
Short course on adaptive modelling: Lab session

prepared for 2012/13 class by: Dino Sejdinovic
previous versions by: John Shawe-Taylor, Tom Diethe

May 14, 2013

Abstract

Using a series of examples, in this exercise session you will familiarise
yourselves with the Naive Bayes Classi�er and Support Vector Machines.
This exercise sheet is available at http://www.gatsby.ucl.ac.uk/~dino/
lab/handout.pdf

Keywords: Naive Bayes � Support Vector Machines (SVM)

1 Naive Bayes classi�er

Assume that we have training examples S =
{
(x(i), y(i))

}m
i=1

, where each x(i) =(
x
(i)
1 , . . . , x

(i)
D

)
is a D-dimensional vector and y(i) is the corresponding label.

For a new data point xtst, we wish to predict its label ytst using the Bayes
theorem:

ytst = argmax
y

P (y|xtst)

= argmax
y

P (xtst|y)P (y)
P (xtst)

= argmax
y

P (xtst|y)P (y),

since denominator does not depend on y. However, this requires estimation of
a high-dimensional probability distribution P (x|y), which is impossible in most
interesting cases. Naive Bayes makes a strong (naive) independence assumption
on this probability distribution, i.e., that

P (x|y) =

D∏
j=1

P (xj |y),

i.e., individual components of x are conditionally independent given its label y.
Classi�er then proceeds by estimating D one dimensional distributions P (xj |y),

1

http://www.gatsby.ucl.ac.uk/~dino/lab/handout.pdf
http://www.gatsby.ucl.ac.uk/~dino/lab/handout.pdf

which is a much easier task. For example, when variables xj are binary, estima-
tion of P (xj |y), can be expressed through:

pjk = P (xj = 1|y = k), πk = P (y = k),

with maximum likelihood (ML) estimates given by:

p̂jk =
{(x, y) ∈ S : xj = 1, y = k}∑D
l=1 # {(x, y) ∈ S : xl = 1, y = k}

, (1)

π̂k =
{(x, y) ∈ S : y = k}

m
.

1.1 Dataset

We will use a real-world dataset of text extracted from Yahoo! pages which
has been used in previous studies ([1, 2]). The original dataset was split into 3
categories (Sport, Aviation, Paintball), but we will only be using two of these.

• Download the data from:
http://www.gatsby.ucl.ac.uk/~dino/lab/TextData.mat

• Load the �le `TextData.mat' into Matlab. The cell array Docs contains
the original text documents (400 from each of the three categories). Have
a look at the �rst documents from 'Sport' and 'Aviation':

� Docs{1}

� Docs{401}.

We will construct a classi�er that predicts whether a given document belongs to
'Aviation' (y = −1) or 'Paintball' (y = 1) category. As working with text itself
is unwieldy, each document is represented by a D-dimensional vector encoding
the number of times that each of the D words in the dictionary (the union of
all words occurring in any of the texts) occurs in that document - the so called
'bag of words' representation (this is clearly a very crude representation since
it does not take into account the order of the words). This leads to a notion
of similarity (kernel) between two text documents, as an inner product between
these 'bag of words' representations, given by:

k(text 1, text 2) =∑
word ∈ dictionary

(#occ. of word in text 1)× (#occ. of word in text 2).

The initial stages of extracting the dictionary and calculating the document
frequency have been performed for you. The matrix TD contains the numbers
of occurrences of each of the D = 3522 words in the dictionary (given in Terms)
for each of the 1200 documents. Thus each x is a vector of length 3522.

2

http://www.gatsby.ucl.ac.uk/~dino/lab/TextData.mat

1.2 Running a naive Bayes classi�er

Exercise 1 (Preparing the data). In this section we will load the data and
separate it into training and testing sets.

• Let us split the data into training and testing sets. We will be using
the last two categories (Aviation, Paintball) of the data. Create a random
permutation of indices as follows. Note that we used two independent per-
mutations of length 400 (number of documents in each class) and added
400 and 800 respectively to access class Aviation (indexed between 401
and 800) and class Paintball (indexed between 801 and 1200).

