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.
The story so far

o Hilbert space: a complete space with an inner product

o Riesz Theorem: all linear & continuous functionals are representable by
inner products

@ RKHS: a Hilbert space of functions for which evaluation is continuous

e thus, evaluation is representable by an inner product with some element
o define k(+, x) as that representer of evaluation: reproducing kernel

@ kernel as an inner product between features: k(x,x’) = (¢(x), p(x'))y
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Overview

@ What is an RKHS?

©0

@ Reproducing kernel
@ Inner product between features
@ Positive definite function

Moore-Aronszajn Theorem

Mercer representation of RKHS

@ Integral operator

@ Mercer's theorem

@ Relation between Hy and Lo(X;v)

Operations with kernels
@ Sum and product
o Constructing new kernels
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Outline

© What is an RKHS?
@ Reproducing kernel
@ Inner product between features
@ Positive definite function
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RKHS

Definition (Reproducing kernel Hilbert space)

Let X' be a non-empty set. A Hilbert space H of functions 7 : X — R is
said to be a Reproducing Kernel Hilbert Space (RKHS) if evaluation
functionals dx : f — f(x) are continuous Vx € X.
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RKHS

Definition (Reproducing kernel Hilbert space)

Let X' be a non-empty set. A Hilbert space H of functions 7 : X — R is
said to be a Reproducing Kernel Hilbert Space (RKHS) if evaluation
functionals dx : f — f(x) are continuous Vx € X.

If two functions f, g € H are close in the norm of H, then f(x) and g(x)
are close for all x € X
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Outline

Will discuss three distinct concepts:
@ reproducing kernel
@ inner product between features

@ positive definite function
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Outline

Will discuss three distinct concepts:
@ reproducing kernel
@ inner product between features
@ positive definite function

...and then show that they are all equivalent.

D. Sejdinovic, A. Gretton (Gatsby Unitsli Foundations of RKHS March 17, 2014 6 /58



What is an RKHS? Reproducing kernel
Qutline

© What is an RKHS?

@ Reproducing kernel

© Moore-Aronszajn Theorem
© Mercer representation of RKHS

@ Operations with kernels
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What is an RKHS? Reproducing kernel

Reproducing kernel

Definition (Reproducing kernel)
Let H be a Hilbert space of functions ¥ : X — R defined on a non-empty
set X. A function k : X x X — R is called a reproducing kernel of H if it
satisfies

o Vx e X, ke=k(-,x)EH,

o Vx e X, Vf € H, (f k(-,x))y = f(x) (the reproducing property). )
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What is an RKHS? Reproducing kernel

Reproducing kernel

Definition (Reproducing kernel)
Let H be a Hilbert space of functions ¥ : X — R defined on a non-empty
set X. A function k : X x X — R is called a reproducing kernel of H if it
satisfies

o Vx e X, ke=k(-,x)EH,

o Vx e X, Vf € H, (f, k(-,x))s = f(x) (the reproducing property). )

In particular, for any x,y € X,
k(X>y) = <k('v)/) ) k('7X)>’H = <k('7X) ) k('?Y)>H-
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Reredheis e
Reproducing kernel of an RKHS

Theorem

If it exists, reproducing kernel is unique.

Theorem

‘H is a reproducing kernel Hilbert space if and only if it has a reproducing
kernel.
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What is an RKHS? Inner product between features
Qutline

@ What is an RKHS?

@ Inner product between features

© Moore-Aronszajn Theorem
© Mercer representation of RKHS

@ Operations with kernels
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What is an RKHS? Inner product between features

Feature space inner product

Definition (Kernel)
A function k : X x X — R is called a kernel on X if there exists a Hilbert
space (not necessarilly an RKHS) F and a map ¢ : X — F, such that

k(x,y) = (@(x), 6(y)) #-
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What is an RKHS? Inner product between features

Feature space inner product

Definition (Kernel)
A function k : X x X — R is called a kernel on X if there exists a Hilbert
space (not necessarilly an RKHS) F and a map ¢ : X — F, such that

k(x,y) = (@(x), 6(y)) #-

e ¢ : X — Fis called a feature map,
@ F is called a feature space.

