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Administrivia

Course Structure

MMath Part C & MSc in Applied Statistics

Lectures:
Tuesdays 2pm, LG.01.
Thursdays 4pm, LG.01.

MSc:
4 problem sheets: classes Mon 11am weeks 3,5,7,8, LG.01.

Part C:
4 problem sheets, solutions due Mon 10am in weeks 3,5,7,8.
Class Tutor: Leonard Hasenclever.
Teaching Assistants: Sam Davenport.
Check the course website for class times and locations.

Lecture notes and slides are available at the course website:
http://www.stats.ox.ac.uk/~sejdinov/atsml/

Department of Statistics, Oxford SC4/SM8 ATSML, HT2018 2 / 40

http://csml.stats.ox.ac.uk/people/hasenclever/
http://csml.stats.ox.ac.uk/people/davenport/
http://www.stats.ox.ac.uk/~sejdinov/atsml/
http://www.stats.ox.ac.uk/~sejdinov/atsml/


Administrivia

Course Aims

1 Have ability to identify and use appropriate methods and models for given
data and task.

2 Have ability to use the relevant software packages to analyse data,
interpret results, and evaluate methods.

3 Understand the statistical theory framing statistical machine learning.
4 Able to construct appropriate models and derive machine learning

algorithms for a given data and task.
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Introduction Types of Machine Learning

What is Machine Learning?

Arthur Samuel, 1959
Field of study that gives computers the ability to learn without being explicitly
programmed.

Tom Mitchell, 1997
Any computer program that improves its performance at some task through
experience.

Kevin Murphy, 2012

To develop methods that can automatically detect patterns in data, and
then to use the uncovered patterns to predict future data or other outcomes
of interest.
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Introduction Types of Machine Learning

What is Machine Learning?

recommender systems
machine translation self-driving cars

image recognition
DQN Atari games

AlphaGo
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Introduction Types of Machine Learning

Types of Machine Learning

Supervised learning

Data contains “labels”: every example is an input-output pair
classification, regression
Goal: prediction on new examples

Unsupervised learning

Extract key features of the “unlabelled” data
clustering, signal separation, density estimation
Goal: representation, hypothesis generation, visualization
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Introduction Types of Machine Learning

Types of Machine Learning

Semi-supervised Learning

A database of examples, only a small subset of which are labelled.

Multi-task Learning

A database of examples, each of which has multiple labels corresponding to
different prediction tasks.

Reinforcement Learning

An agent acting in an environment, given rewards for performing appropriate
actions, learns to maximize their reward.
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Introduction Software

Software

R
Python: scikit-learn, mlpy, Theano
TensorFlow, Torch, Keras, Shogun, Weka.
Matlab/Octave
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Introduction Software

Unsupervised Learning

Goals:
Find the variables that summarise the data / capture relevant information.
Discover informative ways to visualise the data.
Discover the subgroups among the observations.

It is often much easier to obtain unlabeled data than labeled data!
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Dimensionality Reduction

Dimensionality Reduction
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Dimensionality Reduction PCA

Dimensionality reduction

deceptively many variables to measure, many of them redundant /
correlated to each other (large p)
often, there is a simple but unknown underlying relationship hiding
example: ball on a frictionless spring recorded by three different cameras

our imperfect measurements obfuscate the true underlying dynamics
are our coordinates meaningful or do they simply reflect the method of data
gathering?

J. Shlens, A Tutorial on Principal Component Analysis, 2005
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Dimensionality Reduction PCA

Principal Components Analysis (PCA)

PCA considers interesting directions to be those with greatest variance.
A linear dimensionality reduction technique: looks for a new basis to
represent a noisy dataset.
Workhorse for many different types of data analysis (often used for data
preprocessing before supervised techniques are applied).
Often the first thing to run on high-dimensional data.
PCA in R: princomp, prcomp.
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Dimensionality Reduction PCA

Data Matrix notation

Notation
Data consists of p variables (features/attributes/dimensions) on n
examples (items/observations).
X = (xij) is a n× p-matrix with xij := the j-th variable for the i-th example

X =



x11 x12 . . . x1j . . . x1p

x21 x22 . . . x2j . . . x2p
...

