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The story so far

Hilbert space:

Riesz Theorem:

RKHS:

thus, evaluation is representable by an inner product
define k(·, x) as that representer of evaluation

kernel as an inner product between features: k(x , x ′) = 〈φ(x), φ(x ′)〉H

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 17, 2014 2 / 58



The story so far

Hilbert space: a complete space with an inner product

Riesz Theorem:

RKHS:

thus, evaluation is representable by an inner product
define k(·, x) as that representer of evaluation

kernel as an inner product between features: k(x , x ′) = 〈φ(x), φ(x ′)〉H

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 17, 2014 2 / 58



The story so far

Hilbert space: a complete space with an inner product

Riesz Theorem:

RKHS:

thus, evaluation is representable by an inner product
define k(·, x) as that representer of evaluation

kernel as an inner product between features: k(x , x ′) = 〈φ(x), φ(x ′)〉H

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 17, 2014 2 / 58



The story so far

Hilbert space: a complete space with an inner product

Riesz Theorem: all linear & continuous functionals are representable by
inner products

RKHS:

thus, evaluation is representable by an inner product
define k(·, x) as that representer of evaluation

kernel as an inner product between features: k(x , x ′) = 〈φ(x), φ(x ′)〉H

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 17, 2014 2 / 58



The story so far

Hilbert space: a complete space with an inner product

Riesz Theorem: all linear & continuous functionals are representable by
inner products

RKHS:

thus, evaluation is representable by an inner product
define k(·, x) as that representer of evaluation

kernel as an inner product between features: k(x , x ′) = 〈φ(x), φ(x ′)〉H

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 17, 2014 2 / 58



The story so far

Hilbert space: a complete space with an inner product

Riesz Theorem: all linear & continuous functionals are representable by
inner products

RKHS: a Hilbert space of functions for which evaluation is continuous

thus, evaluation is representable by an inner product
define k(·, x) as that representer of evaluation

kernel as an inner product between features: k(x , x ′) = 〈φ(x), φ(x ′)〉H

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 17, 2014 2 / 58



The story so far

Hilbert space: a complete space with an inner product

Riesz Theorem: all linear & continuous functionals are representable by
inner products

RKHS: a Hilbert space of functions for which evaluation is continuous

thus, evaluation is representable by an inner product

define k(·, x) as that representer of evaluation
kernel as an inner product between features: k(x , x ′) = 〈φ(x), φ(x ′)〉H

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 17, 2014 2 / 58



The story so far

Hilbert space: a complete space with an inner product

Riesz Theorem: all linear & continuous functionals are representable by
inner products

RKHS: a Hilbert space of functions for which evaluation is continuous

thus, evaluation is representable by an inner product with some element

define k(·, x) as that representer of evaluation
kernel as an inner product between features: k(x , x ′) = 〈φ(x), φ(x ′)〉H

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 17, 2014 2 / 58



The story so far

Hilbert space: a complete space with an inner product

Riesz Theorem: all linear & continuous functionals are representable by
inner products

RKHS: a Hilbert space of functions for which evaluation is continuous

thus, evaluation is representable by an inner product with some element
define k(·, x) as that representer of evaluation

kernel as an inner product between features: k(x , x ′) = 〈φ(x), φ(x ′)〉H

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 17, 2014 2 / 58



The story so far

Hilbert space: a complete space with an inner product

Riesz Theorem: all linear & continuous functionals are representable by
inner products

RKHS: a Hilbert space of functions for which evaluation is continuous

thus, evaluation is representable by an inner product with some element
define k(·, x) as that representer of evaluation: reproducing kernel

kernel as an inner product between features: k(x , x ′) = 〈φ(x), φ(x ′)〉H

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 17, 2014 2 / 58



The story so far

Hilbert space: a complete space with an inner product

Riesz Theorem: all linear & continuous functionals are representable by
inner products

RKHS: a Hilbert space of functions for which evaluation is continuous

thus, evaluation is representable by an inner product with some element
define k(·, x) as that representer of evaluation: reproducing kernel

kernel as an inner product between features: k(x , x ′) = 〈φ(x), φ(x ′)〉H

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 17, 2014 2 / 58



Overview

1 What is an RKHS?
Reproducing kernel
Inner product between features
Positive definite function

2 Moore-Aronszajn Theorem

3 Mercer representation of RKHS
Integral operator
Mercer’s theorem
Relation between Hk and L2(X ; ν)

4 Operations with kernels
Sum and product
Constructing new kernels
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What is an RKHS?