Fact
Every reproducing kernel is a kernel (every RKHS is a valid feature
space).
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What is an RKHS? Inner product between features

Non-uniqueness of feature representation

Example
Consider X = R?, and k(x,y) = (x,y)?

k(x,y) = X12}’12+X22}/22+2X1X2y1y2

2

i

= [ ¥ V2ax ] i
V2y1y»
vi
2 2 Y22

= Xi X5 X1X2 = X1X:

[ i X5 X1X2 X1X2 ] iye
yiy2

so we can use the feature maps ¢(x) = (x7,x3,V2x1x2) or
d(x)=[ x¥ x5 xix2 xix |, with feature spaces = R® or H = R*.
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What is an RKHS? Inner product between features

Non-uniqueness of feature representation

Example
Consider X = R?, and k(x,y) = (x,y)?

k(x,y) = X12}’12 +X22}/22 + 2x1x2y1y2

Vi

= [ ¥ V2ax ] i
V2y1y»
Vi
Vi
yiyo
yiy2

2
= [ X1 X2 X1 X2 X1 X2 ]

so we can use the feature maps ¢(x) = (x7,x3,V2x1x2) or
d(x)=[ x¥ x5 xix2 xix |, with feature spaces = R® or H = R*.

Not RKHS!

Evaluation is not defined on R3 or R*.
Foundations of RKHS March 17, 2014
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What is an RKHS? Positive definite function

Outline

© What is an RKHS?

@ Positive definite function
© Moore-Aronszajn Theorem
© Mercer representation of RKHS

@ Operations with kernels
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What is an RKHS? Positive definite function

Positive definite functions

Definition (Positive definite functions)

A symmetric function h : X x X — R is positive definite if
Vn>1, V(a1,...an) € R", V(x1,...,%,) € X",

Sy a;jaih(xj,x;) = a' Ha > 0.
YD aiah(xi, x;)

i=1 j=1
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What is an RKHS? Positive definite function

Positive definite functions

Definition (Positive definite functions)

A symmetric function h : X x X — R is positive definite if
Vn > 1, V(al, c.. a,,) € Rn, V(Xl, c. ,Xn) e X",

n

Zia;ajh(x,-,xj-) —a'Ha>0.

i=1 j=1

h is strictly positive definite if for mutually distinct x;, the equality holds
only when all the a; are zero.
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What is an RKHS? Positive definite function

Kernels are positive definite

Fact J

Every kernel is a positive definite function.
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What is an RKHS? Positive definite function

Kernels are positive definite

Fact

Every kernel is a positive definite function.

ZZa;ajk(x;,Xj) = Zzalaj ,0(%)) £

i=1 j=1 i=1 j=1

= <Z aio(x;), 3j¢(xj)>
i=1 J=1 F
. 2
> aig(x)

i=1

> 0.
F
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What is an RKHS? Positive definite function

So far

reproducing kernel = kernel = positive definite
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What is an RKHS? Positive definite function

So far

reproducing kernel = kernel = positive definite

Is every positive definite function a reproducing kernel for some RKHS?
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What is an RKHS? Positive definite function

So far

reproducing kernel <= kernel <= positive definite

Yes (Moore-Aronszajn)!
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Outline

© Moore-Aronszajn Theorem
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Moore-Aronszajn Theorem

Moore-Aronszajn Theorem

Theorem (Moore-Aronszajn)

Let k : X x X — R be positive definite. There is a unique RKHS
H C R* with reproducing kernel k.
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Moore-Aronszajn Theorem: pre-RKHS

Starting with a positive def. k, construct a pre-RKHS (an inner product
space) Ho C RY with properties:
@ The evaluation functionals d, are continuous on Hj,

@ Any Hp-Cauchy sequence f,, which converges pointwise to 0 also
converges in Ho-norm to 0
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Moore-Aronszajn Theorem: pre-RKHS

pre-RKHS g = span {k(-,x) | x € X'} will be taken to be the set of
functions:

F(x) =Y aik(x,x;)
i=1
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Moore-Aronszajn Theorem

Moore-Aronszajn Theorem: Steps

Theorem (Moore-Aronszajn - Step A)

Space Ho = span{k(-,x)|x € X'}, endowed with the inner product

(Fredne = DD ciblklany),

i=1 j=1

where f =371, ajk(-,x;) and g = > 1, Bik(-,y;), is a valid pre-RKHS.

v
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Moore-Aronszajn Theorem

Moore-Aronszajn Theorem: Steps

Theorem (Moore-Aronszajn - Step A)
Space Ho = span{k(-,x)|x € X'}, endowed with the inner product

(F.8) = D iBik(xi,y),
i=1 j=1

where f =371 aik(-, x;) and g = > 11 Bik(-, y;), is a valid pre-RKHS.

v

Theorem (Moore-Aronszajn - Step B)

Let Ho be a pre-RKHS space. Define H to be the set of functions f € RY

for which there exists an Ho-Cauchy sequence {f,} converging pointwise
to f. Then, H is an RKHS.
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Moore-Aronszajn Theorem - Step A

o Is (f,g)4y,a valid inner product?
@ Are evaluation functionals d, are continuous on Hq?

