Foundations of Reproducing Kernel Hilbert Spaces II Advanced Topics in Machine Learning

D. Sejdinovic, A. Gretton

Gatsby Unit slides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching

March 17, 2014

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

March 17, 2014 1 / 58

The story so far

• Hilbert space:

3

イロト イヨト イヨト イヨト

• Hilbert space: a complete space with an inner product

- 31

(日) (同) (三) (三)

- Hilbert space: a complete space with an inner product
 - *Riesz Theorem*:

- 31

(日) (同) (三) (三)

- Hilbert space: a complete space with an inner product
 - *Riesz Theorem*: **all** linear & continuous functionals are representable by inner products

э

・ 同 ト ・ ヨ ト ・ ヨ ト

- Hilbert space: a complete space with an inner product
 - *Riesz Theorem*: **all** linear & continuous functionals are representable by inner products
- RKHS:

3

・ 同 ト ・ ヨ ト ・ ヨ ト

- Hilbert space: a complete space with an inner product
 - *Riesz Theorem*: **all** linear & continuous functionals are representable by inner products
- RKHS: a Hilbert space of functions for which evaluation is continuous

- Hilbert space: a complete space with an inner product
 - *Riesz Theorem*: **all** linear & continuous functionals are representable by inner products
- RKHS: a Hilbert space of functions for which evaluation is continuous
 - thus, evaluation is representable by an inner product

- Hilbert space: a complete space with an inner product
 - *Riesz Theorem*: **all** linear & continuous functionals are representable by inner products
- RKHS: a Hilbert space of functions for which evaluation is continuous
 - thus, evaluation is representable by an inner product with some element

- Hilbert space: a complete space with an inner product
 - *Riesz Theorem*: **all** linear & continuous functionals are representable by inner products
- RKHS: a Hilbert space of functions for which evaluation is continuous
 - thus, evaluation is representable by an inner product with some element
 - define $k(\cdot, x)$ as that representer of evaluation

- Hilbert space: a complete space with an inner product
 - *Riesz Theorem*: **all** linear & continuous functionals are representable by inner products
- RKHS: a Hilbert space of functions for which evaluation is continuous
 - thus, evaluation is representable by an inner product with some element
 - define $k(\cdot, x)$ as that representer of evaluation: reproducing kernel

- Hilbert space: a complete space with an inner product
 - *Riesz Theorem*: **all** linear & continuous functionals are representable by inner products
- RKHS: a Hilbert space of functions for which evaluation is continuous
 - thus, evaluation is representable by an inner product with some element
 - define $k(\cdot, x)$ as that representer of evaluation: reproducing kernel
- kernel as an inner product between features: $k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$

Overview

What is an RKHS?

- Reproducing kernel
- Inner product between features
- Positive definite function
- Moore-Aronszajn Theorem

Mercer representation of RKHS

- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$

Operations with kernels

- Sum and product
- Constructing new kernels

What is an RKHS?

- Reproducing kernel
- Inner product between features
- Positive definite function

Moore-Aronszajn Theorem

Mercer representation of RKHS

- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$

4 Operations with kernels

- Sum and product
- Constructing new kernels

Definition (Reproducing kernel Hilbert space)

Let \mathcal{X} be a non-empty set. A Hilbert space \mathcal{H} of functions $f : \mathcal{X} \to \mathbb{R}$ is said to be a Reproducing Kernel Hilbert Space (RKHS) if evaluation functionals $\delta_x : f \mapsto f(x)$ are continuous $\forall x \in \mathcal{X}$.

D. Sejdinovic, A. Gretton (Gatsby Unitsli

イロト 不得下 イヨト イヨト 二日

Definition (Reproducing kernel Hilbert space)

Let \mathcal{X} be a non-empty set. A Hilbert space \mathcal{H} of functions $f : \mathcal{X} \to \mathbb{R}$ is said to be a Reproducing Kernel Hilbert Space (RKHS) if evaluation functionals $\delta_x : f \mapsto f(x)$ are continuous $\forall x \in \mathcal{X}$.

If two functions $f, g \in \mathcal{H}$ are close in the norm of \mathcal{H} , then f(x) and g(x)are close for all $x \in \mathcal{X}$

イロト 不得下 イヨト イヨト 二日

Will discuss three distinct concepts:

- reproducing kernel
- inner product between features
- positive definite function

э

Will discuss three distinct concepts:

- reproducing kernel
- inner product between features
- positive definite function

...and then show that they are all equivalent.

э

What is an RKHS?

- Reproducing kernel
- Inner product between features
- Positive definite function

Moore-Aronszajn Theorem

Mercer representation of RKHS

- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$

Operations with kernels

- Sum and product
- Constructing new kernels

Reproducing kernel

Definition (Reproducing kernel)

Let \mathcal{H} be a Hilbert space of functions $f : \mathcal{X} \to \mathbb{R}$ defined on a non-empty set \mathcal{X} . A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called *a reproducing kernel* of \mathcal{H} if it satisfies

- $\forall x \in \mathcal{X}, k_x = k(\cdot, x) \in \mathcal{H},$
- $\forall x \in \mathcal{X}, \forall f \in \mathcal{H}, \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$ (the reproducing property).

(人間) トイヨト イヨト

Reproducing kernel

Definition (Reproducing kernel)

Let \mathcal{H} be a Hilbert space of functions $f : \mathcal{X} \to \mathbb{R}$ defined on a non-empty set \mathcal{X} . A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called *a reproducing kernel* of \mathcal{H} if it satisfies

• $\forall x \in \mathcal{X}, k_x = k(\cdot, x) \in \mathcal{H},$

• $\forall x \in \mathcal{X}, \forall f \in \mathcal{H}, \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x)$ (the reproducing property).

In particular, for any
$$x, y \in \mathcal{X}$$
,
 $k(x,y) = \langle k(\cdot, y), k(\cdot, x) \rangle_{\mathcal{H}} = \langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}}.$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

(人間) トイヨト イヨト

Reproducing kernel of an RKHS

Theorem

If it exists, reproducing kernel is unique.

Theorem

 \mathcal{H} is a reproducing kernel Hilbert space if and only if it has a reproducing kernel.

What is an RKHS?

- Reproducing kernel
- Inner product between features
- Positive definite function

Moore-Aronszajn Theorem

Mercer representation of RKHS

- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$

Operations with kernels

- Sum and product
- Constructing new kernels

Feature space inner product

Definition (Kernel)

A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a *kernel* on \mathcal{X} if there exists a Hilbert space (not necessarilly an RKHS) \mathcal{F} and a map $\phi : \mathcal{X} \to \mathcal{F}$, such that $k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{F}}$.

Feature space inner product

Definition (Kernel)

A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called *a kernel* on \mathcal{X} if there exists a Hilbert space (not necessarilly an RKHS) \mathcal{F} and a map $\phi : \mathcal{X} \to \mathcal{F}$, such that $k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{F}}$.

- ϕ : $\mathcal{X} \to \mathcal{F}$ is called a feature map,
- \mathcal{F} is called a **feature space**.

Feature space inner product

Definition (Kernel)

A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called *a kernel* on \mathcal{X} if there exists a Hilbert space (not necessarilly an RKHS) \mathcal{F} and a map $\phi : \mathcal{X} \to \mathcal{F}$, such that $k(x, y) = \langle \phi(x), \phi(y) \rangle_{\mathcal{F}}$.

- ϕ : $\mathcal{X} \to \mathcal{F}$ is called a feature map,
- \mathcal{F} is called a **feature space**.

Fact

Every **reproducing kernel** is a **kernel** (every RKHS is a valid feature space).