RKHS

Definition (Reproducing kernel Hilbert space)

Let X be a non-empty set. A Hilbert space H of functions f : X → R is
said to be a Reproducing Kernel Hilbert Space (RKHS) if evaluation
functionals δx : f 7→ f (x) are continuous ∀x ∈ X .

If two functions f , g ∈ H are close in the norm of H, then f (x) and g(x)
are close for all x ∈ X
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What is an RKHS?

Outline

Will discuss three distinct concepts:
reproducing kernel
inner product between features
positive definite function

...and then show that they are all equivalent.
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What is an RKHS? Reproducing kernel

Reproducing kernel

Definition (Reproducing kernel)

Let H be a Hilbert space of functions f : X → R defined on a non-empty
set X . A function k : X × X → R is called a reproducing kernel of H if it
satisfies

∀x ∈ X , kx = k(·, x) ∈ H,
∀x ∈ X , ∀f ∈ H, 〈f , k(·, x)〉H = f (x) (the reproducing property).

In particular, for any x , y ∈ X ,
k(x , y) = 〈k (·, y) , k (·, x)〉H = 〈k (·, x) , k (·, y)〉H.
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What is an RKHS? Reproducing kernel

Reproducing kernel of an RKHS

Theorem
If it exists, reproducing kernel is unique.

Theorem
H is a reproducing kernel Hilbert space if and only if it has a reproducing
kernel.
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What is an RKHS? Inner product between features

Outline
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What is an RKHS? Inner product between features

Feature space inner product

Definition (Kernel)

A function k : X × X → R is called a kernel on X if there exists a Hilbert
space (not necessarilly an RKHS) F and a map φ : X → F , such that
k(x , y) = 〈φ(x), φ(y)〉F .

φ : X → F is called a feature map,
F is called a feature space.

Fact
Every reproducing kernel is a kernel (every RKHS is a valid feature
space).
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What is an RKHS? Inner product between features

Non-uniqueness of feature representation

Example

Consider X = R2, and k(x , y) = 〈x , y〉2

k(x , y) = x21 y2
1 + x22 y2

2 + 2x1x2y1y2

=
[

x21 x22
√

2x1x2
]  y2

1
y2
2√

2y1y2



=
[

x21 x22 x1x2 x1x2
] 

y2
1

y2
2

y1y2
y1y2

.
so we can use the feature maps φ(x) =

(
x21 , x22 ,

√
2x1x2

)
or

φ̃(x) =
[

x21 x22 x1x2 x1x2
]
, with feature spaces H = R3 or H̃ = R4.

Not RKHS!

Evaluation is not defined on R3 or R4.
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What is an RKHS? Positive definite function
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What is an RKHS? Positive definite function

Positive definite functions

Definition (Positive definite functions)

A symmetric function h : X × X → R is positive definite if
∀n ≥ 1, ∀(a1, . . . an) ∈ Rn, ∀(x1, . . . , xn) ∈ X n,

n∑
i=1

n∑
j=1

aiajh(xi , xj) = a>Ha ≥ 0.
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What is an RKHS? Positive definite function

Kernels are positive definite

Fact
Every kernel is a positive definite function.

n∑
i=1

n∑
j=1

aiajk(xi , xj) =
n∑

i=1

n∑
j=1

aiaj 〈φ(xi ), φ(xj)〉F

=

〈
n∑

i=1

aiφ(xi ),
n∑

j=1

ajφ(xj)

〉
F

=

∥∥∥∥∥
n∑

i=1

aiφ(xi )

∥∥∥∥∥
2

F

≥ 0.
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What is an RKHS? Positive definite function

So far

reproducing kernel =⇒ kernel =⇒ positive definite

Is every positive definite function a reproducing kernel for some RKHS?
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What is an RKHS? Positive definite function

So far

reproducing kernel ⇐⇒ kernel ⇐⇒ positive definite

Yes (Moore-Aronszajn)!
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Moore-Aronszajn Theorem
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Moore-Aronszajn Theorem

Moore-Aronszajn Theorem

Theorem (Moore-Aronszajn)

