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RKHS: a function space with a very special structure
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Elementary Hilbert space theory Norm. Inner product. Orthogonality

Normed vector space

De�nition (Norm)

Let F be a vector space over the �eld R of real numbers (or C). A
function ‖·‖F : F → [0,∞) is said to be a norm on F if

1 ‖f ‖F = 0 if and only if f = 0 (norm separates points),

2 ‖λf ‖F = |λ| ‖f ‖F , ∀λ ∈ R, ∀f ∈ F (positive homogeneity),

3 ‖f + g‖F ≤ ‖f ‖F + ‖g‖F , ∀f , g ∈ F (triangle inequality).

In every normed vector space, one can de�ne a metric induced by the norm:

d(f , g) = ‖f − g‖F .
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Elementary Hilbert space theory Norm. Inner product. Orthogonality

Examples of normed linear spaces

(R, |·|), (C, |·|)

F = Rd : ‖x‖p =
(∑d

i=1 |xi |p
)1/p

, p ≥ 1

(only quasi-norm for 0 < p < 1)

p = 1: Manhattan

p = 2: Euclidean

p →∞: maximum norm, ‖x‖∞ = maxi |xi |

F = C [a, b]: ‖f ‖p =
(´ b

a
|f (x)|p dx

)1/p
, p ≥ 1
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Elementary Hilbert space theory Norm. Inner product. Orthogonality

Inner product

De�nition (Inner product)

Let F be a vector space over R. A function 〈·, ·〉F : F ×F → R is said to

be an inner product on F if

1 〈α1f1 + α2f2, g〉F = α1 〈f1, g〉F + α2 〈f2, g〉F
2 〈f , g〉F = 〈g , f 〉F (conjugate symmetry if over C)
3 〈f , f 〉F ≥ 0 and 〈f , f 〉F = 0 if and only if f = 0.

In every inner product vector space, one can de�ne a norm induced by the

inner product:

‖f ‖F = 〈f , f 〉1/2F .
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Elementary Hilbert space theory Norm. Inner product. Orthogonality

Examples of inner product

F = Rd : 〈x, y〉 =∑d
i=1 xiyi

F = C [a, b]: 〈f , g〉 =
´ b
a
f (x)g(x)dx

F = Rd×d : 〈A,B〉 = Tr
(
AB>

)
F-set of random variables: 〈X ,Y 〉 = E [XY ].
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Elementary Hilbert space theory Norm. Inner product. Orthogonality

Angles. Orthogonality

Angle θ between f , g ∈ F\ {0} is given by:

cos θ =
〈f , g〉F
‖f ‖F ‖g‖F

De�nition

We say that f is orthogonal to g and write f⊥g , if 〈f , g〉F = 0. For

M ⊂ F , the orthogonal complement of M is:

M⊥ := {g ∈ F : f⊥g , ∀f ∈ M}.

M⊥ is a linear subspace of F ; M ∩M⊥ = {0}
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Elementary Hilbert space theory Norm. Inner product. Orthogonality

Key relations in inner product space

| 〈f , g〉 | ≤ ‖f ‖ · ‖g‖ (Cauchy-Schwarz inequality)

2 ‖f ‖2 + 2 ‖g‖2 = ‖f + g‖2 + ‖f − g‖2 (the parallelogram law)

4 〈f , g〉 = ‖f + g‖2 − ‖f − g‖2 (the polarization identity)

f⊥g =⇒ ‖f ‖2 + ‖g‖2 = ‖f + g‖2 (Pythagorean theorem)
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Elementary Hilbert space theory Convergence. Complete spaces
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Elementary Hilbert space theory Convergence. Complete spaces

Cauchy sequence

De�nition (Convergent sequence)

A sequence {fn}∞n=1 of elements of a normed vector space (F , ‖·‖F ) is said
to converge to f ∈ F if for every ε > 0, there exists N = N(ε) ∈ N, such
that for all n ≥ N, ‖fn − f ‖F < ε.

De�nition (Cauchy sequence)

A sequence {fn}∞n=1 of elements of a normed vector space (F , ‖·‖F ) is said
to be a Cauchy (fundamental) sequence if for every ε > 0, there exists

N = N(ε) ∈ N, such that for all n,m ≥ N, ‖fn − fm‖F < ε.

From ‖fn − fm‖F ≤ ‖fn − f ‖F + ‖f − fm‖F , convergent⇒Cauchy.