@ Does every Hp-Cauchy sequence f,, which converges pointwise to 0
also converge in Hp-norm to 07
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Moore-Aronszajn Theorem

Moore-Aronszajn Theorem- Step B

Define H to be the set of functions f € RY for which there exists an
Ho-Cauchy sequence {f,} converging pointwise to f. Clearly, Ho C H.
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Moore-Aronszajn Theorem

Moore-Aronszajn Theorem- Step B

Define H to be the set of functions f € RY for which there exists an
Ho-Cauchy sequence {f,} converging pointwise to f. Clearly, Ho C H.

@ We define the inner product between f, g € H as the limit of an inner
product of the Ho-Cauchy sequences {f,}, {g,} converging to f and
g respectively. Is this inner product well defined, i.e., independent of
the sequences used?
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Moore-Aronszajn Theorem

Moore-Aronszajn Theorem- Step B

Define # to be the set of functions f € RY for which there exists an
Ho-Cauchy sequence {f,} converging pointwise to f. Clearly, Ho C H.

@ We define the inner product between f, g € H as the limit of an inner
product of the Ho-Cauchy sequences {f,}, {g,} converging to f and
g respectively. Is this inner product well defined, i.e., independent of
the sequences used?

@ An inner product space must satisfy (f,f),, = 0 iff f = 0. Is this true
when we define the inner product on H as above?

© Are the evaluation functionals still continuous on H?

Q Is H complete (i.e., does every H-Cauchy sequence converge)?

o (1)+(2)+(3)+(4) = H is RKHS!
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Moore-Aronszajn Theorem

Summary

reproducing kernel <= kernel <= positive definite
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Moore-Aronszajn Theorem

Summary

reproducing kernel <= kernel <= positive definite

set of all pd functions: RfXX
1-1
—

set of all RKHSs: Hilb(R™Y)
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Moore-Aronszajn Theorem

Non-uniqueness of feature representation

@ There are (infinitely) many feature space representations (and we can
even work in one or more of them, if it's convenient!)

(6(x), d(y))ps = Ay + b3 + cV2y1y2 = kely)

p(x)=[a= x2 b=xZ c=V2xix |
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Moore-Aronszajn Theorem

Non-uniqueness of feature representation

@ There are (infinitely) many feature space representations (and we can
even work in one or more of them, if it's convenient!)

(6(x), d(y))ps = Ay + b3 + cV2y1y2 = kely)

p(x)=[a= x2 b=xZ c=V2xix |

<¢3(X)-, (5()/)>R4 =37+ by +eny+dny, = kdy)

¢(X):[5:X12 b=x3 &=xx C/:X1X2}

o Different feature maps give coefficients of canonical feature map
k(-,x) in terms of (different) simpler functions.
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Non-uniqueness of feature representation

@ There are (infinitely) many feature space representations (and we can
even work in one or more of them, if it's convenient!)

(6(x), d(y))ps = Ay + b3 + cV2y1y2 = kely)

p(x)=[a= x2 b=xZ c=V2xix |

<(~)(X) (f;()’)> L= HbE e +dny, = kd(y)

qb(x):[ézxf b=x3 &=xx d:xp@}

o Different feature maps give coefficients of canonical feature map
k(-,x) in terms of (different) simpler functions.

@ RKHS of k remains unique, regardless of the representation.
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Mercer representation of RKHS
Outline

© Mercer representation of RKHS
@ Integral operator
@ Mercer's theorem
@ Relation between Hy and Lo(X;v)
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Mercer representation of RKHS Integral operator
Qutline

@ What is an RKHS?

© Moore-Aronszajn Theorem

© Mercer representation of RKHS
@ Integral operator

@ Operations with kernels
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Assumptions

@ So far, no assumptions on:

o X (apart from it being a non-empty set)
e nor on k (apart from it being a positive definite function)
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Mercer representation of RKHS Integral operator
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@ So far, no assumptions on:

o X (apart from it being a non-empty set)
e nor on k (apart from it being a positive definite function)

@ Now, assume that:
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Mercer representation of RKHS Integral operator

Assumptions

@ So far, no assumptions on:

o X (apart from it being a non-empty set)
e nor on k (apart from it being a positive definite function)

@ Now, assume that:
e X is a compact metric space

o such as [a, b]¥, key: every continuous function on X is bounded and
uniformly continuous

D. Sejdinovic, A. Gretton (Gatsby Unitsli Foundations of RKHS March 17, 2014 29 / 58



Assumptions

@ So far, no assumptions on:

o X (apart from it being a non-empty set)

e nor on k (apart from it being a positive definite function)
@ Now, assume that:

e X is a compact metric space

o such as [a, b]¥, key: every continuous function on X is bounded and
uniformly continuous

o k: X xX — Ris a continuous positive definite function
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Mercer representation of RKHS Integral operator

Integral operator of a kernel

Definition (Integral operator)

Let v be a finite Borel measure on X. For the linear map
5 LQ(X Z/) — C
(5F) 0 = /k y)duly), feFela(X;v),

its composition Ty = I o Sx with the inclusion I : C(X) — La(X;v) is
said to be the integral operator of k.