Let k : X × X → R be positive definite. There is a unique RKHS
H ⊂ RX with reproducing kernel k.
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Moore-Aronszajn Theorem

Moore-Aronszajn Theorem: pre-RKHS

Starting with a positive def. k , construct a pre-RKHS (an inner product
space) H0 ⊂ RX with properties:

1 The evaluation functionals δx are continuous on H0,
2 Any H0-Cauchy sequence fn which converges pointwise to 0 also

converges in H0-norm to 0
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Moore-Aronszajn Theorem

Moore-Aronszajn Theorem: pre-RKHS

pre-RKHS H0 = span {k(·, x) | x ∈ X} will be taken to be the set of
functions:

f (x) =
n∑

i=1

αik(x , xi )

−6 −4 −2 0 2 4 6 8
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

f(
x
)
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Moore-Aronszajn Theorem

Moore-Aronszajn Theorem: Steps

Theorem (Moore-Aronszajn - Step A)

Space H0 = span {k(·, x) | x ∈ X}, endowed with the inner product

〈f , g〉H0
=

n∑
i=1

m∑
j=1

αiβjk(xi , yj),

where f =
∑n

i=1 αik(·, xi ) and g =
∑m

j=1 βjk(·, yj), is a valid pre-RKHS.

Theorem (Moore-Aronszajn - Step B)

Let H0 be a pre-RKHS space. Define H to be the set of functions f ∈ RX
for which there exists an H0-Cauchy sequence {fn} converging pointwise
to f . Then, H is an RKHS.
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Moore-Aronszajn Theorem

Moore-Aronszajn Theorem - Step A

Is 〈f , g〉H0
a valid inner product?

Are evaluation functionals δx are continuous on H0?
Does every H0-Cauchy sequence fn which converges pointwise to 0
also converge in H0-norm to 0?
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Moore-Aronszajn Theorem

Moore-Aronszajn Theorem- Step B

Define H to be the set of functions f ∈ RX for which there exists an
H0-Cauchy sequence {fn} converging pointwise to f . Clearly, H0 ⊆ H.

1 We define the inner product between f , g ∈ H as the limit of an inner
product of the H0-Cauchy sequences {fn}, {gn} converging to f and
g respectively. Is this inner product well defined, i.e., independent of
the sequences used?

2 An inner product space must satisfy 〈f , f 〉H = 0 iff f = 0. Is this true
when we define the inner product on H as above?

3 Are the evaluation functionals still continuous on H?
4 Is H complete (i.e., does every H-Cauchy sequence converge)?

(1)+(2)+(3)+(4) =⇒ H is RKHS!
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Moore-Aronszajn Theorem

Summary

reproducing kernel ⇐⇒ kernel ⇐⇒ positive definite

set of all pd functions: RX×X+
1−1←→

set of all RKHSs: Hilb(RX )
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Moore-Aronszajn Theorem

Non-uniqueness of feature representation

There are (infinitely) many feature space representations (and we can
even work in one or more of them, if it’s convenient!)

〈φ(x), φ(y)〉R3 = ay2
1 + by2

2 + c
√
2y1y2 = kx(y)

φ(x) =
[
a = x2

1 b = x2
2 c =

√
2x1x2

]

〈
φ̃(x), φ̃(y)

〉
R4

= ãy2
1 + b̃y2

2 + c̃y1y2 + d̃y1y2 = kx(y)

φ̃(x) =
[

ã = x2
1 b̃ = x2

2 c̃ = x1x2 d̃ = x1x2
]

Different feature maps give coefficients of canonical feature map
k(·, x) in terms of (different) simpler functions.

RKHS of k remains unique, regardless of the representation.
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Mercer representation of RKHS

Outline

1 What is an RKHS?
Reproducing kernel
Inner product between features
Positive definite function

2 Moore-Aronszajn Theorem

3 Mercer representation of RKHS
Integral operator
Mercer’s theorem
Relation between Hk and L2(X ; ν)

4 Operations with kernels
Sum and product
Constructing new kernels
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Mercer representation of RKHS Integral operator

Outline

1 What is an RKHS?
Reproducing kernel
Inner product between features
Positive definite function

2 Moore-Aronszajn Theorem

3 Mercer representation of RKHS
Integral operator
Mercer’s theorem
Relation between Hk and L2(X ; ν)

4 Operations with kernels
Sum and product
Constructing new kernels
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Mercer representation of RKHS Integral operator