Cauchy;convergent
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Elementary Hilbert space theory Convergence. Complete spaces

Examples

Example

1, 1.4, 1.41, 1.414, 1.4142, ... is a Cauchy sequence in Q which does not

converge - because
√
2 /∈ Q.

Example

C [0, 1] with the norm ‖f ‖2 =
(´ 1

0 |f (x)|
2 dx

)1/2
, a sequence {fn} does not

have a continuous limit!

1
2 − 1

2n
1
2 + 1

2n
0 1

1
fn

1
n
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Elementary Hilbert space theory Convergence. Complete spaces

Complete space

De�nition (Complete space)

A metric space F is said to be complete if every Cauchy sequence {fn}∞n=1

in F converges: it has a limit, and this limit is in F .

i.e., one can �nd f ∈ F , s.t. limn→∞ ‖fn − f ‖F = 0.

Complete + norm = Banach

Complete + inner product = Hilbert

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 11, 2014 14 / 63



Elementary Hilbert space theory Convergence. Complete spaces

Complete space

De�nition (Complete space)

A metric space F is said to be complete if every Cauchy sequence {fn}∞n=1

in F converges: it has a limit, and this limit is in F .

i.e., one can �nd f ∈ F , s.t. limn→∞ ‖fn − f ‖F = 0.

Complete + norm = Banach

Complete + inner product = Hilbert

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 11, 2014 14 / 63



Elementary Hilbert space theory Convergence. Complete spaces

Complete space

De�nition (Complete space)

A metric space F is said to be complete if every Cauchy sequence {fn}∞n=1

in F converges: it has a limit, and this limit is in F .

i.e., one can �nd f ∈ F , s.t. limn→∞ ‖fn − f ‖F = 0.

Complete + norm = Banach

Complete + inner product = Hilbert

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 11, 2014 14 / 63



Elementary Hilbert space theory Convergence. Complete spaces

Examples of Hilbert spaces

Example

For an index set A, the space `2(A) of sequences {xα}α∈A of real numbers,

satisfying
∑

α∈A |xα|2 <∞, endowed with the inner product

〈{xα} , {yα}〉`2(A) =
∑
α∈A

xαyα

is a Hilbert space.
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Elementary Hilbert space theory Convergence. Complete spaces

Examples of Hilbert spaces (2)

Example

If ν is a positive measure on X ⊂ Rd , then the space

L2(X ; ν) :=
{
f : X → R

∣∣∣∣∣ ‖f ‖2 =
(ˆ
X
|f (x)|2dν(x)

)1/2

<∞
}

is a Hilbert space with inner product

〈f , g〉2 =
ˆ
X
f (x)g(x)dν(x).

Strictly speaking, L2(X ; ν) is the space of equivalence classes of

functions that di�er by at most a set of ν-measure zero.
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Elementary Hilbert space theory Convergence. Complete spaces

Closed vs. Complete

Closed: M ⊆ F is closed (in F) if it contains limits of all sequences

in M that converge in F
Complete: M is complete (with no reference to a larger space) if all

Cauchy sequences in M converge in M

If M is a closed subspace of a Hilbert space F , then:

M +M⊥ =
{
m +m⊥ : m ∈ M,m⊥ ∈ M⊥

}
= F .

In particular, for a closed subspace M $ F , M⊥ contains a non-zero

element.
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Elementary Hilbert space theory Convergence. Complete spaces

Non-closed subspaces

Every �nite-dimensional subspace of a normed space is closed.

Example

Let F = {f : [−1, 1]→ R , f continuous} , with ‖f ‖∞ = sup |f (x)|
(Banach space), and F1 its subspace of di�erentiable functions. Then

F1 is not closed.

Idea: construct a sequence of

di�erentiable functions converging

in ‖·‖∞ to f (x) = |x |:

fn(x) =


−x − 1

2n
, x ≤ −1/n,

n
2
x2, |x | < 1/n,

x − 1

2n
, x ≥ 1/n.
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Elementary Hilbert space theory Convergence. Complete spaces

Non-closed subspaces

Example

Let H be an in�nite-dimensional Hilbert space with orthonormal basis

U = {uj}∞j=1. Then span[U ] (�nite linear combinations of elements of U) is
not closed.

Take h =
∑∞

j=1 ajuj with aj > 0 and
∑∞

j=1 a
2
j <∞. Then

hn =
∑n

j=1 ajuj converges to h /∈ span[U ].