...
. . .

...
. . .

...
xi1 xi2 . . . xij . . . xip
...

...
. . .

...
. . .

...
xn1 xn2 . . . xnj . . . xnp


.

Denote the i-th data item by xi ∈ Rp (we will treat it as a column vector: it
is the transpose of the i-th row of X).
Assume x1, . . . , xn are independently and identically distributed
samples of a random vector X over Rp. The j-th dimension of X will be
denoted X(j).
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Dimensionality Reduction PCA

Principal Components Analysis (PCA)
Assume that the dataset is centred, i.e.,
x̄ = 1

n

∑n
i=1 xi = 0.

Sample covariance:

S =
1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)>

=
1

n− 1

n∑
i=1

xix>i =
1

n− 1
X>X.

PCA
PCA recovers an orthonormal basis v1, v2, . . . , vp in Rp – vectors vi are called
principal components (PC) or loading vectors – such that:

The first principal component (PC) v1 is the direction of greatest
variance of data.
The j-th PC vj is the direction orthogonal to v1, v2, . . . , vj−1 of greatest
variance, for j = 2, . . . , p.

Department of Statistics, Oxford SC4/SM8 ATSML, HT2018 14 / 40



Dimensionality Reduction PCA

Principal Components Analysis (PCA)

The k-dimensional representation of data item xi is the vector of
projections of xi onto first k PCs:

zi = V>1:kxi =
[
v>1 xi, . . . , v>k xi

]> ∈ Rk,

where V1:k = [v1, . . . , vk].
Transformed data matrix, also called the scores matrix

Z = XV1:k ∈ Rn×k.

Reconstruction of xi:
x̂i = V1:kV>1:kxi.

PCA gives the optimal linear reconstruction of the original data based
on a k-dimensional compression (problem sheets).

Department of Statistics, Oxford SC4/SM8 ATSML, HT2018 15 / 40



Dimensionality Reduction PCA

Deriving the First Principal Component

Our data set is an i.i.d. sample {xi}n
i=1 of a random vector

X =
[
X(1) . . .X(p)

]>
.

For the 1st PC, we seek a derived scalar variable of the form

Z(1) = v>1 X = v11X(1) + v12X(2) + · · ·+ v1pX(p)

where v1 = [v11, . . . , v1p]> ∈ Rp are chosen to maximise the sample
variance

V̂ar(Z(1)) = v>1 Ĉov(X)v1 = v>1 Sv1.

Optimisation problem

max
v1

v>1 Sv1

subject to: v>1 v1 = 1.
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Dimensionality Reduction PCA

Deriving the First Principal Component

Lagrangian of the problem is given by:

L (v1, λ1) = v>1 Sv1 − λ1
(
v>1 v1 − 1

)
.

The corresponding vector of partial derivatives is

∂L(v1, λ1)

∂v1
= 2Sv1 − 2λ1v1.

Setting this to zero reveals the eigenvector equation Sv1 = λ1v1, i.e. v1
must be an eigenvector of S and the dual variable λ1 is the corresponding
eigenvalue.
Since v>1 Sv1 = λ1v>1 v1 = λ1, the first PC must be the eigenvector
associated with the largest eigenvalue of S.
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Dimensionality Reduction PCA

PCA as eigendecomposition of the covariance matrix

The 2nd PC is chosen to be orthogonal with the 1st and is computed in a
similar way (see notes). It will have the largest variance in the remaining
p− 1 dimensions, etc.
The eigenvalue decomposition of S is given by

S = VΛV>

where Λ is a diagonal matrix with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0

and V is a p× p orthogonal matrix whose columns are the p eigenvectors
of S, i.e. the principal components v1, . . . , vp.
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Dimensionality Reduction PCA

Properties of the Principal Components

Derived scalar variable (projection to the j-th principal component)
Z(j) = v>j X has sample variance λj, for j = 1, . . . , p
S is a real symmetric matrix, so eigenvectors (principal components) are
orthogonal.
Projections to principal components are uncorrelated:
Ĉov(Z(i),Z(j)) ≈ v>i Svj = λjv>i vj = 0, for i 6= j.