イロト 不得下 イヨト イヨト 二日

Non-uniqueness of feature representation

Example

Consider $\mathcal{X} = \mathbb{R}^2$, and $k(x, y) = \langle x, y \rangle^2$ $k(x, y) = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2$ $= \begin{bmatrix} x_1^2 & x_2^2 & \sqrt{2}x_1x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ \sqrt{2}y_1y_2 \end{bmatrix}$ $= \begin{bmatrix} x_1^2 & x_2^2 & x_1x_2 & x_1x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ y_1y_2 \\ y_1y_2 \\ y_1y_2 \\ y_1y_2 \end{bmatrix}.$ so we can use the feature maps $\phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$ or $\tilde{\phi}(x) = \begin{bmatrix} x_1^2 & x_2^2 & x_1x_2 & x_1x_2 \end{bmatrix}$, with feature spaces $\mathcal{H} = \mathbb{R}^3$ or $\tilde{\mathcal{H}} = \mathbb{R}^4$.

D. Sejdinovic, A. Gretton (Gatsby Unitsli

12 / 58

《曰》 《圖》 《문》 《문》 … 문…

Non-uniqueness of feature representation

Example

Consider $\mathcal{X} = \mathbb{R}^2$, and $k(x, y) = \langle x, y \rangle^2$ $k(x, y) = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2$ $= \begin{bmatrix} x_1^2 & x_2^2 & \sqrt{2}x_1x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ \sqrt{2}y_1y_2 \end{bmatrix}$ $= \begin{bmatrix} x_1^2 & x_2^2 & x_1x_2 & x_1x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ y_1y_2 \\ y_1y_2 \\ y_1y_2 \\ y_1y_2 \end{bmatrix}.$ so we can use the feature maps $\phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$ or $\tilde{\phi}(x) = \begin{bmatrix} x_1^2 & x_2^2 & x_1x_2 & x_1x_2 \end{bmatrix}$, with feature spaces $\mathcal{H} = \mathbb{R}^3$ or $\tilde{\mathcal{H}} = \mathbb{R}^4$.

Not RKHS!

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

March 17, 2014 12 / 58

《曰》 《圖》 《문》 《문》 … 문…

Non-uniqueness of feature representation

Example

Consider $\mathcal{X} = \mathbb{R}^2$, and $k(x, y) = \langle x, y \rangle^2$ $k(x, y) = x_1^2 y_1^2 + x_2^2 y_2^2 + 2x_1 x_2 y_1 y_2$ $= \begin{bmatrix} x_1^2 & x_2^2 & \sqrt{2}x_1x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ \sqrt{2}y_1y_2 \end{bmatrix}$ $= \begin{bmatrix} x_1^2 & x_2^2 & x_1x_2 & x_1x_2 \end{bmatrix} \begin{bmatrix} y_1^2 \\ y_2^2 \\ y_1y_2 \\ y_1y_2 \\ y_1y_2 \\ y_1y_2 \\ y_1y_2 \end{bmatrix}.$ so we can use the feature maps $\phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$ or $\tilde{\phi}(x) = \begin{bmatrix} x_1^2 & x_2^2 & x_1x_2 & x_1x_2 \end{bmatrix}$, with feature spaces $\mathcal{H} = \mathbb{R}^3$ or $\tilde{\mathcal{H}} = \mathbb{R}^4$.

Not RKHS!

Evaluation is not defined on \mathbb{R}^3 or \mathbb{R}^4 .

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

March 17, 2014

12 / 58

What is an RKHS?

- Reproducing kernel
- Inner product between features
- Positive definite function
- Moore-Aronszajn Theorem

Mercer representation of RKHS

- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$

Operations with kernels

- Sum and product
- Constructing new kernels

H N

Positive definite functions

Definition (Positive definite functions)

A symmetric function $h : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is positive definite if $\forall n \ge 1, \ \forall (a_1, \dots, a_n) \in \mathbb{R}^n, \ \forall (x_1, \dots, x_n) \in \mathcal{X}^n$,

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j h(x_i, x_j) = \mathbf{a}^\top \mathbf{H} \mathbf{a} \ge 0.$$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

・得下 ・ヨト ・ヨト ・ヨ

Positive definite functions

Definition (Positive definite functions)

A symmetric function $h : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is positive definite if $\forall n \ge 1, \ \forall (a_1, \dots a_n) \in \mathbb{R}^n, \ \forall (x_1, \dots, x_n) \in \mathcal{X}^n$,

$$\sum_{i=1}^n \sum_{j=1}^n a_i a_j h(x_i, x_j) = \mathbf{a}^\top \mathbf{H} \mathbf{a} \ge 0.$$

h is *strictly* positive definite if for mutually distinct x_i , the equality holds only when all the a_i are zero.

Kernels are positive definite

Fact

Every kernel is a positive definite function.

< 47 → <

э

Kernels are positive definite

Fact

Every kernel is a positive definite function.

$$\begin{split} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} k(x_{i}, x_{j}) &= \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} \langle \phi(x_{i}), \phi(x_{j}) \rangle_{\mathcal{F}} \\ &= \left\langle \sum_{i=1}^{n} a_{i} \phi(x_{i}), \sum_{j=1}^{n} a_{j} \phi(x_{j}) \right\rangle_{\mathcal{F}} \\ &= \left\| \left\| \sum_{i=1}^{n} a_{i} \phi(x_{i}) \right\|_{\mathcal{F}}^{2} \ge 0. \end{split}$$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

March 17, 2014

< 47 → <

B> B

15 / 58

reproducing kernel \implies kernel \implies positive definite

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

・ロト・イラト・ミト・ミト ミークへで
March 17, 2014 16 / 58

reproducing kernel \implies kernel \implies positive definite

Is every positive definite function a reproducing kernel for some RKHS?

reproducing kernel \iff kernel \iff positive definite Yes (Moore-Aronszajn)!

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

March 17, 2014 17 / 58

3

イロト 不得下 イヨト イヨト

Outline

What is an RKHS?

- Reproducing kernel
- Inner product between features
- Positive definite function

Moore-Aronszajn Theorem

- Mercer representation of RKHS
 - Integral operator
 - Mercer's theorem
 - Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$
- 4 Operations with kernels
 - Sum and product
 - Constructing new kernels

A B A A B A

Moore-Aronszajn Theorem

Theorem (Moore-Aronszajn)

Let $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be positive definite. There is a **unique RKHS** $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ with reproducing kernel k.

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

March 17, 2014 19 / 58

э

Moore-Aronszajn Theorem: pre-RKHS

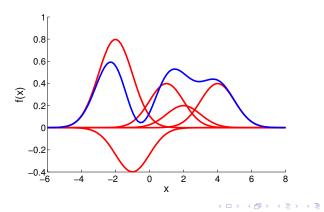
Starting with a positive def. k, construct a **pre-RKHS** (an inner product space) $\mathcal{H}_0 \subset \mathbb{R}^{\mathcal{X}}$ with properties:

- **(**) The evaluation functionals δ_x are continuous on \mathcal{H}_0 ,
- Any H₀-Cauchy sequence f_n which converges pointwise to 0 also converges in H₀-norm to 0

Moore-Aronszajn Theorem: pre-RKHS

pre-RKHS $\mathcal{H}_0 = span \{k(\cdot, x) \mid x \in \mathcal{X}\}$ will be taken to be the set of functions:

$$f(x) = \sum_{i=1}^{n} \alpha_i k(x, x_i)$$



D. Sejdinovic, A. Gretton (Gatsby Unitsli

March 17, 2014

21 / 58

Theorem (Moore-Aronszajn - Step A)

Space $\mathcal{H}_0 = span \{k(\cdot, x) \, | \, x \in \mathcal{X}\}$, endowed with the inner product

$$\langle f,g \rangle_{\mathcal{H}_0} = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j k(x_i, y_j),$$

where $f = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i)$ and $g = \sum_{j=1}^{m} \beta_j k(\cdot, y_j)$, is a valid pre-RKHS.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 ─ ���

Theorem (Moore-Aronszajn - Step A)

Space $\mathcal{H}_0 = span \{k(\cdot, x) \, | \, x \in \mathcal{X}\}$, endowed with the inner product

$$\langle f,g \rangle_{\mathcal{H}_0} = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j k(x_i, y_j),$$

where $f = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i)$ and $g = \sum_{j=1}^{m} \beta_j k(\cdot, y_j)$, is a valid pre-RKHS.