Recall:

M closed subspace =⇒ M⊥contains a non-zero element.

Here: span[U ]⊥ = {0} (i.e., span[U ] is dense in H).

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 11, 2014 19 / 63



Elementary Hilbert space theory Convergence. Complete spaces

Non-closed subspaces

Example

Let H be an in�nite-dimensional Hilbert space with orthonormal basis

U = {uj}∞j=1. Then span[U ] (�nite linear combinations of elements of U) is
not closed.

Take h =
∑∞

j=1 ajuj with aj > 0 and
∑∞

j=1 a
2
j <∞. Then

hn =
∑n

j=1 ajuj converges to h /∈ span[U ].
Recall:

M closed subspace =⇒ M⊥contains a non-zero element.

Here: span[U ]⊥ = {0} (i.e., span[U ] is dense in H).

D. Sejdinovic, A. Gretton (Gatsby Unitslides and notes are available at www.gatsby.ucl.ac.uk/~dino/teaching)Foundations of RKHS March 11, 2014 19 / 63



Elementary Hilbert space theory Linear operators. Riesz representation

Outline

1 Elementary Hilbert space theory

Norm. Inner product. Orthogonality

Convergence. Complete spaces

Linear operators. Riesz representation

2 What is an RKHS?

Evaluation functionals view of RKHS

Reproducing kernel

Inner product between features

Positive de�nite function

Moore-Aronszajn Theorem
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Elementary Hilbert space theory Linear operators. Riesz representation

Linear operators

De�nition (Linear operator)

Consider a function A : F → G, where F and G are both vector spaces

over R. A is said to be a linear operator if

A(α1f1 + α2f2) = α1 (Af1) + α2 (Af2) ∀α1, α2 ∈ R, f1, f2 ∈ F .

Operators with G = R are called functionals.

Example

For g ∈ F , Ag : F → R, de�ned with Ag f = 〈f , g〉F is a linear functional.

Ag (α1f1 + α2f2) = 〈α1f1 + α2f2, g〉F
= α1 〈f1, g〉F + α2 〈f2, g〉F
= α1Ag f1 + α2Ag f2.
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Elementary Hilbert space theory Linear operators. Riesz representation

Boundedness

De�nition (Operator norm)

The operator norm of a linear operator A : F → G is de�ned as

‖A‖ = sup
f ∈F , ‖f ‖F≤1

‖Af ‖G .

If ‖A‖ <∞, A is called a bounded linear operator.

‖A‖ is the smallest number λ such that the inequality ‖Af ‖G ≤ λ ‖f ‖F
holds for every f ∈ F .

bounded operator 6= bounded function
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Elementary Hilbert space theory Linear operators. Riesz representation

Boundedness

De�nition (Operator norm)

The operator norm of a linear operator A : F → G is de�ned as

‖A‖ = sup
f ∈F , ‖f ‖F≤1

‖Af ‖G .

If ‖A‖ <∞, A is called a bounded linear operator.

F

1

G

λ

A : F → G

{Af : ‖f‖F ≤ 1}
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Elementary Hilbert space theory Linear operators. Riesz representation

Continuity

De�nition (Continuity)

Consider a function A : F → G, where F and G are both normed vector

spaces over R. A is said to be continuous at f0 ∈ F , if for every ε > 0,

there exists a δ = δ(ε, f0) > 0, s.t.

‖f − f0‖F < δ =⇒ ‖Af − Af0‖G < ε.

A is said to be continuous on F , if it is continuous at every point of F .

Example

For g ∈ F , Ag : F → R, de�ned with Ag (f ) := 〈f , g〉F is continuous on

F .
|Ag f1 − Ag f2| = |〈f1 − f2, g〉F | ≤ ‖g‖F ‖f1 − f2‖F ,

so can take δ = ε/ ‖g‖F (Lipschitz).
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Elementary Hilbert space theory Linear operators. Riesz representation

Summary

Linear operator A : F → G maps linear subspaces to linear subspaces

Im(A) = A(F) is a linear subspace of G.
Null(A) = A−1({0}) is a linear subspace of F

Continuous A : F → G maps to closed sets from closed sets

If A is also linear, Null(A) = A−1({0}) is a closed linear subspace of

F because {0} is closed in G.
Bounded linear operator A : F → G maps bounded sets to bounded

sets
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Elementary Hilbert space theory Linear operators. Riesz representation

Continuous operator ≡ Bounded operator

Theorem

Let (F , ‖·‖F ) and (G, ‖·‖G) be normed linear spaces. If L is a linear

operator, then the following three conditions are equivalent:

1 L is a bounded operator.

2 L is continuous on F .
3 L is continuous at one point of F .
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Elementary Hilbert space theory Linear operators. Riesz representation

Proof
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Elementary Hilbert space theory Linear operators. Riesz representation

Dual space

De�nition (Topological dual)

If F is a normed space, then the space F ′ of continuous linear functionals
A : F → R is called the topological dual space of F .