Assumptions

So far, no assumptions on:

X (apart from it being a non-empty set)
nor on k (apart from it being a positive definite function)

Now, assume that:

X is a compact metric space

such as [a, b]d , key: every continuous function on X is bounded and
uniformly continuous

k : X × X → R is a continuous positive definite function
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Mercer representation of RKHS Integral operator

Integral operator of a kernel

Definition (Integral operator)

Let ν be a finite Borel measure on X . For the linear map

Sk : L2(X ; ν) → C(X ),(
Sk f̃
)
(x) =

ˆ
k(x , y)f (y)dν(y), f ∈ f̃ ∈ L2(X ; ν),

its composition Tk = Ik ◦ Sk with the inclusion Ik : C(X ) ↪→ L2(X ; ν) is
said to be the integral operator of k .
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Mercer representation of RKHS Integral operator

Proof that Sk f̃ is continuous

∣∣∣(Sk f̃
)
(x)−

(
Sk f̃
) (

x ′
)∣∣∣ =

∣∣∣∣ˆ (k(x , y)− k(x ′, y)
)
f (y)dν(y)

∣∣∣∣
=

∣∣∣〈Ik (kx − kx ′) , f̃
〉

L2

∣∣∣
≤ ‖Ik (kx − kx ′)‖L2

∥∥∥f̃ ∥∥∥
L2

=
∥∥∥f̃ ∥∥∥

L2

√ˆ
(k(x , y)− k(x ′, y))2 dν(y)

≤ ν(X )
∥∥∥f̃ ∥∥∥

L2
max

y

∣∣k(x , y)− k(x ′, y)
∣∣
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Mercer representation of RKHS Integral operator

Integral operator of a kernel (2)

L2(X ; ν) L2(X ; ν)

C(X )

Sk

Tk = IkSk

Ik

Tk : L2(X ; ν) → L2(X ; ν)

Tk 6= Sk :
(
Sk f̃
)
(x) is defined, while

(
Tk f̃

)
(x) is not!
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Mercer representation of RKHS Integral operator

Properties of integral operators

k symmetric =⇒ Tk self-adjoint: 〈f ,Tkg〉 = 〈Tk f , g〉

k positive definite =⇒ Tk positive: 〈f ,Tk f 〉 ≥ 0
k continuous =⇒ Tk compact: if {fn} is bounded, then {Tk fn} has
a convergent subsequence

Theorem (Spectral theorem)

Let F be a Hilbert space,and T : F → F a compact, self-adjoint operator.
There is an at most countable ONS {uj} j∈J of F and {λj}j∈J with
|λ1| ≥ |λ2| ≥ · · · > 0 converging to zero such that

Tf =
∑
j∈J

λj 〈f , uj〉F uj , f ∈ F .
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Mercer representation of RKHS Mercer’s theorem

Outline

1 What is an RKHS?
Reproducing kernel
Inner product between features
Positive definite function

2 Moore-Aronszajn Theorem

3 Mercer representation of RKHS
Integral operator
Mercer’s theorem
Relation between Hk and L2(X ; ν)

4 Operations with kernels
Sum and product
Constructing new kernels
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Mercer representation of RKHS Mercer’s theorem

Mercer’s theorem

X a compact metric space; k : X × X → R a continuous kernel.

A finite measure ν on X with suppν = X .
Integral operator Tk is then compact, positive and self-adjoint on
L2(X ; ν)
ẽj is an equivalence class in the ONS of L2(X ; ν)
ej = λ−1

j Sk ẽj ∈ C(X ) is a continuous function in the class ẽj :
Ikej = ẽj .

Theorem (Mercer’s theorem)

∀x , y ∈ X with convergence uniform on X × X :

k(x , y) =
∑
j∈J

λjej(x)ej(y).
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ẽj is an equivalence class in the ONS of L2(X ; ν)
ej = λ−1
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Ikej = ẽj .
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L2(X ; ν), so there exist ONS {ẽj} j∈J and {λj}j∈J (strictly positive
eigenvalues; J at most countable).
ẽj is an equivalence class in the ONS of L2(X ; ν)

ej = λ−1
j Sk ẽj ∈ C(X ) is a continuous function in the class ẽj :

Ikej = ẽj .