Theorem (Moore-Aronszajn - Step B)

Let \mathcal{H}_0 be a pre-RKHS space. Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_0 -Cauchy sequence $\{f_n\}$ converging **pointwise** to f. Then, \mathcal{H} is an RKHS.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Is $\langle f, g \rangle_{\mathcal{H}_0}$ a valid inner product?
- Are evaluation functionals δ_x are continuous on \mathcal{H}_0 ?
- Does every \mathcal{H}_0 -Cauchy sequence f_n which converges pointwise to 0 also converge in \mathcal{H}_0 -norm to 0?

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_0 -Cauchy sequence $\{f_n\}$ converging **pointwise** to f. Clearly, $\mathcal{H}_0 \subseteq \mathcal{H}$.

イロト イポト イヨト イヨト 二日

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_0 -Cauchy sequence $\{f_n\}$ converging **pointwise** to f. Clearly, $\mathcal{H}_0 \subseteq \mathcal{H}$.

We define the inner product between f, g ∈ H as the limit of an inner product of the H₀-Cauchy sequences {f_n}, {g_n} converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?

イロト 不得下 イヨト イヨト 二日

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_0 -Cauchy sequence $\{f_n\}$ converging **pointwise** to f. Clearly, $\mathcal{H}_0 \subseteq \mathcal{H}$.

- We define the inner product between $f, g \in \mathcal{H}$ as the limit of an inner product of the \mathcal{H}_0 -Cauchy sequences $\{f_n\}, \{g_n\}$ converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?
- 3 An inner product space must satisfy $\langle f, f \rangle_{\mathcal{H}} = 0$ iff f = 0. Is this true when we define the inner product on \mathcal{H} as above?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_0 -Cauchy sequence $\{f_n\}$ converging **pointwise** to f. Clearly, $\mathcal{H}_0 \subseteq \mathcal{H}$.

- We define the inner product between f, g ∈ H as the limit of an inner product of the H₀-Cauchy sequences {f_n}, {g_n} converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?
- 3 An inner product space must satisfy $\langle f, f \rangle_{\mathcal{H}} = 0$ iff f = 0. Is this true when we define the inner product on \mathcal{H} as above?
- **③** Are the evaluation functionals still continuous on \mathcal{H} ?

- ロ ト - 4 緑 ト - 4 画 ト - 4 画 ト - 三 画

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_0 -Cauchy sequence $\{f_n\}$ converging **pointwise** to f. Clearly, $\mathcal{H}_0 \subseteq \mathcal{H}$.

- We define the inner product between f, g ∈ H as the limit of an inner product of the H₀-Cauchy sequences {f_n}, {g_n} converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?
- 3 An inner product space must satisfy $\langle f, f \rangle_{\mathcal{H}} = 0$ iff f = 0. Is this true when we define the inner product on \mathcal{H} as above?
- **③** Are the evaluation functionals still continuous on \mathcal{H} ?
- Solution Is H complete (i.e., does every H-Cauchy sequence converge)?

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_0 -Cauchy sequence $\{f_n\}$ converging **pointwise** to f. Clearly, $\mathcal{H}_0 \subseteq \mathcal{H}$.

- We define the inner product between f, g ∈ H as the limit of an inner product of the H₀-Cauchy sequences {f_n}, {g_n} converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?
- 2 An inner product space must satisfy $\langle f, f \rangle_{\mathcal{H}} = 0$ iff f = 0. Is this true when we define the inner product on \mathcal{H} as above?
- **③** Are the evaluation functionals still continuous on \mathcal{H} ?
- Is \mathcal{H} complete (i.e., does every \mathcal{H} -Cauchy sequence converge)?
 - $(1)+(2)+(3)+(4) \Longrightarrow \mathcal{H} \text{ is RKHS!}$

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

reproducing kernel \iff kernel \iff positive definite

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

March 17, 2014

э.

25 / 58

< ロ > < 同 > < 回 > < 回 > < 回 > <

reproducing kernel \iff kernel \iff positive definite

set of all pd functions:
$$\mathbb{R}^{\mathcal{X} \times \mathcal{X}}_+$$

 $\stackrel{1-1}{\longleftrightarrow}$
set of all RKHSs: $Hilb(\mathbb{R}^{\mathcal{X}})$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

March 17, 2014

э.

25 / 58

< ロ > < 同 > < 回 > < 回 > < 回 > <

• There are (infinitely) many feature space representations (and we can even work in one or more of them, if it's convenient!)

$$\langle \phi(x), \phi(y) \rangle_{\mathbb{R}^3} = ay_1^2 + by_2^2 + c\sqrt{2}y_1y_2 = k_x(y)$$

$$\phi(x) = \begin{bmatrix} a = x_1^2 & b = x_2^2 & c = \sqrt{2}x_1x_2 \end{bmatrix}$$

• There are (infinitely) many feature space representations (and we can even work in one or more of them, if it's convenient!)

$$\langle \phi(x), \phi(y) \rangle_{\mathbb{R}^3} = ay_1^2 + by_2^2 + c\sqrt{2}y_1y_2 = k_x(y)$$

$$\phi(x) = \begin{bmatrix} a = x_1^2 & b = x_2^2 & c = \sqrt{2}x_1x_2 \end{bmatrix}$$

$$\left\langle \tilde{\phi}(x), \tilde{\phi}(y) \right\rangle_{\mathbb{R}^4} = \tilde{a}y_1^2 + \tilde{b}y_2^2 + \tilde{c}y_1y_2 + \tilde{d}y_1y_2 = k_x(y)$$
$$\tilde{\phi}(x) = \begin{bmatrix} \tilde{a} = x_1^2 & \tilde{b} = x_2^2 & \tilde{c} = x_1x_2 & \tilde{d} = x_1x_2 \end{bmatrix}$$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

• There are (infinitely) many feature space representations (and we can even work in one or more of them, if it's convenient!)

$$\langle \phi(x), \phi(y) \rangle_{\mathbb{R}^3} = ay_1^2 + by_2^2 + c\sqrt{2}y_1y_2 = k_x(y)$$

$$\phi(x) = \begin{bmatrix} a = x_1^2 & b = x_2^2 & c = \sqrt{2}x_1x_2 \end{bmatrix}$$

$$\left\langle \tilde{\phi}(x), \tilde{\phi}(y) \right\rangle_{\mathbb{R}^4} = \tilde{a}y_1^2 + \tilde{b}y_2^2 + \tilde{c}y_1y_2 + \tilde{d}y_1y_2 = k_x(y)$$

$$ilde{\phi}(x) = \left[egin{array}{cc} ilde{a} = x_1^2 & ilde{b} = x_2^2 & ilde{c} = x_1 x_2 & ilde{d} = x_1 x_2 \end{array}
ight]$$

Different feature maps give *coefficients* of canonical feature map k(·, x) in terms of (different) simpler functions.

• There are (infinitely) many feature space representations (and we can even work in one or more of them, if it's convenient!)

$$\langle \phi(x), \phi(y) \rangle_{\mathbb{R}^3} = ay_1^2 + by_2^2 + c\sqrt{2}y_1y_2 = k_x(y)$$

$$\phi(x) = \begin{bmatrix} a = x_1^2 & b = x_2^2 & c = \sqrt{2}x_1x_2 \end{bmatrix}$$

$$\left\langle \tilde{\phi}(x), \tilde{\phi}(y) \right\rangle_{\mathbb{R}^4} = \tilde{a}y_1^2 + \tilde{b}y_2^2 + \tilde{c}y_1y_2 + \tilde{d}y_1y_2 = k_x(y)$$

$$\tilde{\phi}(x) = \begin{bmatrix} \tilde{a} = x_1^2 & \tilde{b} = x_2^2 & \tilde{c} = x_1 x_2 & \tilde{d} = x_1 x_2 \end{bmatrix}$$

- Different feature maps give *coefficients* of canonical feature map $k(\cdot, x)$ in terms of (different) simpler functions.
- RKHS of k remains unique, regardless of the representation.