We have seen that Ag := 〈·, g〉F are continuous linear functionals, so

Ag ∈ F ′

Theorem (Riesz representation)

In a Hilbert space F , for every continous linear functional L ∈ F ′, there
exists a unique g ∈ F , such that

Lf ≡ 〈f , g〉F .
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Elementary Hilbert space theory Linear operators. Riesz representation

Proof of Riesz representation

Proof.

Existence. Let L ∈ F ′. If Lf ≡ 0, then Lf = 〈f , 0〉F , so g = 0.

Otherwise, M = Null(L) $ F is a closed linear subspace of F , so there

must exist h ∈ M⊥, with ‖h‖F = 1. We claim that we can take g = (Lh)h.
Indeed, for f ∈ F , take uf = (Lf )h − (Lh)f . Clearly uf ∈ M. Thus,

0 = 〈uf , h〉F
= 〈(Lf )h − (Lh)f , h〉F
= (Lf ) ‖h‖2F − (Lh) 〈f , h〉F
= Lf − 〈f , (Lh)h〉F .

Uniqueness. If g1 and g2 are two representers, then

0 = Lf − Lf = 〈f , g1 − g2〉F ∀f . In particular,

〈g1 − g2, g1 − g2〉F = ‖g1 − g2‖2F = 0, so g1 = g2.
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Elementary Hilbert space theory Linear operators. Riesz representation

Orthonormal basis

orthonormal set {uα}α∈A, s.t.

〈uα, uβ〉F =

{
1, α = β

0, α 6= β

if also basis, i.e., F = span{uα}+ span{uβ}+ · · · , we de�ne

f̂ (α) = 〈f , uα〉F

f =
∑
α∈A

f̂ (α)uα

〈f , g〉F =
∑
α∈A

f̂ (α)ĝ(α)

=
〈{

f̂ (α)
}
, {ĝ(α)}

〉
`2(A)
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Elementary Hilbert space theory Linear operators. Riesz representation

Isometric isomorphism

De�nition (Hilbert space isomorphism)

Two Hilbert spaces H and F are said to be isometrically isomorphic if there

is a linear bijective map U : H → F , which preserves the inner

product, i.e., 〈h1, h2〉H = 〈Uh1,Uh2〉F .

Riesz representation gives an isomorphism g 7→ 〈·, g〉F between F and F ′:
dual space of a Hilbert space is another (isometrically isomorphic) Hilbert

space.

Theorem

Every Hilbert space has an orthonormal basis. Thus, all Hilbert spaces are

isometrically isomorphic to `2(A), for some set A. We can take A = N i�

Hilbert space is separable.
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Elementary Hilbert space theory Linear operators. Riesz representation

Summary

Hilbert space:

is a vector space over R (or C)

comes equipped with an inner product, a norm and a metric

is complete with respect to its metric

continuity and boundedness of linear operators are equivalent

all continuous linear functionals arise from the inner product
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What is an RKHS? Evaluation functionals view of RKHS

Outline

1 Elementary Hilbert space theory

Norm. Inner product. Orthogonality

Convergence. Complete spaces

Linear operators. Riesz representation

2 What is an RKHS?

Evaluation functionals view of RKHS

Reproducing kernel

Inner product between features

Positive de�nite function

Moore-Aronszajn Theorem
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What is an RKHS? Evaluation functionals view of RKHS

RKHS: a function space with a very special structure

  

metric

normed

unitary

complete

Banach

Hilbert

RKHS

normed

unitary

complete

Banach

Hilbert

RKHS

linear / vector
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What is an RKHS? Evaluation functionals view of RKHS

Evaluation functional

De�nition (Evaluation functional)

Let H be a Hilbert space of functions f : X → R, de�ned on a non-empty

set X . For a �xed x ∈ X , map δx : H → R, δx : f 7→ f (x) is called the

(Dirac) evaluation functional at x .