The total sample variance is given by Tr(S) =
∑p

i=1 Sii = λ1 + . . .+λp, so
the proportion of total variance explained by the jth PC is λj

λ1+λ2+...+λp
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Dimensionality Reduction PCA

PCA on Face Images: Eigenfaces

Turk and Pentland, CVPR 1995
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Dimensionality Reduction PCA

PCA on European Genetic Variation
Example of PCA: Genetic variation within Europe

Novembre et al. (2008) Nature 456:98-101Genes mirror geography within Europe, Nature 2008
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Dimensionality Reduction PCA

PCA: summary

PCA

Find an orthogonal basis {v1, v2, . . . , vp} for the data space such that:
The first principal component (PC) v1 is the direction of greatest
variance of data.
The j-th PC vj is the direction orthogonal to v1, v2, . . . , vj−1 of greatest
variance, for j = 2, . . . , p.

Eigendecomposition of the sample covariance matrix S = 1
n−1

∑n
i=1 xix>i .

S = VΛV>.
Λ is a diagonal matrix with eigenvalues (variances along each principal
component) λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0
V is a p × p orthogonal matrix whose columns are the p eigenvectors of S,
i.e. the principal components v1, . . . , vp

Dimensionality reduction by projecting xi ∈ Rp onto first k principal
components:

zi =
[
v>1 xi, . . . , v>k xi

]> ∈ Rk.
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Dimensionality Reduction PCA

Comments on the use of PCA

PCA commonly used to project data X onto the first k PCs giving the
k-dimensional view of the data that best preserves the first two
moments.
Although PCs are uncorrelated, scatterplots sometimes reveal structures
in the data other than linear correlation.
Emphasis on variance is where the weaknesses of PCA stem from:

Assuming large variances are meaningful (high signal-to-noise ratio)
The PCs depend heavily on the units measurement. Where the data matrix
contains measurements of vastly differing orders of magnitude, the PC will
be greatly biased in the direction of larger measurement. In these cases, it is
recommended to calculate PCs from Corr(X) instead of Cov(X) (cor=True
in the call of princomp).
Lack of robustness to outliers: variance is affected by outliers and so are
PCs.
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Dimensionality Reduction SVD

Eigendecomposition and PCA

S =
1

n− 1

n∑
i=1

xix>i =
1

n− 1
X>X.

S is a real and symmetric matrix, so there exist p eigenvectors v1, . . . , vp

that are pairwise orthogonal and p associated eigenvalues λ1, . . . , λp

which satisfy the eigenvalue equation Svi = λivi. In particular, V is an
orthogonal matrix:

VV> = V>V = Ip.

S is a positive-semidefinite matrix, so the eigenvalues are non-negative:

λi ≥ 0, ∀i.

Why is S symmetric? Why is S positive-semidefinite?
Reminder: A symmetric p× p matrix R is said to be positive-semidefinite if

∀a ∈ Rp, a>Ra ≥ 0.
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Dimensionality Reduction SVD

Singular Value Decomposition (SVD)

SVD

Any real-valued n× p matrix X can be written as X = UDV> where
U is an n× n orthogonal matrix: UU> = U>U = In

D is a n× p matrix with decreasing non-negative elements on the
diagonal (the singular values) and zero off-diagonal elements.
V is a p× p orthogonal matrix: VV> = V>V = Ip

SVD always exists, even for non-square matrices.
Fast and numerically stable algorithms for SVD are available in most
packages. The relevant R command is svd.
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Dimensionality Reduction SVD

SVD and PCA

Let X = UDV> be the SVD of the n× p data matrix X.
Note that

(n− 1)S = X>X = (UDV>)>(UDV>) = VD>U>UDV> = VD>DV>,

using orthogonality (U>U = In) of U.
The eigenvalues of S are thus the diagonal entries of Λ = 1

n−1 D>D.
We also have

XX> = (UDV>)(UDV>)> = UDV>VD>U> = UDD>U>,

using orthogonality (V>V = Ip) of V.