D. Sejdinovic, A. Gretton (Gatsby Unitsli Foundations of RKHS March 17, 2014 30 / 58



Proof that Skz? Is continuous

‘(5;(?) (x) — (Sk?) (X/)

= | () k) )

= (b~ k). T)
e (ke — k)| 2 || F

IN

L2

= |7

g \/ [ (ko) = kx)) o)

< o) [[F] L max k(x.y) = k(<)
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Mercer representation of RKHS Integral operator

Integral operator of a kernel (2)

T. = ISk
Ly(X;v) L2 (X5 v)

Sk
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Mercer representation of RKHS Integral operator

Integral operator of a kernel (2)

T, = ISk

Ly(X;v) L2 (X5 v)
\ /
k
c(x)

Tk : La(X;v) — Ly(X;v)

Ty # Sk : <5k?> (x) is defined, while (Tk?) (x) is not!
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Properties of integral operators

e k symmetric = T self-adjoint: (f, Txg) = (Tkf,g)

D. Sejdinovic, A. Gretton (Gatsby Unitsli Foundations of RKHS March 17, 2014 33 /58



Properties of integral operators

e k symmetric = T self-adjoint: (f, Txg) = (Tkf,g)
@ k positive definite = T positive: (f, T,f) >0
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Mercer representation of RKHS Integral operator

Properties of integral operators

e k symmetric = T self-adjoint: (f, Txg) = (Tkf,g)
@ k positive definite = T positive: (f, T,f) >0

@ k continuous = T, compact: if {f,} is bounded, then { T\ f,} has
a convergent subsequence
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Mercer representation of RKHS Integral operator

Properties of integral operators

e k symmetric = T self-adjoint: (f, Txg) = (Tkf,g)
@ k positive definite = T positive: (f, T,f) >0

@ k continuous = T, compact: if {f,} is bounded, then { T\ f,} has
a convergent subsequence

Theorem (Spectral theorem)

Let F be a Hilbert space,and T : F — F a compact, self-adjoint operator.
There is an at most countable ONS {uj} jes of F and {A;};_ ; with
[A1] > |A2| > -+ > 0 converging to zero such that

TF=) N(fu)yu, feF.

Jjed
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Mercer representation of RKHS Mercer's theorem

Outline

© What is an RKHS?

© Moore-Aronszajn Theorem
© Mercer representation of RKHS

@ Mercer's theorem

@ Operations with kernels
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Mercer representation of RKHS Mercer's theorem

Mercer's theorem

@ X a compact metric space; k : X x X — R a continuous kernel.
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Mercer representation of RKHS Mercer's theorem

Mercer's theorem

@ X a compact metric space; k : X x X — R a continuous kernel.

@ A finite measure v on X’ with suppr = X.
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Mercer representation of RKHS Mercer's theorem

Mercer's theorem

@ X a compact metric space; k : X x X — R a continuous kernel.
@ A finite measure v on X’ with suppr = X.

@ Integral operator Ty is then compact, positive and self-adjoint on
Ly(X;v)
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Mercer representation of RKHS Mercer's theorem

Mercer's theorem

@ X a compact metric space; k : X x X — R a continuous kernel.
@ A finite measure v on X’ with suppr = X.
@ Integral operator Ty is then compact, positive and self-adjoint on

L2(X;v), so there exist ONS {&} jes and {A;};c,
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Mercer representation of RKHS Mercer's theorem

Mercer's theorem

@ X a compact metric space; k : X x X — R a continuous kernel.
@ A finite measure v on X with suppr = X.

@ Integral operator Ty is then compact, positive and self-adjoint on
L2(X;v), so there exist ONS {&} jc, and {A;},_, (strictly positive
eigenvalues; J at most countable).
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Mercer representation of RKHS Mercer's theorem

Mercer's theorem

@ X a compact metric space; k : X x X — R a continuous kernel.
@ A finite measure v on X with suppr = X.

@ Integral operator Ty is then compact, positive and self-adjoint on
L2(X;v), so there exist ONS {&} jc, and {A;},_, (strictly positive
eigenvalues; J at most countable).