Evaluation functional is always linear: For f , g ∈ H and α, β ∈ R,
δx(αf + βg) = (αf + βg)(x) = αf (x) + βg(x) = αδx(f ) + βδx(g).

But is it continuous?
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(Dirac) evaluation functional at x .

Evaluation functional is always linear: For f , g ∈ H and α, β ∈ R,
δx(αf + βg) = (αf + βg)(x) = αf (x) + βg(x) = αδx(f ) + βδx(g).

But is it continuous?
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What is an RKHS? Evaluation functionals view of RKHS

Discontinuous evaluation

Example

F : the space of polynomials over [0, 1], endowed with the Lp norm, i.e.,

‖f1 − f2‖p =

(ˆ 1

0
|f1(x)− f2(x)|p dx

)1/p

.

Consider the sequence of functions {qn}∞n=1, where qn = xn. Then:

limn→∞ ‖qn − 0‖p = 0, i.e., {qn} converges to �zero function� in Lp norm,

but does not get close to zero function everywhere:

1 = lim
n→∞

δ1(qn) 6= δ1( lim
n→∞

qn) = 0.

δ1 : f 7→ f (1) is not continuous!
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What is an RKHS? Evaluation functionals view of RKHS

RKHS

De�nition (Reproducing kernel Hilbert space)

A Hilbert space H of functions f : X → R, de�ned on a non-empty set X is

said to be a Reproducing Kernel Hilbert Space (RKHS) if δx ∈ H′, ∀x ∈ X .

Theorem (Norm convergence implies pointwise convergence)

If limn→∞ ‖fn − f ‖H = 0, then limn→∞ fn(x) = f (x), ∀x ∈ X .

If two functions f , g ∈ H are close in the norm of H, then f (x) and g(x)
are close for all x ∈ X
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What is an RKHS? Evaluation functionals view of RKHS

Outline

Will discuss three distinct concepts:

reproducing kernel

inner product between features (kernel)

positive de�nite function

...and then show that they are all equivalent.
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What is an RKHS? Reproducing kernel

Outline

1 Elementary Hilbert space theory

Norm. Inner product. Orthogonality

Convergence. Complete spaces

Linear operators. Riesz representation

2 What is an RKHS?

Evaluation functionals view of RKHS

Reproducing kernel

Inner product between features

Positive de�nite function

Moore-Aronszajn Theorem
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What is an RKHS? Reproducing kernel

Reproducing kernel

De�nition (Reproducing kernel)

Let H be a Hilbert space of functions f : X → R de�ned on a non-empty

set X . A function k : X × X → R is called a reproducing kernel of H if it

satis�es

∀x ∈ X , kx = k(·, x) ∈ H,
∀x ∈ X , ∀f ∈ H, 〈f , k(·, x)〉H = f (x) (the reproducing property).

In particular, for any x , y ∈ X ,
k(x , y) = 〈k (·, y) , k (·, x)〉H = 〈k (·, x) , k (·, y)〉H.
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What is an RKHS? Reproducing kernel

Reproducing kernel of an RKHS

Theorem

If it exists, reproducing kernel is unique.

Theorem

H is a reproducing kernel Hilbert space if and only if it has a reproducing

kernel.
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What is an RKHS? Inner product between features

Outline

1 Elementary Hilbert space theory

Norm. Inner product. Orthogonality

Convergence. Complete spaces

Linear operators. Riesz representation

2 What is an RKHS?

Evaluation functionals view of RKHS

Reproducing kernel

Inner product between features

Positive de�nite function

Moore-Aronszajn Theorem
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What is an RKHS? Inner product between features

Functions representable as inner products

De�nition (Kernel)

A function k : X × X → R is called a kernel on X if there exists a Hilbert

space (not necessarilly an RKHS) F and a map φ : X → F , such that

k(x , y) = 〈φ(x), φ(y)〉F .

note that we dropped 'reproducing', as F may not be an RKHS.

φ : X → F is called a feature map,

F is called a feature space.