Outline

What is an RKHS?

- Reproducing kernel
- Inner product between features
- Positive definite function

Moore-Aronszajn Theorem

Mercer representation of RKHS

- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$

Operations with kernels

- Sum and product
- Constructing new kernels

Outline

What is an RKHS?

- Reproducing kernel
- Inner product between features
- Positive definite function

Moore-Aronszajn Theorem

- Mercer representation of RKHS
 - Integral operator
 - Mercer's theorem
 - Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$

Operations with kernels

- Sum and product
- Constructing new kernels

- So far, no assumptions on:
 - \mathcal{X} (apart from it being a non-empty set)
 - nor on k (apart from it being a positive definite function)

э

- So far, no assumptions on:
 - \mathcal{X} (apart from it being a non-empty set)
 - nor on k (apart from it being a positive definite function)
- Now, assume that:

э

- So far, no assumptions on:
 - \mathcal{X} (apart from it being a non-empty set)
 - nor on k (apart from it being a positive definite function)
- Now, assume that:
 - \mathcal{X} is a compact metric space
 - such as $[a, b]^d$, **key**: every continuous function on \mathcal{X} is bounded and uniformly continuous

- So far, no assumptions on:
 - X (apart from it being a non-empty set)
 - nor on k (apart from it being a positive definite function)
- Now, assume that:
 - \mathcal{X} is a compact metric space
 - such as [a, b]^d, key: every continuous function on X is bounded and uniformly continuous
 - $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a continuous positive definite function

Integral operator

Integral operator of a kernel

Definition (Integral operator)

Let ν be a finite Borel measure on \mathcal{X} . For the linear map

$$\begin{array}{lll} S_k : \ L_2(\mathcal{X};\nu) & \to & \mathcal{C}(\mathcal{X}), \\ & \left(S_k\tilde{f}\right)(x) & = & \int k(x,y)f(y)d\nu(y), \ f\in\tilde{f}\in L_2(\mathcal{X};\nu), \end{array}$$

its composition $T_k = I_k \circ S_k$ with the inclusion $I_k : C(\mathcal{X}) \hookrightarrow L_2(\mathcal{X}; \nu)$ is said to be the *integral operator* of k.

D. Sejdinovic, A. Gretton (Gatsby Unitsli

★撮♪ ★ほ♪ ★ほ♪ … 臣

Proof that $S_k \tilde{f}$ is continuous

$$\begin{split} \left| \left(S_k \tilde{f} \right) (x) - \left(S_k \tilde{f} \right) (x') \right| &= \left| \int \left(k(x,y) - k(x',y) \right) f(y) d\nu(y) \right| \\ &= \left| \left\langle I_k \left(k_x - k_{x'} \right), \tilde{f} \right\rangle_{L^2} \right| \\ &\leq \left\| I_k \left(k_x - k_{x'} \right) \right\|_{L^2} \left\| \tilde{f} \right\|_{L^2} \\ &= \left\| \tilde{f} \right\|_{L^2} \sqrt{\int \left(k(x,y) - k(x',y) \right)^2 d\nu(y)} \\ &\leq \left. \nu(\mathcal{X}) \left\| \tilde{f} \right\|_{L^2} \max_{y} \left| k(x,y) - k(x',y) \right| \end{split}$$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

March 17, 2014

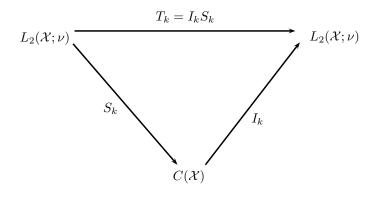
∃ →

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

31 / 58

Integral operator of a kernel (2)



 $T_k : L_2(\mathcal{X}; \nu) \rightarrow L_2(\mathcal{X}; \nu)$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

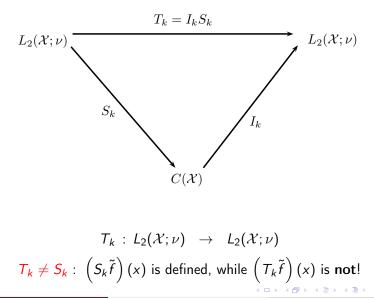
March 17, 2014

- 20

32 / 58

(日) (同) (日) (日) (日)

Integral operator of a kernel (2)



D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

March 17, 2014

32 / 58

• k symmetric \implies T_k self-adjoint: $\langle f, T_k g \rangle = \langle T_k f, g \rangle$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- k symmetric \implies T_k self-adjoint: $\langle f, T_k g \rangle = \langle T_k f, g \rangle$
- k positive definite $\implies T_k$ positive: $\langle f, T_k f \rangle \ge 0$

(ロ) (同) (三) (三) (三) (○)

- k symmetric \implies T_k self-adjoint: $\langle f, T_k g \rangle = \langle T_k f, g \rangle$
- k positive definite $\implies T_k$ positive: $\langle f, T_k f \rangle \ge 0$
- k continuous $\implies T_k$ compact: if $\{f_n\}$ is bounded, then $\{T_k f_n\}$ has a convergent subsequence

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

- k symmetric \implies T_k self-adjoint: $\langle f, T_k g \rangle = \langle T_k f, g \rangle$
- k positive definite $\implies T_k$ positive: $\langle f, T_k f \rangle \ge 0$
- k continuous $\implies T_k$ compact: if $\{f_n\}$ is bounded, then $\{T_k f_n\}$ has a convergent subsequence

Theorem (Spectral theorem)

Let \mathcal{F} be a Hilbert space, and $T : \mathcal{F} \to \mathcal{F}$ a compact, self-adjoint operator. There is an at most countable ONS $\{u_j\}_{j \in J}$ of \mathcal{F} and $\{\lambda_j\}_{j \in J}$ with $|\lambda_1| \ge |\lambda_2| \ge \cdots > 0$ converging to zero such that

$$Tf = \sum_{j \in J} \lambda_j \langle f, u_j \rangle_{\mathcal{F}} u_j, \qquad f \in \mathcal{F}.$$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

Outline

What is an RKHS?

- Reproducing kernel
- Inner product between features
- Positive definite function

Moore-Aronszajn Theorem

Mercer representation of RKHS

- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$

Operations with kernels

- Sum and product
- Constructing new kernels

Mercer's theorem

• \mathcal{X} a compact metric space; $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a continuous kernel.

3

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- \mathcal{X} a compact metric space; $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a continuous kernel.
- A finite measure ν on \mathcal{X} with $supp \nu = \mathcal{X}$.

3

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- \mathcal{X} a compact metric space; $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a continuous kernel.
- A finite measure ν on \mathcal{X} with $supp \nu = \mathcal{X}$.
- Integral operator T_k is then compact, positive and self-adjoint on $L_2(\mathcal{X}; \nu)$

3

- \mathcal{X} a compact metric space; $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a continuous kernel.
- A finite measure ν on \mathcal{X} with $supp \nu = \mathcal{X}$.
- Integral operator T_k is then compact, positive and self-adjoint on $L_2(\mathcal{X}; \nu)$, so there exist ONS $\{\tilde{e}_j\}_{j \in J}$ and $\{\lambda_j\}_{j \in J}$

3

- \mathcal{X} a compact metric space; $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a continuous kernel.
- A finite measure ν on \mathcal{X} with $supp \nu = \mathcal{X}$.
- Integral operator T_k is then compact, positive and self-adjoint on $L_2(\mathcal{X}; \nu)$, so there exist ONS $\{\tilde{e}_j\}_{j \in J}$ and $\{\lambda_j\}_{j \in J}$ (strictly positive eigenvalues; J at most countable).