@ & is an equivalence class in the ONS of Ly(&X;v)
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Mercer representation of RKHS Mercer's theorem

Mercer's theorem

X a compact metric space; k: X x X — R a continuous kernel.

A finite measure v on X’ with suppr = X.

@ Integral operator Ty is then compact, positive and self-adjoint on
L2(X;v), so there exist ONS {&} jc, and {A;},_, (strictly positive
eigenvalues; J at most countable).

@ & is an equivalence class in the ONS of Ly(&X;v)
° ¢ = )\JTISkéj € C(X) is a continuous function in the class &;:
/kej = éj.
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Mercer representation of RKHS Mercer's theorem

Mercer's theorem

X a compact metric space; k: X x X — R a continuous kernel.

A finite measure v on X’ with suppr = X.

@ Integral operator Ty is then compact, positive and self-adjoint on
L2(X;v), so there exist ONS {&} jc, and {A;},_, (strictly positive
eigenvalues; J at most countable).

@ & is an equivalence class in the ONS of Ly(&X;v)
° ¢ = )\JTISkéj € C(X) is a continuous function in the class &;:
/kej = éj.

Theorem (Mercer's theorem)

Vx,y € X with convergence uniform on X x X:

k(xy) = D Ae(x)e(y).

Jjed
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Mercer representation of RKHS Mercer's theorem

Mercer's theorem (2)

k(x,y) = > Ne(x)eily)

jed

= <{\ﬁjej(x)} ) {\//\T'ef(y)}>zzu)
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Mercer representation of RKHS Mercer's theorem

Mercer's theorem (2)

k(x,y) = > Ne(x)eily)

jed
= ({Vhet} {VAhs)}) .
Another (Mercer) feature map:

b X — 2())

O x — {\/)Tjej(x)}jej
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Mercer representation of RKHS Mercer's theorem

Mercer's theorem (2)

k(x,y) = > Ne(x)eily)

jed
= ({Vhet} {VAhs)}) .
Another (Mercer) feature map:

b X — 2())

O x — {\/)Tjej(x)}jej

Z <\/)\>jej(x))2 = k(x,x) < o0

Jjed
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Mercer representation of RKHS Mercer's theorem

Mercer's theorem (3)

® Sum ., ajej(x) converges absolutely Vx € X' whenever sequence
{aj/\/)\j} S 52(./)
1/2 1/2

Z\aj/ﬁjf -Z\mej(x)f
= H{aj/f} \/—X)

©2(J)

> lajei(x)

jed

IN
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Mercer representation of RKHS Mercer's theorem

Mercer's theorem (3)

® Sum ., ajej(x) converges absolutely Vx € X' whenever sequence
{aj/\/)\j} S 52(./)
1/2 1/2

Z\aj/ﬁjf -Z\mexx)f
- H{af/f J

> jeyajej is a well defined function on X

> lajei(x)

jed

IN

. (x, x).
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yilarEar's dhsere
Mercer representation of RKHS
Theorem

Let X be a compact metric space and k : X x X — R a continuous kernel.
Define:

H = f:Zajej : {aj/\/fj}eﬁz(J) ,

jed

with inner product:

JjeJ Jjed

<Z ajej,ijej> = Z%
H

Then H is the RKHS of k.
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yilarEar's dhsere
Mercer representation of RKHS
Theorem

Let X be a compact metric space and k : X x X — R a continuous kernel.
Define:

H = f:Zajej : {aj/\/fj}eﬁz(J) ,

jed

with inner product:

JjeJ Jjed

<Z ajej,ijej> = Z%
H

Then H is the RKHS of k.

RKHS is unique, so does not depend on v |
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Mercer representation of RKHS Mercer's theorem
Proof

©Q (., -)y is an inner product: if f =3, aje;
2
then(f, f),, = ZjeJ% > 0 if some a; >0

@ Let {f,} be Cauchy, f, = >, a\”¢;. Then ||f, — fnl3, =

ZjeJW = H{aj(-")/\//\j-} — {aj(.m)/\/)\»j}ujz < €, so must

have a limit because ¢2 is a Hilbert space.

2
Q k(-,x) =2 e, [Nej(x)] e € H since 3, </\J\(;>%<)> = k(x,x) < 00

O (F k(= (Tjes e Djes el ey, = Tjes 4 =
2 jesaiei(x) = f(x).
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Mercer representation of RKHS Mercer's theorem
Smoothness interpretation
Gaussian kernel, k(x,y) = exp <—O’ |x — y||2> ,

>‘j x b b<1
ei(x) o exp(—(c— a)x*)H;(xv2c),

a, b, c are functions of o, and H; is jth order Hermite polynomial.