Corollary

Every reproducing kernel is a kernel (can take φ : x 7→ k(·, x),
k(x , y) = 〈k (·, x) , k (·, y)〉H, i.e., RKHS H is a feature space).
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What is an RKHS? Inner product between features

Non-uniqueness of feature representation

Example

Consider X = R2, and k(x , y) = 〈x , y〉2

k(x , y) = x
2
1 y

2
1 + x

2
2 y

2
2 + 2x1x2y1y2

=
[

x21 x22
√
2x1x2

]  y21
y22√
2y1y2



=
[

x21 x22 x1x2 x1x2
] 

y21
y22
y1y2
y1y2

.
so we can use the feature maps φ(x) =

(
x21 , x

2
2 ,
√
2x1x2

)
or

φ̃(x) =
[
x21 x22 x1x2 x1x2

]
, with feature spaces H = R3 or H̃ = R4.

Not RKHS!
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What is an RKHS? Positive de�nite function

Outline

1 Elementary Hilbert space theory

Norm. Inner product. Orthogonality

Convergence. Complete spaces

Linear operators. Riesz representation

2 What is an RKHS?

Evaluation functionals view of RKHS

Reproducing kernel

Inner product between features

Positive de�nite function

Moore-Aronszajn Theorem
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What is an RKHS? Positive de�nite function

Positive de�nite functions

De�nition (Positive de�nite functions)

A symmetric function h : X × X → R is positive de�nite if

∀n ≥ 1, ∀(a1, . . . an) ∈ Rn, ∀(x1, . . . , xn) ∈ X n,

n∑
i=1

n∑
j=1

aiajh(xi , xj) = a>Ha ≥ 0.

The function h(·, ·) is strictly positive de�nite if for mutually distinct xi , the

equality holds only when all the ai are zero.
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What is an RKHS? Positive de�nite function

Kernels are positive de�nite

Every inner product is a positive de�nite function, and more generally:

Fact

Every kernel is a positive de�nite function.
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What is an RKHS? Positive de�nite function

So far

reproducing kernel =⇒ kernel =⇒ positive de�nite

Is every positive de�nite function a reproducing kernel for some RKHS?
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What is an RKHS? Positive de�nite function

Moore-Aronszajn Theorem

Theorem (Moore-Aronszajn - Part I)

Let k : X × X → R be positive de�nite. There is a unique RKHS

H ⊂ RX with reproducing kernel k.
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What is an RKHS? Positive de�nite function

Non-uniqueness of feature representation

Example

Consider X = R2, and k(x , y) = 〈x , y〉2

k(x , y) = x
2
1 y

2
1 + x

2
2 y

2
2 + 2x1x2y1y2

=
[

x21 x22
√
2x1x2

]  y21
y22√
2y1y2



=
[

x21 x22 x1x2 x1x2
] 

y21
y22
y1y2
y1y2

.
so we can use the feature maps φ(x) =

[
x21 x22

√
2x1x2

]
or

φ̃(x) =
[
x21 x22 x1x2 x1x2

]
, with feature spaces H = R3 or H̃ = R4.

H and H̃ are not RKHS - RKHS of k is unique
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What is an RKHS? Positive de�nite function

Non-uniqueness of feature representation

There are (in�nitely) many feature space representations (and we can

even work in one or more of them, if it's convenient!)

〈φ(x), φ(y)〉R3 = ay2
1
+ by2

2
+ c
√
2y1y2 = kx(y) = 〈kx , ky 〉Hk

φ(x) =[
a = x2

1
b = x2

2
c =
√
2x1x2

]

〈
φ̃(x), φ̃(y)

〉
R4

= ãy2
1
+ b̃y2

2
+ c̃y1y2 + d̃y1y2 = kx(y) = 〈kx , ky 〉Hk

φ̃(x) =[
ã = x2

1
b̃ = x2

2
c̃ = x1x2 d̃ = x1x2

]
But what remains unique?

Kernel and its RKHS!
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= ãy2
1
+ b̃y2

2
+ c̃y1y2 + d̃y1y2 = kx(y) = 〈kx , ky 〉Hk

φ̃(x) =[
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What is an RKHS? Positive de�nite function
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What is an RKHS? Positive de�nite function

Summary

reproducing kernel ⇐⇒ kernel ⇐⇒ positive de�nite

set of all kernels: RX×X+
1−1←→

set of all subspaces of RX with continuous evaluation:
Hilb(RX )
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What is an RKHS? Moore-Aronszajn Theorem

Outline

1 Elementary Hilbert space theory

Norm. Inner product. Orthogonality

Convergence. Complete spaces

Linear operators. Riesz representation

2 What is an RKHS?

Evaluation functionals view of RKHS

Reproducing kernel

Inner product between features

Positive de�nite function

Moore-Aronszajn Theorem
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What is an RKHS? Moore-Aronszajn Theorem

