and Hessian of the
log-posterior

log p(f|y) = const− 1
2

f>K−1f +
n∑

i=1

log Φ(yif (xi)).

It suffices to replace

(gf)i =
yiφ (fi)
Φ (yifi)

,

(Df)ii =
φ (fi)

2

Φ (yifi)
2 +

yifiφ (fi)
Φ (yifi)
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Large-Scale Kernel Approximations

Large Scale Approximations
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Large-Scale Kernel Approximations

Kernel methods at scale

Expressivity of kernel methods (rich, often infinite-dimensional hypothesis
spaces) comes with a cost that scales at least quadratically in the number
of observations n (due to needing to compute, store and often invert the
Gram matrix)! We arrived at this by trying to avoid paying the cost in the
dimension of the hypothesis space (e.g., for order d polynomial kernels,
scales as

(p+d
d

)
, and infinite for many kernels).

But now we have to pay in terms of n which is problematic when we have
a lot of observations (and this is exactly when we want to use a rich
expressive model with a high-dimensional hypothesis class!)
Scaling up kernel methods is a very active research area
[Sonnenburg et al, 2006; Rahimi & Recht 2007; Le, Sarlos & Smola, 2013; Wilson et al, 2014; Dai et al,

2014; Sriperumbudur & Szabo, 2015].
Main idea: study the desired hypothesis space and scale its dimension
down - then undo the kernel trick!
Errm... So we went the full circle (!?)
explicit basis functions→ implicit basis functions→ explicit basis
functions
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Large-Scale Kernel Approximations

Random Fourier features: Inverse Kernel Trick

Bochner’s representation: any positive definite translation-invariant kernel
on Rp can be written as

k(x, y) =

ˆ
Rp

exp
(

iω>(x− y)
)

dΛ(ω)

=

ˆ
Rp

{
cos
(
ω>x

)
cos
(
ω>y

)
+ sin

(
ω>x

)
sin
(
ω>y

)}
dΛ(ω)

for some positive measure (w.l.o.g. a probability distribution) Λ.
Sample m frequencies {ωj} ∼ Λ and use a Monte Carlo estimator of the
kernel function instead [Rahimi & Recht, 2007]:

k̂(x, y) =
1
m

m∑
j=1

{
cos
(
ω>

j x
)

cos
(
ω>

j y
)

+ sin
(
ω>

j x
)

sin
(
ω>

j y
)}

= 〈ϕω(x), ϕω(y)〉R2m ,

with an explicit set of features x 7→ 1√
m

[
cos
(
ω>1 x

)
, sin

(
ω>1 x

)
, . . .

]
.

How fast does m need to grow with n? Sublinear for regression [Bach, 2015]
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Large-Scale Kernel Approximations

Inducing variables / Nyström

Directly approximate the n× n Gram matrix KXX of a set of inputs {xi}n
i=1

with
K̂XX = KXZK−1

ZZ KZX

where KZZ is m× m on “inducing” inputs {zi}m
i=1.

Corresponds to explicit feature representation x 7→ KxZK−1/2
ZZ .

Surrogate kernel k̂(x, x′) = 〈k|(·, x), k|(·, x′)〉, where k|(·, x) is a projection
of k(·, x) to span {k(·, z1), . . . , k(·, zm)}
Often used in regression with Gaussian processes: with the use of
Sherman-Morrison-Woodbury identity, reduces O(n3) cost to O(nm2).
[ Quiñonero-Candela and Rasmussen, 2005, Snelson and Ghahramani, 2006 ]

m can grow much slower than n in regression without sacrificing
performance [Rudi, Camoriano & Rosasco, 2015].
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