Theorem (Mercer’s theorem)

∀x , y ∈ X with convergence uniform on X × X :

k(x , y) =
∑
j∈J

λjej(x)ej(y).

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 17, 2014 35 / 58



Mercer representation of RKHS Mercer’s theorem

Mercer’s theorem

X a compact metric space; k : X × X → R a continuous kernel.
A finite measure ν on X with suppν = X .
Integral operator Tk is then compact, positive and self-adjoint on
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Ikej = ẽj .
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Theorem (Mercer’s theorem)

∀x , y ∈ X with convergence uniform on X × X :

k(x , y) =
∑
j∈J

λjej(x)ej(y).

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 17, 2014 35 / 58



Mercer representation of RKHS Mercer’s theorem

Mercer’s theorem (2)

k(x , y) =
∑
j∈J

λjej(x)ej(y)

=
〈{√

λjej(x)
}
,
{√

λjej(y)
}〉

`2(J)

Another (Mercer) feature map:

φ : X → `2(J)

φ : x 7→
{√

λjej(x)
}

j∈J

∑
j∈J

(√
λjej(x)

)2
= k(x , x) <∞
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Mercer representation of RKHS Mercer’s theorem

Mercer’s theorem (3)

Sum
∑

j∈J ajej(x) converges absolutely ∀x ∈ X whenever sequence{
aj/
√
λj
}
∈ `2(J):

∑
j∈J

|ajej(x)| ≤

∑
j∈J

∣∣∣aj/
√
λj

∣∣∣2
1/2

·

∑
j∈J

∣∣∣√λjej(x)
∣∣∣2
1/2

=
∥∥∥{aj/

√
λj

}∥∥∥
`2(J)

√
k(x , x).

∑
j∈J ajej is a well defined function on X
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Mercer representation of RKHS Mercer’s theorem

Mercer representation of RKHS

Theorem
Let X be a compact metric space and k : X ×X → R a continuous kernel.
Define:

H =

f =
∑
j∈J

ajej :
{

aj/
√
λj

}
∈ `2(J)

 ,

with inner product: 〈∑
j∈J

ajej ,
∑
j∈J

bjej

〉
H

=
∑
j∈J

ajbj

λj
.

Then H is the RKHS of k.

RKHS is unique, so does not depend on ν !
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Mercer representation of RKHS Mercer’s theorem

Proof

1 〈·, ·〉H is an inner product: if f =
∑

j∈J ajej

then〈f , f 〉H =
∑

j∈J
a2j
λj
> 0 if some aj > 0

2 Let {fn} be Cauchy, fn =
∑

j∈J a
(n)
j ej . Then ‖fn − fm‖2H =∑

j∈J

(
a(n)j −a(m)

j

)2
λj

=
∥∥∥{a(n)j /

√
λj

}
−
{
a(m)
j /

√
λj

}∥∥∥2

`2
< ε, so must

have a limit because `2 is a Hilbert space.

3 k(·, x) =∑j∈J [λjej(x)] ej ∈ H since
∑

j∈J

(
λjej (x)√

λj

)2

= k(x , x) <∞

4 〈f , k(·, x)〉H =
〈∑

j∈J ajej ,
∑

j∈J [λjej(x)] ej
〉
H
=
∑

j∈J
ajλjej (x)

λj
=∑

j∈J ajej(x) = f (x).
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Mercer representation of RKHS Mercer’s theorem

Smoothness interpretation

Gaussian kernel, k(x , y) = exp
(
−σ ‖x − y‖2

)
,

λj ∝ bj b < 1

ej(x) ∝ exp(−(c − a)x2)Hj(x
√
2c),

a, b, c are functions of σ, and Hj is jth order Hermite polynomial.