� perms = [randperm(400)+400, randperm(400)+800];

Allocate 50 documents from each category for training and the remainder
for testing:

� idxstrn = [perms(1:50), perms(401:450)];

� idxstst = [perms(51:400), perms(451:800)];

Select the appropriate part of the data for training and testing as fol-
lows:

� Xtrn = TD(:,idxstrn)';

� ytrn = Target(idxstrn)';

� vals = unique(ytrn);

� ytrn(ytrn==vals(1)) = -1;

� ytrn(ytrn==vals(2)) = 1;

� Xtst = TD(:,idxstst)';

� ytst = Target(idxstst)';

� vals = unique(ytst);

� ytst(ytst==vals(1)) = -1;

� ytst(ytst==vals(2)) = 1;

Note that we have transposed the matrices (X and y).

Exercise 2 (Training the Naive Bayes classi�er). In this section we will train
the naive Bayes classi�er on the data. Before proceeding, consider the following
question: why is ML estimate in (1) a bad idea in the case where for some
j, xj = 0 in all of the training examples? For example, assume that none of
the training text documents contains the j-th word in the dictionary? What
happens when this word appears in the test document? How would you modify
the estimate to rectify this problem?

a. The naive bayes classi�er has been provided for you. You might like to
examine the algorithm and try to understand how it works and relate it

3

to the question above. Download the �le naive_bayes.m from:

http://www.gatsby.ucl.ac.uk/~dino/lab/naive_bayes.m

b. Train the classi�er on the training data, and calculate the predicted classes
for the testing data as follows:

� [ypred_NB] = naive_bayes(Xtrn, ytrn, Xtst);

Examine the plots of the predictive posterior for each of the classes.

c. Calculate the percentage of correct predictions of the classi�er on the test
set and print it to the screen as follows:

� err_NB = mean(ypred_NB~=ytst);

� display(sprintf('Accuracy %.2f', 100*(1-err_NB)));

Check how many documents in each of the classes were misclassi�ed and
compare this with the predictive posterior plots. Experiment with di�er-
ent sizes of splits of training and test data, and mark how performance
depends on the size of the training data.

1.3 Summary

Naive Bayes is one of the simplest density estimation methods from which we
can form one of the standard classi�cation methods in machine learning. Its
fame is partly due to the following properties:

• Very easy to program and intuitive

• Fast to train and to use as a classi�er

• Very easy to deal with missing attributes

• Very popular in �elds such as computational linguistics/NLP

As we have seen, Naive Bayes can be useful in classi�cation of text documents.
The reason that Naive Bayes may be able to classify documents reasonably
well in this way is that the conditional independence assumption is not so silly:
if we know people are talking about politics, this perhaps is almost su�cient
information to specify what kinds of other words they will be using - we don't
need to know anything else (of course, if you want ultimately a more powerful
text classi�er, you need to relax this assumption).

2 Support Vector Machines (SVM)

We will describe two possible ways of running Vapnik's Support Vector Machines
[3] for classi�cation in Matlab. One is based on Matlab's built in functions

4

http://www.gatsby.ucl.ac.uk/~dino/lab/naive_bayes.m

and the other is the SVMlight implementation. There are many other SVM
implementations available online.

2.1 SVM with Matlab's toolbox

We will be using an implementation of SVMs in Matlab's Bioinformatics tool-
box.

Ensure that the Bioinformatics toolbox is included in your Matlab version
using:

� ver

If this toolbox is not available on your machine, you should ignore

the rest of this Section and continue to Section 2.2

Two main functions that we will use are svmlearn and svmclassify. You
can see the help by typing:

� help svmtrain

You should see some information about the function printed on the screen.

Exercise 3 (Training the SVM).

a. Train the SVM using a value of 0.5 for the C-parameter (trade-o� between
the training error and the size of the margin) and a linear (Bag of Words)
kernel as follows:1:

� svmStruct = svmtrain(Xtrn, ytrn, 'boxconstraint',0.5);

The output structure svmStruct contains the learnt model. The element
'SupportVectors' holds the support vectors which are the points required
for classi�cation. Note that the number of support vectors is signi�cantly
smaller than the number of datapoints, and hence the SVM learns a model
that is �sparse�.

b. Predict the labels on the test set using function svmclassify, calculate
the percentage of correct predictions and print it to the screen as follows:

� ypred_SVM = svmclassify(svmStruct, Xtst);

� err_SVM = mean(ypred_SVM~=ytst);

� display(sprintf('Accuracy %.2f', 100*(1-err_SVM)));

1in case you get an error stating: Undefined function 'optimset' for input arguments

of type 'char', run the following two comands:

� restoredefaultpath

� rehash toolboxcache

5

2.2 SVMlight

You should read this Section only if you do not have a Bioinformatics

toolbox available. Otherwise, continue to Section 2.3.
SVMlight is an implementation of SVMs which can be used for classi�cation,

regression, and preference ranking. The optimization algorithms used in SVM-
light are described in [4, 5]. The algorithm has scalable memory requirements
and can handle problems with many thousands of support vectors e�ciently.
Consult http://svmlight.joachims.org/ for more details.