Gram matrix

K = XX>, Kij = x>i xj is called the Gram matrix of dataset X.
K and (n− 1)S = X>X have the same nonzero eigenvalues, equal to the
non-zero squared singular values of X.

Department of Statistics, Oxford SC4/SM8 ATSML, HT2018 26 / 40



Dimensionality Reduction SVD

PCA projections from Gram matrix
If we consider projections to all principal components, the transformed data
matrix is

Z = XV = UDV>V = UD, (1)

If p ≤ n this means

zi = [Ui1D11, . . . ,UipDpp]
>
, (2)

and if p > n only the first n projections are defined (sample covariance will
have rank at most n):

zi = [Ui1D11, . . . ,UinDnn, 0, . . . , 0]
>
. (3)

Thus, Z can be obtained from the eigendecomposition of Gram matrix K.
When p� n, eigendecomposition of K requires much less computation,
O(n3), than the eigendecomposition of the covariance matrix, O(p3), so is the
preferred method for PCA in that case.
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Clustering

Clustering
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Clustering Introduction

Clustering

Many datasets consist of multiple heterogeneous subsets.
Cluster analysis: Given an unlabelled data, want algorithms that
automatically group the datapoints into coherent subsets/clusters.
Examples:

market segmentation of shoppers based on browsing and purchase histories
different types of breast cancer based on the gene expression
measurements
discovering communities in social networks
image segmentation
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Clustering Introduction

Types of Clustering

Model-free clustering:
Defined by similarity/dissimilarity among instances within clusters.

Model-based clustering:
Each cluster is described using a probability model.
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Clustering Introduction

Model-free clustering

notion of similarity/dissimilarity between data items is central: many ways
to define and the choice will depend on the dataset being analyzed and
dictated by domain specific knowledge
most common approach is partition-based clustering: one divides n data
items into K clusters C1, . . . ,CK where for all k, k′ ∈ {1, . . . ,K},

Ck ⊂ {1, . . . , n} , Ck ∩ Ck′ = ∅ ∀k 6= k′,
K⋃

k=1

Ck = {1, . . . , n} .

Intuitively, clustering aims to group similar items together and to place
separate dissimilar items into different groups
two objectives can contradict each other (similarity is not a transitive
relation, while being in the same cluster is an equivalence relation)
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Clustering Introduction

Axiomatic approach

Clustering method is a map F : (D = {xi}n
i=1, ρ) 7→ {C1, . . . ,CK} which takes

as an input dataset D and a dissimilarity function ρ and returns a partition of
D. Three basic properties required

Scale invariance. For any α > 0, F (D, αρ) = F (D, ρ).
Richness. For any partition C = {C1, . . . ,CK} of D, there exists
dissimilarity ρ, such that F (D, ρ) = C.
Consistency. If ρ and ρ′ are two dissimilarities such that for all xi, xj ∈ D
the following holds:

xi, xj belong to the same cluster in F (D, ρ) =⇒ ρ′(xi, xj) ≤ ρ(xi, xj)

xi, xj belong to different clusters in F (D, ρ) =⇒ ρ′(xi, xj) ≥ ρ(xi, xj),

then F (D, ρ′) = F (D, ρ).
Kleinberg (2003) proves that there exists no clustering method that satisfies
all three properties!
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Clustering Introduction

Examples of Model-free Clustering

K-means clustering: a partition-based method into K clusters. Finds
groups such that variation within each group is small. The number of
clusters K is usually fixed beforehand or various values of K are
investigated as a part of the analysis.
Spectral clustering: Similarity/dissimilarity between data items defines a
graph. Find a partition of vertices which does not “cut" many edges. Can
be interpreted as nonlinear dimensionality reduction followed by
K-means.
Hierarchical clustering: nearby data items are joined into clusters, then
clusters into super-clusters forming a hierarchy. Typically, the hierarchy
forms a binary tree (a dendrogram) where each cluster has two
“children” clusters. Dendrogram allows to view the clusterings for each
possible number of clusters, from 1 to n (number of data items).
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Clustering K-means

K-means
Goal: divide data items into a pre-assigned number K of clusters C1, . . . ,CK

where for all k, k′ ∈ {1, . . . ,K},

Ck ⊂ {1, . . . , n} , Ck ∩ Ck′ = ∅ ∀k 6= k′,
K⋃

k=1

Ck = {1, . . . , n} .