NOTE that ‖f ‖Hk
<∞ is a

“smoothness” constraint:
λj decay as ej become

“rougher” and

‖f ‖2Hk
=
∑

j∈J
a2j
λj

(Figure from Rasmussen and Williams)
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Mercer representation of RKHS Relation between Hk and L2(X ; ν)

Outline

1 What is an RKHS?
Reproducing kernel
Inner product between features
Positive definite function

2 Moore-Aronszajn Theorem

3 Mercer representation of RKHS
Integral operator
Mercer’s theorem
Relation between Hk and L2(X ; ν)

4 Operations with kernels
Sum and product
Constructing new kernels
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Mercer representation of RKHS Relation between Hk and L2(X ; ν)

Hk and L2(X ; ν)
Assume {ẽj}j∈J is ONB of L2(X ; ν), and write f̂ (j) = 〈f , ẽj〉L2

Tk f =
∑
j∈J

λj f̂ (j)ẽj , f ∈ L2(X ; ν)

T 1/2
k f =

∑
j∈J

√
λj f̂ (j)ẽj , f ∈ L2(X ; ν)

Hk =

f =
∑
j∈J

ajej :
{

aj/
√
λj

}
∈ `2(J)


∑
j∈J

∣∣∣f̂ (j)∣∣∣2 = ‖f ‖22 <∞⇒
{
f̂ (j)

}
∈ `2(J) ⇒

∑
j∈J

√
λj f̂ (j)ej ∈ Hk

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 17, 2014 42 / 58



Mercer representation of RKHS Relation between Hk and L2(X ; ν)

Hk and L2(X ; ν)
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Mercer representation of RKHS Relation between Hk and L2(X ; ν)

Hk and L2(X ; ν)

f ∈ L2(X ; ν) 1−1←→
{
f̂ (j)

}
∈ `2(J) 1−1←→

∑
j∈J

√
λj f̂ (j)ej ∈ Hk

〈f , g〉L2 =
〈{

f̂ (j)
}
, {ĝ(j)}

〉
`2(J)

=

〈∑
j∈J

√
λj f̂ (j)ej ,

∑
j∈J

√
λj ĝ(j)ej

〉
Hk

T 1/2
k induces an isometric isomorphism between

span {ẽj : j ∈ J} ⊆L2(X ; ν) and Hk (and both are isometrically
isomorphic to `2(J)).
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Mercer representation of RKHS Relation between Hk and L2(X ; ν)

Canonical feature map

f ∈ L2(X ; ν) 1−1←→
{
f̂ (j)

}
∈ `2(J) 1−1←→

∑
j∈J

√
λj f̂ (j)ej ∈ Hk

k(·, x) =
∑
j∈J

√
λj

(√
λjej(x)

)
ej

Hk 3 k(·, x)←x→
{√

λjej(x)
}
∈ `2(J)

Mercer feature map gives Fourier coefficients of the canonical feature map.
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Operations with kernels

Outline

1 What is an RKHS?
Reproducing kernel
Inner product between features
Positive definite function

2 Moore-Aronszajn Theorem

3 Mercer representation of RKHS
Integral operator
Mercer’s theorem
Relation between Hk and L2(X ; ν)

4 Operations with kernels
Sum and product
Constructing new kernels
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Operations with kernels Sum and product
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Operations with kernels Sum and product

Operations with kernels

Fact (Sum and scaling of kernels)

If k, k1, and k2 are kernels on X , and α ≥ 0 is a scalar, then αk, k1 + k2
are kernels.

A difference of kernels is not necessarily a kernel! This is because we
cannot have k1(x , x)− k2(x , x) = 〈φ(x), φ(x)〉H < 0.
This gives the set of all kernels the geometry of a closed convex cone.

Hk1+k2 = Hk1 +Hk2 = {f1 + f2 : f1 ∈ Hk1 , f2 ∈ Hk2}
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Operations with kernels Sum and product

Operations with kernels (2)

Fact (Product of kernels)

If k1 and k2 are kernels on X and Y, then k = k1 ⊗ k2, given by:

k
(
(x , y), (x ′, y ′)

)
:= k1(x , x ′)k2(y , y ′)

is a kernel on X × Y. If X = Y, then k = k1 · k2, given by:

k
(
x , x ′

)
:= k1(x , x ′)k2(x , x ′)

is a kernel on X .