0.4 NOTE that ||f[|;; <ooisa

“smoothness’ constraint:

Aj decay as e; become
“rougher” and

a2

2
HfHHk = ZjeJ x

J

(Figure from Rasmussen and Williams)
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WEEOREIEENIEHER RSN NGRR  Relation between ) and Lz(X;v)
Outline

@ What is an RKHS?

© Moore-Aronszajn Theorem
© Mercer representation of RKHS

@ Relation between Hy and Lo(X;v)

@ Operations with kernels
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Relbvitan (eteann i @i el o)
Hy and Lr(X;v)

Assume {&} ., is ONB of Lo(X;v), and write F(j) = (f, &),

Tif =Y NF()g, e LX)

Jjed
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Relbvitan (eteann i @i el o)
Hy and Lr(X;v)

Assume {&} ., is ONB of Lo(X;v), and write F(j) = (f, &),

Tif =Y NF()g, e LX)

jed
T2 =" UNFG)E, e LX)
jed
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WEEOREIEENIEHER RSN NGRR  Relation between ) and Lz(X;v)
Hy and Lr(X;v)

Assume {&}._, is ONB of L(X;v), and write FU) = (f, &)1,

Tif =Y NF()g, e LX)

jed
T2 =" UNFG)E, e LX)
jed

He = {f—Zajej ; {aj/\/)\»j}eﬁz(J)}

jed

SO =1fE <o = {Fi)} e 20) = 3 VARG) < M

Jjed Jjed
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Relbvitan (eteann i @i el o)
My and Lo(X;v)

fely(Xv) &S {f@)} €2 &5 ST UNFG)e € Ha

jeJ
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WEEOREIEENIEHER RSN NGRR  Relation between ) and Lz(X;v)
Hy and Lr(X;v)

fELg(X;V)(i{f(j)}GKZ EL ST UNFG)e € Ha

JjeJ

(.8, = ({0} a0) <foo &y VARU) >

jed jed B
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WEEOREIEENIEHER RSN NGRR  Relation between ) and Lz(X;v)
Hy and Lr(X;v)

fELg(X;V)(i{f(j)}sz EL ST UNFG)e € Ha

JjeJ

(.8, = ({0} a0) <foo &y VARU) >

jed jed B

Ti/2 induces an isometric isomorphism between
span{& :j e J} CLo(X;v) and Hy (and both are isometrically
isomorphic to £2(J)).
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Relion beiacn fitp endl La(lE o)
Canonical feature map

feLz(x;V)ﬁ{f(J)}eﬁ ) &S ST NG € He

jed
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Relion beiacn fitp endl La(lE o)
Canonical feature map

fELﬂX;V)(ﬂ){f(J)}Gﬁz ) &S ST NG € He

jed

= Z VA (WEJ(X)) €

jeJ
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Relion beiacn fitp endl La(lE o)
Canonical feature map

feLz(x;V)ﬁ{f(J)}eﬁ ) &S ST NG € He

jed

)=V (Vi) e

jeJ

Hi > k(- %X%{\/»ej }662 J)
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Relion beiacn fitp endl La(lE o)
Canonical feature map

feLz(x;V)ﬁ{f(J)}eﬁ ) &S ST NG € He

jed

)=V (Vi) e

jel
Hi > k(- %X%{\/»ej }662 J)

Mercer feature map gives Fourier coefficients of the canonical feature map.
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Operations with kernels

Outline

@ Operations with kernels
@ Sum and product
o Constructing new kernels

D. Sejdinovic, A. Gretton (Gatsby Unitsli
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(O ITEVIIERWALMNIGIEEN Sum and product
Qutline

© What is an RKHS?

© Moore-Aronszajn Theorem
© Mercer representation of RKHS

@ Operations with kernels
@ Sum and product
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Sius e s
Operations with kernels

Fact (Sum and scaling of kernels)

If k, ki, and ko are kernels on X, and o« > 0 is a scalar, then ak, ki + ko
are kernels.
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(O ITEVIIERWALMNIGIEEN Sum and product

Operations with kernels

Fact (Sum and scaling of kernels)

If k, ki, and ko are kernels on X, and o« > 0 is a scalar, then ak, ki + ko
are kernels.

o A difference of kernels is not necessarily a kernel! This is because we
cannot have ki(x, x) — ka(x, x) = (p(x), #(x)),, < 0.