イロト 不得下 イヨト イヨト 二日

- \mathcal{X} a compact metric space; $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a continuous kernel.
- A finite measure ν on \mathcal{X} with $supp \nu = \mathcal{X}$.
- Integral operator T_k is then compact, positive and self-adjoint on $L_2(\mathcal{X}; \nu)$, so there exist ONS $\{\tilde{e}_j\}_{j \in J}$ and $\{\lambda_j\}_{j \in J}$ (strictly positive eigenvalues; J at most countable).
- \tilde{e}_j is an equivalence class in the ONS of $L_2(\mathcal{X}; \nu)$

イロト 不得下 イヨト イヨト 二日

- \mathcal{X} a compact metric space; $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a continuous kernel.
- A finite measure ν on \mathcal{X} with $supp \nu = \mathcal{X}$.
- Integral operator T_k is then compact, positive and self-adjoint on $L_2(\mathcal{X}; \nu)$, so there exist ONS $\{\tilde{e}_j\}_{j \in J}$ and $\{\lambda_j\}_{j \in J}$ (strictly positive eigenvalues; J at most countable).
- \tilde{e}_j is an equivalence class in the ONS of $L_2(\mathcal{X}; \nu)$
- $e_j = \lambda_j^{-1} S_k \tilde{e}_j \in C(\mathcal{X})$ is a continuous function in the class \tilde{e}_j : $I_k e_j = \tilde{e}_j$.

・ロト ・ 一日 ・ ・ ヨ ト ・ 日 ・ うのつ

- \mathcal{X} a compact metric space; $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a continuous kernel.
- A finite measure ν on \mathcal{X} with $supp \nu = \mathcal{X}$.
- Integral operator T_k is then compact, positive and self-adjoint on $L_2(\mathcal{X}; \nu)$, so there exist ONS $\{\tilde{e}_j\}_{j \in J}$ and $\{\lambda_j\}_{j \in J}$ (strictly positive eigenvalues; J at most countable).
- \tilde{e}_j is an equivalence class in the ONS of $L_2(\mathcal{X}; \nu)$
- $e_j = \lambda_j^{-1} S_k \tilde{e}_j \in C(\mathcal{X})$ is a continuous function in the class \tilde{e}_j : $I_k e_j = \tilde{e}_j$.

Theorem (Mercer's theorem)

 $\forall x, y \in \mathcal{X}$ with convergence uniform on $\mathcal{X} \times \mathcal{X}$:

$$k(x,y) = \sum_{j\in J} \lambda_j e_j(x) e_j(y).$$

Mercer's theorem (2)

$$\begin{aligned} k(x,y) &= \sum_{j \in J} \lambda_j e_j(x) e_j(y) \\ &= \left\langle \left\{ \sqrt{\lambda_j} e_j(x) \right\}, \left\{ \sqrt{\lambda_j} e_j(y) \right\} \right\rangle_{\ell^2(J)} \end{aligned}$$

Ξ.

イロト イロト イヨト イヨト

Mercer's theorem (2)

$$k(x, y) = \sum_{j \in J} \lambda_j e_j(x) e_j(y)$$
$$= \left\langle \left\{ \sqrt{\lambda_j} e_j(x) \right\}, \left\{ \sqrt{\lambda_j} e_j(y) \right\} \right\rangle_{\ell^2(J)}$$

Another (Mercer) feature map:

$$egin{array}{rcl} \phi : \mathcal{X} & o & \ell^2(J) \ \phi : x & \mapsto & \left\{ \sqrt{\lambda_j} e_j(x)
ight\}_{j \in J} \end{array}$$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

< □ > < □ > < □ > < □ > < □ > < □ >

э

Mercer's theorem (2)

$$k(x, y) = \sum_{j \in J} \lambda_j e_j(x) e_j(y)$$
$$= \left\langle \left\{ \sqrt{\lambda_j} e_j(x) \right\}, \left\{ \sqrt{\lambda_j} e_j(y) \right\} \right\rangle_{\ell^2(J)}$$

Another (Mercer) feature map:

$$\begin{array}{rcl} \phi: \, \mathcal{X} & \to & \ell^2(J) \\ \phi: \, x & \mapsto & \left\{ \sqrt{\lambda_j} e_j(x) \right\}_{j \in J} \end{array}$$

$$\sum_{j\in J} \left(\sqrt{\lambda_j} e_j(x)\right)^2 = k(x,x) < \infty$$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

< □ > < □ > < □ > < □ > < □ > < □ >

э

36 / 58

Mercer's theorem (3)

• Sum $\sum_{j \in J} a_j e_j(x)$ converges absolutely $\forall x \in \mathcal{X}$ whenever sequence $\{a_j/\sqrt{\lambda_j}\} \in \ell^2(J)$:

$$\sum_{j \in J} |a_j e_j(x)| \leq \left[\sum_{j \in J} \left| \frac{a_j}{\sqrt{\lambda_j}} \right|^2 \right]^{1/2} \cdot \left[\sum_{j \in J} \left| \sqrt{\lambda_j} e_j(x) \right|^2 \right]^{1/2}$$
$$= \left\| \left\{ \frac{a_j}{\sqrt{\lambda_j}} \right\} \right\|_{\ell^2(J)} \sqrt{k(x,x)}.$$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

March 17, 2014 37 / 58

イロト 不得下 イヨト イヨト 二日

Mercer's theorem (3)

• Sum $\sum_{j \in J} a_j e_j(x)$ converges absolutely $\forall x \in \mathcal{X}$ whenever sequence $\{a_j/\sqrt{\lambda_j}\} \in \ell^2(J)$:

$$\sum_{j\in J} |a_j e_j(x)| \leq \left[\sum_{j\in J} \left| \frac{a_j}{\sqrt{\lambda_j}} \right|^2 \right]^{1/2} \cdot \left[\sum_{j\in J} \left| \sqrt{\lambda_j} e_j(x) \right|^2 \right]^{1/2} \\ = \left\| \left\{ \frac{a_j}{\sqrt{\lambda_j}} \right\} \right\|_{\ell^2(J)} \sqrt{k(x,x)}.$$

 $\sum_{i \in J} a_i e_i$ is a well defined function on \mathcal{X}

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

March 17, 2014 37 / 58

<ロ> <問> <問> < 回> < 回> < 回> < 回</p>

Mercer representation of RKHS

Theorem

Let \mathcal{X} be a compact metric space and $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a continuous kernel. Define:

$$\mathcal{H} = \left\{ f = \sum_{j \in J} a_j e_j : \left\{ a_j / \sqrt{\lambda_j} \right\} \in \ell^2(J) \right\}.$$

with inner product:

$$\left\langle \sum_{j\in J} a_j e_j, \sum_{j\in J} b_j e_j \right\rangle_{\mathcal{H}} = \sum_{j\in J} \frac{a_j b_j}{\lambda_j}.$$

Then \mathcal{H} is the RKHS of k.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Mercer representation of RKHS

Theorem

Let \mathcal{X} be a compact metric space and $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ a continuous kernel. Define:

$$\mathcal{H} = \left\{ f = \sum_{j \in J} a_j e_j : \left\{ a_j / \sqrt{\lambda_j} \right\} \in \ell^2(J) \right\}.$$

with inner product:

$$\left\langle \sum_{j \in J} a_j e_j, \sum_{j \in J} b_j e_j \right\rangle_{\mathcal{H}} = \sum_{j \in J} \frac{a_j b_j}{\lambda_j}.$$

Then \mathcal{H} is the RKHS of k.

RKHS is unique, so does not depend on ν !

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

March 17, 2014 38 / 58

(□) (A

Proof

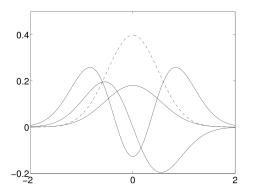
D. Sejdinovic, A. Gretton (Gatsby Unitsli

39 / 58

Smoothness interpretation

$$egin{array}{lll} \mathsf{Gaussian} \ \mathsf{kernel}, \ k(x,y) = \exp\left(-\sigma \left\|x-y
ight\|^2
ight), \ \lambda_j & \propto & b^j & b < 1 \ e_j(x) & \propto & \exp(-(c-a)x^2) H_j(x\sqrt{2c}) \end{array}$$

a, b, c are functions of σ , and H_j is *j*th order Hermite polynomial.