Each cluster is represented using a prototype or cluster centroid µk.
We can measure the quality of a cluster with its within-cluster deviance

W(Ck, µk) =
∑
i∈Ck

‖xi − µk‖2
2.

The overall quality of the clustering is given by the total within-cluster
deviance:

W =

K∑
k=1

W(Ck, µk).

W is the overall objective function used to select both the cluster centroids
and the assignment of points to clusters.
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Clustering K-means

K-means

W =

K∑
k=1

∑
i∈Ck

‖xi − µk‖2
2 =

n∑
i=1

‖xi − µci‖2
2

where ci = k if and only if i ∈ Ck.
Given partition {Ck}, we can find the optimal prototypes easily by
differentiating W with respect to µk:

∂W
∂µk

= 2
∑
i∈Ck

(xi − µk) = 0 ⇒ µk =
1
|Ck|

∑
i∈Ck

xi

Given prototypes, we can easily find the optimal partition by assigning
each data point to the closest cluster prototype:

ci = argmin
k
‖xi − µk‖2

2

But joint minimization over both is computationally difficult.
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Clustering K-means

K-means
The K-means algorithm is a widely used method that returns a local optimum
of the objective function W, using iterative and alternating minimization.

1 Randomly initialize K cluster centroids µ1, . . . , µK .
2 Cluster assignment: For each i = 1, . . . , n, assign each xi to the cluster

with the nearest centroid,

ci := argmin
k
‖xi − µk‖2

2

Set Ck := {i : ci = k} for each k.
3 Move centroids: Set µ1, . . . , µK to the averages of the new clusters:

µk :=
1
|Ck|

∑
i∈Ck

xi

4 Repeat steps 2-3 until convergence.
5 Return the partition {C1, . . . ,CK} and means µ1, . . . , µK .
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Clustering K-means
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Clustering K-means

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

−0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0
1.

5

x

y

Assign points. W = 128.1

Department of Statistics, Oxford SC4/SM8 ATSML, HT2018 37 / 40



Clustering K-means
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Clustering K-means
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K-means

The algorithm stops in a finite number of iterations. Between steps 2
and 3, W either stays constant or it decreases, this implies that we never
revisit the same partition. As there are only finitely many partitions, the
number of iterations cannot exceed this.
The K-means algorithm need not converge to global optimum.
K-means is a heuristic search algorithm so it can get stuck at suboptimal
configurations. The result depends on the starting configuration. Typically
perform a number of runs from different configurations, and pick the end
result with minimum W.
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K-means Additional Comments

Good practice initialization. Set centroids µ1, µ2, . . . , µK equal to a
subset of training examples (chosen without replacement). Initialization
using weighted sampling of training examples (K-means++) has precise
theoretical guarantees1

Sensitivity to distance measure. Euclidean distance can be greatly
affected by measurement unit and by strong correlations. Can use
Mahalanobis distance instead:

‖x− y‖M =
√

(x− y)>M−1(x− y)

where M is positive semi-definite matrix, e.g. sample covariance.
Determination of K. The K-means objective will always improve with
larger number of clusters K. Determination of K requires an additional
regularization criterion. E.g., in DP-means2, use

W =

K∑
k=1

∑
i∈Ck

‖xi − µk‖2
2 + λK

1Arthur & Vassilvitskii, 2007
2Kulis & Jordan, 2012
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Other partition based methods

Other partition-based methods with related ideas:
K-medoids: requires cluster centroids µi to be an observation xj

K-medians: cluster centroids represented by a median in each
dimension
K-modes: cluster centroids represented by a mode estimated from a
cluster
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