Moore-Aronszajn Theorem

Theorem (Moore-Aronszajn - Part I)

Let k : X × X → R be positive de�nite. There is a unique RKHS

H ⊂ RX with reproducing kernel k.
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What is an RKHS? Moore-Aronszajn Theorem

Moore-Aronszajn Theorem (2)

Starting with a positive def. k , construct a pre-RKHS H0 with properties:

1 The evaluation functionals δx are continuous on H0,

2 Any Cauchy sequence fn in H0 which converges pointwise to 0 also

converges in H0-norm to 0.
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What is an RKHS? Moore-Aronszajn Theorem

Moore-Aronszajn Theorem (3)

pre-RKHS H0 = span {k(·, x) | x ∈ X} will be taken to be the set of

functions:

f (x) =
n∑

i=1

αik(xi , x)

−6 −4 −2 0 2 4 6 8
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

f(
x
)
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Moore-Aronszajn Theorem (4)

Theorem (Moore-Aronszajn - Part II)

Space H0 = span {k(·, x) | x ∈ X} is endowed with the inner product

〈f , g〉H0
=

n∑
i=1

m∑
j=1

αiβjk(xi , yj),

where f =
∑n

i=1 αik(·, xi ) and g =
∑m

j=1 βjk(·, yj), then H0 is dense in

RKHS H of k.
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Moore-Aronszajn Theorem (5)

De�ne H to be the set of functions f ∈ RX for which there exists a Cauchy

sequence {fn} ∈ H0 converging pointwise to f .

1 We de�ne the inner product between f , g ∈ H as the limit of an inner

product of the Cauchy sequences {fn}, {gn} converging to f and g

respectively. Is the inner product well de�ned, and independent of the

sequences used?

2 An inner product space must satisfy 〈f , f 〉H = 0 i� f = 0. Is this true

when we de�ne the inner product on H as above?

3 Are the evaluation functionals still continuous on H?
4 Is H complete (a Hilbert space)?
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What is an RKHS? Moore-Aronszajn Theorem

Summary

reproducing kernel ⇐⇒ kernel ⇐⇒ positive de�nite

all kernels RX×X+
1−1←→

all function spaces with continuous evaluation Hilb(RX )
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What is an RKHS? Moore-Aronszajn Theorem

Operations with kernels

Fact (Sum and scaling of kernels)

If k, k1, and k2 are kernels on X , and α ≥ 0 is a scalar, then αk, k1 + k2
are kernels.

A di�erence of kernels is not necessarily a kernel! This is because we

cannot have k1(x , x)− k2(x , x) = 〈φ(x), φ(x)〉H < 0.

This gives the set of all kernels the geometry of a closed convex cone.

Hk1+k2 = Hk1 +Hk2 = {f1 + f2 : f1 ∈ Hk1 , f2 ∈ Hk2}
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What is an RKHS? Moore-Aronszajn Theorem

Operations with kernels (2)

Fact (Product of kernels)

If k1 and k2 are kernels on X and Y, then k = k1 ⊗ k2, given by:

k
(
(x , y), (x ′, y ′)

)
:= k1(x , x

′)k2(y , y
′)

is a kernel on X × Y. If X = Y, then k = k1 · k2, given by:

k
(
x , x ′

)
:= k1(x , x

′)k2(x , x
′)

is a kernel on X .

Hk1⊗k2
∼= Hk1 ⊗Hk2
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What is an RKHS? Moore-Aronszajn Theorem

Summary

all kernels RX×X+
1−1←→

all function spaces with continuous evaluation Hilb(RX )

bijection between RX×X+ and Hilb(RX ) preserves geometric
structure
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What is an RKHS? Moore-Aronszajn Theorem

Operations with kernels (3)

New kernels from old:

trivial (linear) kernel on Rd is k(x , x ′) = 〈x , x ′〉

for any p(t) = amt
m + · · ·+ a1t + a0 with ai ≥ 0

=⇒ k(x , x ′) = p(〈x , x ′〉) is a kernel on Rd

polynomial kernel: k(x , x ′) = (〈x , x ′〉+ c)m, for c ≥ 0

f (t) has Taylor series with non-negative coe�cients

=⇒ k(x , x ′) = f (〈x , x ′〉) is a kernel on Rd

exponential kernel: k(x , x ′) = exp(σ 〈x , x ′〉), for σ > 0
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