NOTE that $\|f\|_{\mathcal{H}_k} < \infty$ is a "smoothness" constraint: λ_j decay as e_j become "rougher" and

•

$$\|f\|_{\mathcal{H}_k}^2 = \sum_{j \in J} \frac{a_j^2}{\lambda_j}$$

(Figure from Rasmussen and Williams)

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

March 17, 2014

40 / 58

Outline

What is an RKHS?

- Reproducing kernel
- Inner product between features
- Positive definite function

Moore-Aronszajn Theorem

Mercer representation of RKHS

- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$

Operations with kernels

- Sum and product
- Constructing new kernels

Assume $\{\tilde{e}_j\}_{j\in J}$ is ONB of $L_2(\mathcal{X}; \nu)$, and write $\hat{f}(j) = \langle f, \tilde{e}_j \rangle_{L_2}$

$$T_k f = \sum_{j \in J} \lambda_j \hat{f}(j) \tilde{e}_j, \qquad f \in L_2(\mathcal{X}; \nu)$$

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Assume $\{\tilde{e}_j\}_{j\in J}$ is ONB of $L_2(\mathcal{X}; \nu)$, and write $\hat{f}(j) = \langle f, \tilde{e}_j \rangle_{L_2}$

$$T_k f = \sum_{j \in J} \lambda_j \hat{f}(j) \tilde{e}_j, \qquad f \in L_2(\mathcal{X}; \nu)$$

$${\mathcal T}_k^{1/2} f = \sum_{j \in J} \sqrt{\lambda_j} \widehat{f}(j) \widetilde{e}_j, \qquad f \in L_2({\mathcal X};
u)$$

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Assume $\{\tilde{e}_j\}_{j\in J}$ is ONB of $L_2(\mathcal{X}; \nu)$, and write $\hat{f}(j) = \langle f, \tilde{e}_j \rangle_{L_2}$

$$T_k f = \sum_{j \in J} \lambda_j \hat{f}(j) \tilde{e}_j, \qquad f \in L_2(\mathcal{X}; \nu)$$

$$T_k^{1/2}f = \sum_{j \in J} \sqrt{\lambda_j} \hat{f}(j) \tilde{e}_j, \qquad f \in L_2(\mathcal{X}; \nu)$$

$$\mathcal{H}_k = \left\{ f = \sum_{j \in J} a_j e_j : \left\{ a_j / \sqrt{\lambda_j} \right\} \in \ell^2(J) \right\}$$

$$\sum_{j\in J} \left| \hat{f}(j) \right|^2 = \|f\|_2^2 < \infty \Rightarrow \left\{ \hat{f}(j) \right\} \in \ell^2(J) \quad \Rightarrow \quad \sum_{j\in J} \sqrt{\lambda_j} \hat{f}(j) e_j \in \mathcal{H}_k$$

$$f \in L_2(\mathcal{X}; \nu) \stackrel{1-1}{\longleftrightarrow} \left\{ \hat{f}(j) \right\} \in \ell^2(J) \quad \stackrel{1-1}{\longleftrightarrow} \quad \sum_{j \in J} \sqrt{\lambda_j} \hat{f}(j) e_j \in \mathcal{H}_k$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

$$f \in L_2(\mathcal{X}; \nu) \stackrel{1-1}{\longleftrightarrow} \left\{ \hat{f}(j) \right\} \in \ell^2(J) \quad \stackrel{1-1}{\longleftrightarrow} \quad \sum_{j \in J} \sqrt{\lambda_j} \hat{f}(j) e_j \in \mathcal{H}_k$$

$$\langle f, g \rangle_{L_2} = \left\langle \left\{ \hat{f}(j) \right\}, \left\{ \hat{g}(j) \right\} \right\rangle_{\ell^2(J)} = \left\langle \sum_{j \in J} \sqrt{\lambda_j} \hat{f}(j) e_j, \sum_{j \in J} \sqrt{\lambda_j} \hat{g}(j) e_j \right\rangle_{\mathcal{H}_k}$$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

▲□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$f \in L_2(\mathcal{X}; \nu) \stackrel{1-1}{\longleftrightarrow} \left\{ \hat{f}(j) \right\} \in \ell^2(J) \quad \stackrel{1-1}{\longleftrightarrow} \quad \sum_{j \in J} \sqrt{\lambda_j} \hat{f}(j) e_j \in \mathcal{H}_k$$

$$\langle f, g \rangle_{L_2} = \left\langle \left\{ \hat{f}(j) \right\}, \left\{ \hat{g}(j) \right\} \right\rangle_{\ell^2(J)} = \left\langle \sum_{j \in J} \sqrt{\lambda_j} \hat{f}(j) e_j, \sum_{j \in J} \sqrt{\lambda_j} \hat{g}(j) e_j \right\rangle_{\mathcal{H}_k}$$

 $T_k^{1/2}$ induces an isometric isomorphism between $span \{\tilde{e}_j : j \in J\} \subseteq L_2(\mathcal{X}; \nu)$ and \mathcal{H}_k (and both are isometrically isomorphic to $\ell^2(J)$).

D. Sejdinovic, A. Gretton (Gatsby Unitsli

43 / 58

$f \in L_2(\mathcal{X}; \nu) \stackrel{1-1}{\longleftrightarrow} \left\{ \hat{f}(j) \right\} \in \ell^2(J) \quad \stackrel{1-1}{\longleftrightarrow} \quad \sum_{j \in J} \sqrt{\lambda_j} \hat{f}(j) e_j \in \mathcal{H}_k$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

March 17, 2014 44 / 58

3

イロト イポト イヨト イヨト

$$f \in L_2(\mathcal{X}; \nu) \stackrel{1-1}{\longleftrightarrow} \left\{ \hat{f}(j) \right\} \in \ell^2(J) \stackrel{1-1}{\longleftrightarrow} \sum_{j \in J} \sqrt{\lambda_j} \hat{f}(j) e_j \in \mathcal{H}_k$$

 $k(\cdot, \mathbf{x}) = \sum_{j \in J} \sqrt{\lambda_j} \left(\sqrt{\lambda_j} e_j(\mathbf{x}) \right) e_j$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

March 17, 2014 44 / 58

3

イロン 不聞と 不同と 不同と

$$\begin{split} f \in L_2(\mathcal{X}; \nu) & \stackrel{1-1}{\longleftrightarrow} \left\{ \hat{f}(j) \right\} \in \ell^2(J) \quad \stackrel{1-1}{\longleftrightarrow} \quad \sum_{j \in J} \sqrt{\lambda_j} \hat{f}(j) e_j \in \mathcal{H}_k \\ k(\cdot, x) &= \sum_{j \in J} \sqrt{\lambda_j} \left(\sqrt{\lambda_j} e_j(x) \right) e_j \\ \mathcal{H}_k \ni k(\cdot, x) \leftarrow x \to \left\{ \sqrt{\lambda_j} e_j(x) \right\} \in \ell^2(J) \end{split}$$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

3

イロト イヨト イヨト イヨト

$$\begin{split} f \in L_2(\mathcal{X}; \nu) & \stackrel{1-1}{\longleftrightarrow} \left\{ \hat{f}(j) \right\} \in \ell^2(J) \quad \stackrel{1-1}{\longleftrightarrow} \quad \sum_{j \in J} \sqrt{\lambda_j} \hat{f}(j) e_j \in \mathcal{H}_k \\ k(\cdot, x) &= \sum_{j \in J} \sqrt{\lambda_j} \left(\sqrt{\lambda_j} e_j(x) \right) e_j \\ \mathcal{H}_k \ni k(\cdot, x) \leftarrow x \to \left\{ \sqrt{\lambda_j} e_j(x) \right\} \in \ell^2(J) \end{split}$$

Mercer feature map gives Fourier coefficients of the canonical feature map.