@ This gives the set of all kernels the geometry of a closed convex cone.
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(O ITEVIIERWALMNIGIEEN Sum and product

Operations with kernels

Fact (Sum and scaling of kernels)

If k, ki, and ko are kernels on X, and o« > 0 is a scalar, then ak, ki + ko
are kernels.

o A difference of kernels is not necessarily a kernel! This is because we
cannot have ki(x, x) — ka(x, x) = (p(x), #(x)),, < 0.

@ This gives the set of all kernels the geometry of a closed convex cone.

Hk1+k2 = Hh +Hk2 = {fl +h:he /Hkvf2 S sz}
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Sius e s
Operations with kernels (2)

Fact (Product of kernels)
If ky and ko are kernels on X and ), then k = ki ® ky, given by:

k((X7y)7(X,7y/)) = kl(val)k2(y7y,)
is a kernel on X x Y. If X =), then k = ky - ko, given by:
k(x,x) = ki(x,x)ka(x,x")

is a kernel on X.
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Sius e s
Operations with kernels (2)

Fact (Product of kernels)
If ky and ko are kernels on X and ), then k = ki ® ky, given by:

k((X7y)7(X,7y/)) = kl(val)k2(y7y,)
is a kernel on X x Y. If X =), then k = ky - ko, given by:
k(x,x) = ki(x,x)ka(x,x")

is a kernel on X.

Hiyok, = Hig ® Hi,
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(O ITEVIIERWALMNIGIEEN Sum and product

Summary

all kernels RY*¥
1-1
—

all function spaces with continuous evaluation Hilb(R?)
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(O ITEVIIERWALMNIGIEEN Sum and product

Summary

all kernels RY*¥
1-1
—

all function spaces with continuous evaluation Hilb(R?)

bijection between RY** and Hilb(RY) preserves geometric
structure
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Operations with kernels Constructing new kernels
Qutline

@ What is an RKHS?

© Moore-Aronszajn Theorem
© Mercer representation of RKHS

@ Operations with kernels

o Constructing new kernels
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Operations with kernels Constructing new kernels
d
Kernels on R

New kernels from old:

o trivial (linear) kernel on R? is k(x, x") = (x, x')
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Operations with kernels Constructing new kernels
d
Kernels on R

New kernels from old:
o trivial (linear) kernel on R? is k(x, x") = (x, x')
e for any p(t) = amt™ + --- + art + ap with a; > 0
— k(x,x") = p({x,x")) is a kernel on R¥
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Operations with kernels Constructing new kernels
d
Kernels on R

New kernels from old:
o trivial (linear) kernel on R? is k(x, x") = (x, x')
e for any p(t) = amt™ + --- + art + ap with a; > 0
— k(x,x") = p({x,x")) is a kernel on R¥
e polynomial kernel: k(x,x") = ({x,x’) +¢)™, forc > 0
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Operations with kernels Constructing new kernels
d
Kernels on R

New kernels from old:
o trivial (linear) kernel on R? is k(x, x") = (x, x')
e for any p(t) = amt™ + --- + art + ap with a; > 0
— k(x,x") = p({x,x")) is a kernel on R¥
e polynomial kernel: k(x,x") = ({x,x’) +¢)™, forc > 0

e f(t) has Taylor series with non-negative coefficients
= k(x,x') = f((x,x')) is a kernel on R
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Operations with kernels Constructing new kernels

Kernels on R

New kernels from old:
o trivial (linear) kernel on R? is k(x, x") = (x, x')
e for any p(t) = amt™ + --- + art + ap with a; > 0
— k(x,x") = p({x,x")) is a kernel on R¥
e polynomial kernel: k(x,x") = ({x,x’) +¢)™, forc > 0

e f(t) has Taylor series with non-negative coefficients
= k(x,x") = f((x,x")) is a kernel on RY

e exponential kernel: k(x,x") = exp(o (x,x’)), for o > 0
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Operations with kernels Constructing new kernels
d
Kernels on R

New kernels from old:

e polynomial kernel: k(x,x") = ({x,x’) +¢)™, forc > 0

e exponential kernel: k(x,x") = exp(o (x,x’)), for o > 0
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Operations with kernels Constructing new kernels

Gaussian kernel

Let ¢ : RY — R, ¢(x) = exp(—c ||x||?). Then, k is representable as an
inner product in R:

k(x,x") = ¢(x)p(x") = exp(—a ||x||?) exp(—c HX'HZ) kernel!
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Operations with kernels Constructing new kernels

Gaussian kernel

Let ¢ : RY — R, ¢(x) = exp(—c ||x||?). Then, k is representable as an
inner product in R:

k(x,x") = ¢(x)p(x") = exp(—a ||x||?) exp(—c HX'HZ) kernel!