You will need to download and install the Matlab interface to SVMlight.
The precompiled libraries are available at:

http://www.gatsby.ucl.ac.uk/~dino/lab/SVM_lightMex.zip

Ensure that the path to the installation directory is added to the Mat-
lab path by right-clicking the installation folder and selecting option Add to

Path→Selected Folders and Subfolders or by typing:

� addpath('/install-path/SVM_lightMex/bin/');

� addpath('/install-path/SVM_lightMex/matlab/');

where install-path is the path to your installation (e.g. ~/svm_light)

Test your installation by typing: � help svmlearn

You should see some information about the function printed on the screen.

Exercise 4 (Training the SVM). In this section we will use SVMLight to classify
our data.

a. Train the SVM using a value of 0.5 for the C-parameter (trade-o� between
training error and margin) and a linear (Bag of Words) kernel as follows:

� model = svmlearn(Xtrn, ytrn, '-v 0 -t 0 -c 0.5');

The text string '-v 0 -t 0 -c 0.5' speci�es the various model prop-
erties. For example, you can choose a Gaussian kernel with '-t 2' and
set its bandwidth to γ = 0.1 with '-g 0.1'. The output structure contains
the learnt model. The element supvec holds the support vectors which
are the points required for classi�cation. Note that the number of support
vectors is signi�cantly smaller than the number of datapoints, and hence
the SVM learns a model that is �sparse�.

b. Calculate the percentage of correct predictions of the classi�er on the test
set and print it to the screen as follows:

� [err_SVM, ypred_SVM] = svmclassify(Xtst, ytst, model);

� display(sprintf('Accuracy %.2f', 100*(1-err_SVM)));

6

http://svmlight.joachims.org/
http://www.gatsby.ucl.ac.uk/~dino/lab/SVM_lightMex.zip

−25 −20 −15 −10 −5 0 5 10 15 20 25
−25

−20

−15

−10

−5

0

5

10

15

20

25

Figure 1: Elongated Gaussians

2.3 When Naive Bayes fails

Download the script from:
http://www.gatsby.ucl.ac.uk/~dino/lab/gaussexample.m

The data consists of two elongated Gaussian distributions depicted in Fig. 1:
positive examples have mean (1,−1) and negative examples have mean (−1, 1).
Looking at the data set, why do you think naive Bayes approach fails to classify
correctly? Hint: are dimensions conditionally independent given the label? To
run the naive Bayes classi�er on this example, you will need the matlab function
that uses a gaussian �t along each dimension, available at:

http://www.gatsby.ucl.ac.uk/~dino/lab/naive_bayes_gaussianfit.m

Is the dataset still linearly separable? Apply an SVM with a linear kernel
and compare the results.

2.4 Non-linearly separable data

We will now consider a simple synthetic data which illustrates the strength of
non-linear kernels. Download the script from:

http://www.gatsby.ucl.ac.uk/~dino/lab/mixtureexample.m

This script generates bivariate data which looks similar to that in Figure 2,
where positive examples are a mixture of bivariate gaussians with means (-1,-1)
and (1,1) while the negative examples are a mixture of bivariate gaussians with
means (-1,1) and (1,-1). All gaussian components have the same covariance
matrix.