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

What is an RKHS?

- Reproducing kernel
- Inner product between features
- Positive definite function

Doore-Aronszajn Theorem

3 Mercer representation of RKHS

- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$

Operations with kernels

- Sum and product
- Constructing new kernels

Outline

What is an RKHS?

- Reproducing kernel
- Inner product between features
- Positive definite function

Moore-Aronszajn Theorem

Mercer representation of RKHS

- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$

Operations with kernels

- Sum and product
- Constructing new kernels

Operations with kernels

Fact (Sum and scaling of kernels)

If k, k_1 , and k_2 are kernels on \mathcal{X} , and $\alpha \ge 0$ is a scalar, then αk , $k_1 + k_2$ are kernels.

Operations with kernels

Fact (Sum and scaling of kernels)

If k, k_1 , and k_2 are kernels on \mathcal{X} , and $\alpha \ge 0$ is a scalar, then αk , $k_1 + k_2$ are kernels.

- A difference of kernels is not necessarily a kernel! This is because we cannot have $k_1(x,x) k_2(x,x) = \langle \phi(x), \phi(x) \rangle_{\mathcal{H}} < 0$.
- This gives the set of all kernels the geometry of a *closed convex cone*.

Operations with kernels

Fact (Sum and scaling of kernels)

If k, k_1 , and k_2 are kernels on \mathcal{X} , and $\alpha \ge 0$ is a scalar, then αk , $k_1 + k_2$ are kernels.

- A difference of kernels is not necessarily a kernel! This is because we cannot have $k_1(x,x) k_2(x,x) = \langle \phi(x), \phi(x) \rangle_{\mathcal{H}} < 0$.
- This gives the set of all kernels the geometry of a *closed convex cone*.

$$\mathcal{H}_{k_1+k_2} = \mathcal{H}_{k_1} + \mathcal{H}_{k_2} = \{f_1 + f_2 : f_1 \in \mathcal{H}_{k_1}, f_2 \in \mathcal{H}_{k_2}\}$$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Operations with kernels (2)

Fact (Product of kernels)

If k_1 and k_2 are kernels on \mathcal{X} and \mathcal{Y} , then $k = k_1 \otimes k_2$, given by:

$$k((x,y),(x',y')) := k_1(x,x')k_2(y,y')$$

is a kernel on $\mathcal{X} \times \mathcal{Y}$. If $\mathcal{X} = \mathcal{Y}$, then $k = k_1 \cdot k_2$, given by:

$$k(x,x') := k_1(x,x')k_2(x,x')$$

is a kernel on \mathcal{X} .

<ロ> <問> <問> < 回> < 回> < 回> < 回</p>

Operations with kernels (2)

Fact (Product of kernels)

If k_1 and k_2 are kernels on \mathcal{X} and \mathcal{Y} , then $k = k_1 \otimes k_2$, given by:

$$k((x,y),(x',y')) := k_1(x,x')k_2(y,y')$$

is a kernel on $\mathcal{X} \times \mathcal{Y}$. If $\mathcal{X} = \mathcal{Y}$, then $k = k_1 \cdot k_2$, given by:

$$k(x,x') := k_1(x,x')k_2(x,x')$$

is a kernel on \mathcal{X} .

$$\mathcal{H}_{k_1\otimes k_2}\cong \mathcal{H}_{k_1}\otimes \mathcal{H}_{k_2}$$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

<ロ> <問> <問> < 回> < 回> < 回> < 回</p>

Summary

all kernels $\mathbb{R}_+^{\mathcal{X}\times\mathcal{X}}$ $\stackrel{1-1}{\longleftrightarrow}$ all function spaces with continuous evaluation $Hilb(\mathbb{R}^{\mathcal{X}})$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

March 17, 2014 49 / 58

э

Summary

all kernels $\mathbb{R}^{\mathcal{X} \times \mathcal{X}}_+$ $\stackrel{1-1}{\longleftrightarrow}$ all function spaces with continuous evaluation $Hilb(\mathbb{R}^{\mathcal{X}})$ bijection between $\mathbb{R}^{\mathcal{X} \times \mathcal{X}}_+$ and $Hilb(\mathbb{R}^{\mathcal{X}})$ preserves geometric structure

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

March 17, 2014 49 / 58

Outline

What is an RKHS?

- Reproducing kernel
- Inner product between features
- Positive definite function

Moore-Aronszajn Theorem

Mercer representation of RKHS

- Integral operator
- Mercer's theorem
- Relation between \mathcal{H}_k and $L_2(\mathcal{X}; \nu)$

Operations with kernels

- Sum and product
- Constructing new kernels

New kernels from old:

• trivial (linear) kernel on \mathbb{R}^d is $k(x,x') = \langle x,x'
angle$

New kernels from old:

• trivial (linear) kernel on \mathbb{R}^d is $k(x, x') = \langle x, x' \rangle$

• for any
$$p(t) = a_m t^m + \dots + a_1 t + a_0$$
 with $a_i \ge 0$
 $\implies k(x, x') = p(\langle x, x' \rangle)$ is a kernel on \mathbb{R}^d

New kernels from old:

- trivial (linear) kernel on \mathbb{R}^d is $k(x, x') = \langle x, x' \rangle$
- for any $p(t) = a_m t^m + \dots + a_1 t + a_0$ with $a_i \ge 0$ $\implies k(x, x') = p(\langle x, x' \rangle)$ is a kernel on \mathbb{R}^d
- polynomial kernel: $k(x,x') = (\langle x,x' \rangle + c)^m$, for $c \ge 0$

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

New kernels from old:

- trivial (linear) kernel on \mathbb{R}^d is $k(x,x') = \langle x,x' \rangle$
- for any $p(t) = a_m t^m + \dots + a_1 t + a_0$ with $a_i \ge 0$ $\implies k(x, x') = p(\langle x, x' \rangle)$ is a kernel on \mathbb{R}^d
- polynomial kernel: $k(x,x') = (\langle x,x' \rangle + c)^m$, for $c \ge 0$
- f(t) has Taylor series with non-negative coefficients
 ⇒ k(x, x') = f(⟨x, x'⟩) is a kernel on ℝ^d

New kernels from old:

- trivial (linear) kernel on \mathbb{R}^d is $k(x,x') = \langle x,x' \rangle$
- for any $p(t) = a_m t^m + \dots + a_1 t + a_0$ with $a_i \ge 0$ $\implies k(x, x') = p(\langle x, x' \rangle)$ is a kernel on \mathbb{R}^d
- polynomial kernel: $k(x,x') = (\langle x,x' \rangle + c)^m$, for $c \ge 0$
- f(t) has Taylor series with non-negative coefficients $\implies k(x, x') = f(\langle x, x' \rangle)$ is a kernel on \mathbb{R}^d
- exponential kernel: $k(x, x') = \exp(\sigma \langle x, x' \rangle)$, for $\sigma > 0$

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

New kernels from old:

• polynomial kernel: $k(x, x') = (\langle x, x' \rangle + c)^m$, for $c \ge 0$

• exponential kernel: $k(x, x') = \exp(\sigma \langle x, x' \rangle)$, for $\sigma > 0$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Gaussian kernel

Let $\phi : \mathbb{R}^d \to \mathbb{R}$, $\phi(x) = \exp(-\sigma ||x||^2)$. Then, \tilde{k} is representable as an inner product in \mathbb{R} :

$$\tilde{k}(x,x') = \phi(x)\phi(x') = \exp(-\sigma \|x\|^2)\exp(-\sigma \|x'\|^2)$$
 kernel!