kgauss(nyl) = I;(X7X/)kexp(xvxl)
= exp (—O’ [”X||2 + HX'H2 -2 <x,x’>]>

= exp (—0’ Hx — x’Hz) kernel!
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem

Starting with a positive def. k, construct a pre-RKHS (an inner product
space of functions) Ho C R with properties:

@ The evaluation functionals d, are continuous on Hj,

@ Any Hp-Cauchy sequence f,, which converges pointwise to 0 also
converges in Ho-norm to 0
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Moore-Aronszajn Theorem (2)

pre-RKHS g = span {k(-,x) | x € X'} will be taken to be the set of
functions:

F(x) =Y aik(x,x;)
i=1
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (3)

Theorem (Moore-Aronszajn - Step 1)

Space Ho = span{k(-,x)|x € X'}, endowed with the inner product

(Fredne = DD ciblklany),

i=1 j=1

where f =371, ajk(-,x;) and g = > 1, Bik(-,y;), is a valid pre-RKHS.

v
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (3)

Theorem (Moore-Aronszajn - Step 1)
Space Ho = span{k(-,x)|x € X'}, endowed with the inner product

<fg = Zzalﬁj XI7.yj

i=1 j=1

where f =371 aik(-, x;) and g = > 11 Bik(-, y;), is a valid pre-RKHS.

Theorem (Moore-Aronszajn - Step 1)

Let Ho be a pre-RKHS space. Define H to be the set of functions f € RY

for which there exists an Ho-Cauchy sequence {f,} converging pointwise
to f. Then, H is an RKHS.
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (4)

Theorem (Moore-Aronszajn - Step |)

Space Ho = span{k(-,x)|x € X}, endowed with the inner product

(F.8)0, = D iBik(xi,y),

i=1 j=1

where f = 371 aik(,x;) and g = 3 7., Bik(-,y;), is a valid pre-RKHS.

y
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (4)

Theorem (Moore-Aronszajn - Step |)

Space Ho = span{k(-,x)|x € X'}, endowed with the inner product

(F.8)y, = DY ciBik(xi,y)),

i=1 j=1

where f = 371 aik(,x;) and g = 3 7., Bik(-,y;), is a valid pre-RKHS.

v
@ The evaluation functionals 6, are continuous on Hg

@ Any Hp-Cauchy sequence f, which converges pointwise to 0 also
converges in Ho-norm to 0
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (5)

Define H to be the set of functions f € RY for which there exists an
Ho-Cauchy sequence {f,} converging pointwise to f. Clearly, Ho C H.
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Moore-Aronszajn Theorem (5)

Define H to be the set of functions f € RY for which there exists an
Ho-Cauchy sequence {f,} converging pointwise to f. Clearly, Ho C H.

@ We define the inner product between f, g € H as the limit of an inner
product of the Ho-Cauchy sequences {f,}, {g,} converging to f and
g respectively. Is this inner product well defined, i.e., independent of
the sequences used?
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@ An inner product space must satisfy (f,f),, = 0 iff f = 0. Is this true
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Moore-Aronszajn Theorem (5)

Define # to be the set of functions f € RY for which there exists an
Ho-Cauchy sequence {f,} converging pointwise to f. Clearly, Ho C H.

@ We define the inner product between f, g € H as the limit of an inner
product of the Ho-Cauchy sequences {f,}, {g,} converging to f and
g respectively. Is this inner product well defined, i.e., independent of
the sequences used?

@ An inner product space must satisfy (f,f),, = 0 iff f = 0. Is this true
when we define the inner product on H as above?

© Are the evaluation functionals still continuous on H?

Q Is H complete (i.e., does every H-Cauchy sequence converge)?
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Moore-Aronszajn Theorem (5)

Define # to be the set of functions f € RY for which there exists an
Ho-Cauchy sequence {f,} converging pointwise to f. Clearly, Ho C H.

@ We define the inner product between f, g € H as the limit of an inner
product of the Ho-Cauchy sequences {f,}, {g,} converging to f and
g respectively. Is this inner product well defined, i.e., independent of
the sequences used?

@ An inner product space must satisfy (f,f),, = 0 iff f = 0. Is this true
when we define the inner product on H as above?

© Are the evaluation functionals still continuous on H?

Q Is H complete (i.e., does every H-Cauchy sequence converge)?

o (1)+(2)+(3)+(4) = H is RKHS!
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Proof sketch of Moore-Aronszajn

Summary

reproducing kernel <= kernel <= positive definite
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Proof sketch of Moore-Aronszajn

Summary

reproducing kernel <= kernel <= positive definite

: XxX
all pd funit?ns R
e

all function spaces with continuous evaluation Hilb(R?)
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