Hk1⊗k2
∼= Hk1 ⊗Hk2
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Operations with kernels Sum and product

Summary

all kernels RX×X+
1−1←→

all function spaces with continuous evaluation Hilb(RX )

bijection between RX×X+ and Hilb(RX ) preserves geometric
structure
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Operations with kernels Constructing new kernels

Outline

1 What is an RKHS?
Reproducing kernel
Inner product between features
Positive definite function

2 Moore-Aronszajn Theorem

3 Mercer representation of RKHS
Integral operator
Mercer’s theorem
Relation between Hk and L2(X ; ν)

4 Operations with kernels
Sum and product
Constructing new kernels
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Operations with kernels Constructing new kernels

Kernels on Rd

New kernels from old:
trivial (linear) kernel on Rd is k(x , x ′) = 〈x , x ′〉

for any p(t) = amtm + · · ·+ a1t + a0 with ai ≥ 0
=⇒ k(x , x ′) = p(〈x , x ′〉) is a kernel on Rd

polynomial kernel: k(x , x ′) = (〈x , x ′〉+ c)m, for c ≥ 0
f (t) has Taylor series with non-negative coefficients
=⇒ k(x , x ′) = f (〈x , x ′〉) is a kernel on Rd

exponential kernel: k(x , x ′) = exp(σ 〈x , x ′〉), for σ > 0
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Operations with kernels Constructing new kernels

Gaussian kernel

Let φ : Rd → R, φ(x) = exp(−σ ‖x‖2). Then, k̃ is representable as an
inner product in R:

k̃(x , x ′) = φ(x)φ(x ′) = exp(−σ ‖x‖2) exp(−σ
∥∥x ′∥∥2

) kernel!

kgauss(x , x ′) = k̃(x , x ′)kexp(x , x ′)

= exp
(
−σ
[
‖x‖2 +

∥∥x ′∥∥2 − 2
〈
x , x ′

〉])
= exp

(
−σ
∥∥x − x ′

∥∥2
)

kernel!
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem

Starting with a positive def. k , construct a pre-RKHS (an inner product
space of functions) H0 ⊂ RX with properties:

1 The evaluation functionals δx are continuous on H0,
2 Any H0-Cauchy sequence fn which converges pointwise to 0 also

converges in H0-norm to 0
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (2)

pre-RKHS H0 = span {k(·, x) | x ∈ X} will be taken to be the set of
functions:

f (x) =
n∑

i=1

αik(x , xi )
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x
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x
)
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (3)

Theorem (Moore-Aronszajn - Step I)

Space H0 = span {k(·, x) | x ∈ X}, endowed with the inner product

〈f , g〉H0
=

n∑
i=1

m∑
j=1

αiβjk(xi , yj),

where f =
∑n

i=1 αik(·, xi ) and g =
∑m

j=1 βjk(·, yj), is a valid pre-RKHS.

Theorem (Moore-Aronszajn - Step II)

Let H0 be a pre-RKHS space. Define H to be the set of functions f ∈ RX
for which there exists an H0-Cauchy sequence {fn} converging pointwise
to f . Then, H is an RKHS.
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (4)

Theorem (Moore-Aronszajn - Step I)

Space H0 = span {k(·, x) | x ∈ X}, endowed with the inner product

〈f , g〉H0
=

n∑
i=1

m∑
j=1

αiβjk(xi , yj),

where f =
∑n

i=1 αik(·, xi ) and g =
∑m

j=1 βjk(·, yj), is a valid pre-RKHS.

1 The evaluation functionals δx are continuous on H0

2 Any H0-Cauchy sequence fn which converges pointwise to 0 also
converges in H0-norm to 0
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Proof sketch of Moore-Aronszajn

Moore-Aronszajn Theorem (5)

Define H to be the set of functions f ∈ RX for which there exists an
H0-Cauchy sequence {fn} converging pointwise to f . Clearly, H0 ⊆ H.

1 We define the inner product between f , g ∈ H as the limit of an inner
product of the H0-Cauchy sequences {fn}, {gn} converging to f and
g respectively. Is this inner product well defined, i.e., independent of
the sequences used?

2 An inner product space must satisfy 〈f , f 〉H = 0 iff f = 0. Is this true
when we define the inner product on H as above?

3 Are the evaluation functionals still continuous on H?
4 Is H complete (i.e., does every H-Cauchy sequence converge)?

(1)+(2)+(3)+(4) =⇒ H is RKHS!
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Proof sketch of Moore-Aronszajn

Summary

reproducing kernel ⇐⇒ kernel ⇐⇒ positive definite

all pd functions RX×X+
1−1←→

all function spaces with continuous evaluation Hilb(RX )
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