(日) (周) (日) (日) (日)

Gaussian kernel

Let $\phi : \mathbb{R}^d \to \mathbb{R}$, $\phi(x) = \exp(-\sigma ||x||^2)$. Then, \tilde{k} is representable as an inner product in \mathbb{R} :

$$\tilde{k}(x,x') = \phi(x)\phi(x') = \exp(-\sigma \|x\|^2)\exp(-\sigma \|x'\|^2)$$
 kernel!

$$k_{gauss}(x, x') = \tilde{k}(x, x')k_{exp}(x, x')$$

= $\exp\left(-\sigma\left[\|x\|^2 + \|x'\|^2 - 2\langle x, x'\rangle\right]\right)$
= $\exp\left(-\sigma\|x - x'\|^2\right)$ kernel!

D. Sejdinovic, A. Gretton (Gatsby Unitsli

52 / 58

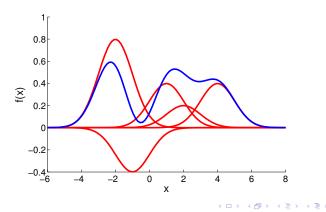
(日) (周) (日) (日) (日)

Starting with a positive def. k, construct a **pre-RKHS** (an inner product space of functions) $\mathcal{H}_0 \subset \mathbb{R}^{\mathcal{X}}$ with properties:

- **(**) The evaluation functionals δ_x are continuous on \mathcal{H}_0 ,
- Any H₀-Cauchy sequence f_n which converges pointwise to 0 also converges in H₀-norm to 0

pre-RKHS $\mathcal{H}_0 = span \{k(\cdot, x) \mid x \in \mathcal{X}\}$ will be taken to be the set of functions:

$$f(x) = \sum_{i=1}^{n} \alpha_i k(x, x_i)$$



D. Sejdinovic, A. Gretton (Gatsby Unitsli

54 / 58

Theorem (Moore-Aronszajn - Step I)

Space $\mathcal{H}_0 = span \{k(\cdot, x) \, | \, x \in \mathcal{X}\}$, endowed with the inner product

$$\langle f,g \rangle_{\mathcal{H}_0} = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j k(x_i, y_j),$$

where $f = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i)$ and $g = \sum_{j=1}^{m} \beta_j k(\cdot, y_j)$, is a valid pre-RKHS.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 ─ ���

Theorem (Moore-Aronszajn - Step I)

Space $\mathcal{H}_0 = span \{k(\cdot, x) \, | \, x \in \mathcal{X}\}$, endowed with the inner product

$$\langle f,g \rangle_{\mathcal{H}_0} = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j k(x_i, y_j),$$

where $f = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i)$ and $g = \sum_{j=1}^{m} \beta_j k(\cdot, y_j)$, is a valid pre-RKHS.

Theorem (Moore-Aronszajn - Step II)

Let \mathcal{H}_0 be a pre-RKHS space. Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_0 -Cauchy sequence $\{f_n\}$ converging **pointwise** to f. Then, \mathcal{H} is an RKHS.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二頁 - のへで

Theorem (Moore-Aronszajn - Step I)

Space $\mathcal{H}_0 = span \{k(\cdot, x) \mid x \in \mathcal{X}\}$, endowed with the inner product

$$(f,g)_{\mathcal{H}_0} = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j k(x_i, y_j),$$

where $f = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i)$ and $g = \sum_{j=1}^{m} \beta_j k(\cdot, y_j)$, is a valid pre-RKHS.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 ─ ���

Theorem (Moore-Aronszajn - Step I)

Space $\mathcal{H}_0 = span \{k(\cdot, x) \mid x \in \mathcal{X}\}$, endowed with the inner product

$$(f,g)_{\mathcal{H}_0} = \sum_{i=1}^n \sum_{j=1}^m \alpha_i \beta_j k(x_i, y_j),$$

where $f = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i)$ and $g = \sum_{j=1}^{m} \beta_j k(\cdot, y_j)$, is a valid pre-RKHS.

- **()** The evaluation functionals δ_x are continuous on \mathcal{H}_0
- Any H₀-Cauchy sequence f_n which converges pointwise to 0 also converges in H₀-norm to 0

(日) (周) (日) (日) (日) (0) (0)

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_0 -Cauchy sequence $\{f_n\}$ converging **pointwise** to f. Clearly, $\mathcal{H}_0 \subseteq \mathcal{H}$.

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_0 -Cauchy sequence $\{f_n\}$ converging **pointwise** to f. Clearly, $\mathcal{H}_0 \subseteq \mathcal{H}$.

We define the inner product between f, g ∈ H as the limit of an inner product of the H₀-Cauchy sequences {f_n}, {g_n} converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_0 -Cauchy sequence $\{f_n\}$ converging **pointwise** to f. Clearly, $\mathcal{H}_0 \subseteq \mathcal{H}$.

- We define the inner product between $f, g \in \mathcal{H}$ as the limit of an inner product of the \mathcal{H}_0 -Cauchy sequences $\{f_n\}$, $\{g_n\}$ converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?
- 3 An inner product space must satisfy $\langle f, f \rangle_{\mathcal{H}} = 0$ iff f = 0. Is this true when we define the inner product on \mathcal{H} as above?

イロト 不得下 イヨト イヨト 二日

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_0 -Cauchy sequence $\{f_n\}$ converging **pointwise** to f. Clearly, $\mathcal{H}_0 \subseteq \mathcal{H}$.

- We define the inner product between f, g ∈ H as the limit of an inner product of the H₀-Cauchy sequences {f_n}, {g_n} converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?
- 3 An inner product space must satisfy $\langle f, f \rangle_{\mathcal{H}} = 0$ iff f = 0. Is this true when we define the inner product on \mathcal{H} as above?
- **③** Are the evaluation functionals still continuous on \mathcal{H} ?

イロト 不得下 イヨト イヨト 二日

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_0 -Cauchy sequence $\{f_n\}$ converging **pointwise** to f. Clearly, $\mathcal{H}_0 \subseteq \mathcal{H}$.

- We define the inner product between f, g ∈ H as the limit of an inner product of the H₀-Cauchy sequences {f_n}, {g_n} converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?
- 3 An inner product space must satisfy $\langle f, f \rangle_{\mathcal{H}} = 0$ iff f = 0. Is this true when we define the inner product on \mathcal{H} as above?
- **③** Are the evaluation functionals still continuous on \mathcal{H} ?
- Solution Is H complete (i.e., does every H-Cauchy sequence converge)?

Define \mathcal{H} to be the set of functions $f \in \mathbb{R}^{\mathcal{X}}$ for which there exists an \mathcal{H}_0 -Cauchy sequence $\{f_n\}$ converging **pointwise** to f. Clearly, $\mathcal{H}_0 \subseteq \mathcal{H}$.

- We define the inner product between f, g ∈ H as the limit of an inner product of the H₀-Cauchy sequences {f_n}, {g_n} converging to f and g respectively. Is this inner product well defined, i.e., independent of the sequences used?
- 2 An inner product space must satisfy $\langle f, f \rangle_{\mathcal{H}} = 0$ iff f = 0. Is this true when we define the inner product on \mathcal{H} as above?
- **③** Are the evaluation functionals still continuous on \mathcal{H} ?
- Is \mathcal{H} complete (i.e., does every \mathcal{H} -Cauchy sequence converge)?
 - $(1)+(2)+(3)+(4) \Longrightarrow \mathcal{H} \text{ is RKHS!}$

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

reproducing kernel \iff kernel \iff positive definite

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

March 17, 2014

э

58 / 58

Summary

reproducing kernel \iff kernel \iff positive definite all pd functions $\mathbb{R}^{\mathcal{X} \times \mathcal{X}}_+$ $\stackrel{1-1}{\longleftrightarrow}$ all function spaces with continuous evaluation $Hilb(\mathbb{R}^{\mathcal{X}})$

D. Sejdinovic, A. Gretton (Gatsby Unitsli

Foundations of RKHS

March 17, 2014 58 / 58

3

(4月) (4日) (4日)