In addition to the naive Bayes classi�er and SVM with a linear kernel, also
run SVM with a gaussian rbf kernel k(x, x′) = exp(−σ ‖x− x′‖22) with pa-

7

http://www.gatsby.ucl.ac.uk/~dino/lab/gaussexample.m
http://www.gatsby.ucl.ac.uk/~dino/lab/naive_bayes_gaussianfit.m
http://www.gatsby.ucl.ac.uk/~dino/lab/mixtureexample.m

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3
Non−linearly separable data

Figure 2: An example of non-linearly separable data in R2

rameters σ = 1 (rbf_sigma), and C = 0.01 (boxconstraint). Note that
the SVM with a linear kernel �nds a maximum-margin line that divides two
sets of training examples. Since no line can separate our data, the method
performs poorly. On the other hand, SVM with a gaussian kernel �rst maps
the data from R2 into a higher dimensional feature space, where the resulting
�features� can be linearly separated, and a maximum-margin hyperplane is �t-
ted in this space. When mapped back to our original space, the classi�er is
non-linear. To get some intuition of how this works, you can have a look at
http://www.youtube.com/watch?v=3liCbRZPrZA, where the polynomial ker-
nel with a three-dimensional feature space is used. In general, feature space can
have a large and even an in�nite number of dimensions.

Exercise 5. Experiment with the �le mixtureexample.m. In particular, make
the classi�cation problem harder by introducing additional dimensions of i.i.d.
gaussian random variables, which serve as the noise. Study how performance
changes with the number of dimensions. You could also try to generate a dif-
ferent kind of data, e.g., by �pulling� the positive and negative examples nearer
to each other: set the parameters s1 and s2 to di�erent values and rotate the
eigenvectors by angle theta.

2.5 Cross-validation

In the previous exercise, we chose a single value of the parameters σ and C for the
SVM. In general, classi�cation performance can depend strongly on the choice
of these (tuning) parameters. There are several approaches to choosing tuning
parameters. One often used approach is k-fold cross-validation. It divides the

8

http://www.youtube.com/watch?v=3liCbRZPrZA

training set in k disjoint sets. Each of these k sets of samples is once lifted out
as the validation set, and the remaining k − 1 sets are used for training. As a
result, we get k validation scores. The average of these scores is used as a good
estimate of the test set performance.

Exercise 6 (Tuning the C parameter using cross-validation). Use 5-fold cross
validation to tune the C parameter.

a. Firstly create a vector of values for the C parameter between 2−6 and 28

in steps of 1 for the exponent (i.e. 2−6, 2−5, . . . , 27, 28)

b. Next create a random permutation of the indices of the training set using
randperm(). You can then split these indices into groups by taking the
remainder of division by the number of folds using mod().

c. You will then need to iterate for the number of folds, choosing the appro-
priate indices for training and validation. Within this loop you will need
to evaluate each of the values of the C parameter (i.e. a nested for loop).
Store the validation error for each fold and each value of C in a matrix.

d. Next you need to average over the folds, and choose the value of C that
minimises the mean validation error. Then retrain using this value of
the C parameter on the full training set, and calculate the percentage
of correct predictions of the classi�er on the test set as in the previous
exercise. Does this method yield improved performance?

References

[1] T. Kolenda, L. K. Hansen, J. Larsen, and O. Winther (2002). In-
dependent component analysis for understanding multimedia con-
tent. In H. Bourlard, T. Adali, S. Bengio, J. Larsen, and S. Dou-
glas, editors, Proceedings of IEEE Workshop on Neural Networks
for Signal Processing XII, pages 757-766, Piscataway, New Jersey,
2002. IEEE Press. Martigny, Valais, Switzerland, Sept. 4-6, 2002.

[2] A. Vinokourov, D. R. Hardoon and J. Shawe-Taylor (2003). Learn-
ing the Semantics of Multimedia Content with Application to Web
Image Retrieval and Classi�cation. 4th International Symposium
on Independent Component Analysis (ICA 2003), Nara, Japan.

[3] V. Vapnik (1995). The Nature of Statistical Learning Theory.
Springer Verlag: New York.

[4] T. Joachims (2002). Learning to Classify Text Using Support Vec-
tor Machines. Dissertation, Kluwer.

[5] T. Joachims (1999). T. Joachims, 11 in: Making large-Scale SVM
Learning Practical. Advances in Kernel Methods - Support Vector

9

Learning, B. Schoelkopf and C. Burges and A. Smola (ed.), MIT
Press

10

	Naive Bayes classifier
	Dataset
	Running a naive Bayes classifier
	Summary

	Support Vector Machines (SVM)
	SVM with Matlab's toolbox
	SVMlight
	When Naive Bayes fails
	Non-linearly separable data
	Cross-validation

