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Short overview of convex optimization



Convex set

(Figure from Boyd and Vandenberghe)

Leftmost set is convex, remaining two are not.
Every point in the set can be seen from any other point in the set,
along a straight line that never leaves the set.

De�nition

C is convex if for all x1, x2 ∈ C and any 0 ≤ θ ≤ 1 we have
θx1 + (1− θ)x2 ∈ C , i.e. every point on the line between x1 and x2
lies in C .
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Convex function: no local optima

(Figure from Boyd and Vandenberghe)

De�nition (Convex function)

A function f is convex if its domain domf is a convex set and if
∀x , y ∈ domf , and any 0 ≤ θ ≤ 1,

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y).

The function is strictly convex if the inequality is strict for x 6= y .
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Optimization and the Lagrangian

Optimization problem on x ∈ Rn / primal,

minimize f0(x)

subject to fi (x) ≤ 0 i = 1, . . . ,m (1)

hj(x) = 0 j = 1, . . . p.

domain D :=
⋂m

i=0 domfi ∩
⋂p

j=1 domhj (nonempty).

p∗ the optimal value of (1)

Idealy we would want an unconstrained problem

minimize f0(x) +
m∑
i=1

I− (fi (x)) +

p∑
j=1

I0 (hj(x)) ,

where I−(u) =

{
0, u ≤ 0

∞, u > 0
and I0(u) =

{
0, u = 0

∞, u 6= 0
.
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Lower bound interpretation of Lagrangian

The Lagrangian L : Rn ×Rm ×Rp → R is an (easier to optimize)
lower bound on the original problem:

L(x , λ, ν) := f0(x) +
m∑
i=1

λi fi (x)︸ ︷︷ ︸
≤I−(fi (x))

+

p∑
j=1

νjhj(x)︸ ︷︷ ︸
≤I0(hj (x))

,

and has domain domL := D × Rm × Rp. The vectors λ and ν are
called Lagrange multipliers or dual variables.
To ensure a lower bound, we require λ � 0.

fi(x)

I−(·)
I0(·)

hi(x)
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Lagrange dual: lower bound on optimum p
∗

The Lagrange dual function: minimize Lagrangian
When λ � 0 and fi (x) ≤ 0, Lagrange dual function is

g(λ, ν) := inf
x∈D

L(x , λ, ν). (2)

A dual feasible pair (λ, ν) is a pair for which λ � 0 and
(λ, ν) ∈ dom(g).
We will show: (next slide) for any λ � 0 and ν,

g(λ, ν) ≤ f0(x)

wherever
fi (x) ≤ 0
hj(x) = 0

(including at f0(x∗) = p∗).
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Lagrange dual: lower bound on optimum p
∗

Simplest example: minimize over x the function
L(x , λ) = f0(x) + λf1(x)
(Figure from Boyd and Vandenberghe)

f0

f1

f0 + λf1

p∗

f1 ≤ 0

Reminders:

f0 is function to
be minimized.

f1 ≤ 0 is
inequality
constraint

λ ≥ 0 is Lagrange
multiplier

p∗ is minimum f0

in constraint set
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Lagrange dual is lower bound on p
∗ (proof)

We now give a formal proof that Lagrange dual function g(λ, ν)
lower bounds p∗.
Proof: Assume x̃ is feasible, i.e. fi (x̃) ≤ 0, hi (x̃) = 0, x̃ ∈ D,
λ � 0. Then

m∑
i=1

λi fi (x̃) +

p∑
i=1

νihi (x̃) ≤ 0

Thus

g(λ, ν) := inf
x∈D

(
f0(x) +

m∑
i=1

λi fi (x) +

p∑
i=1

νihi (x)

)

≤ f0(x̃) +
m∑
i=1

λi fi (x̃) +

p∑
i=1

νihi (x̃)

≤ f0(x̃).

This holds for every feasible x̃ , hence lower bound holds.
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Best lower bound: maximize the dual

Best (i.e. biggest) lower bound g(λ, ν) on the optimal solution p∗

of original problem: Lagrange dual problem

maximize g(λ, ν)

subject to λ � 0. (3)

Dual feasible: (λ, ν) with λ � 0 and g(λ, ν) > −∞.
Dual optimal: solutions (λ∗, ν∗) to the dual problem, d∗ is
optimal value (dual always easy to maximize: next slide).
Weak duality always holds:

d∗ ≤ p∗.

...but what is the point of �nding a biggest lower bound on a
minimization problem?
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Best lower bound: maximize the dual

Best (i.e. biggest) lower bound g(λ, ν) on the optimal solution p∗

of original problem: Lagrange dual problem

maximize g(λ, ν)

subject to λ � 0. (4)

Dual feasible: (λ, ν) with λ � 0 and g(λ, ν) > −∞.
Dual optimal: solutions (λ∗, ν∗) to the dual problem, d∗ is
optimal value (dual always easy to maximize: next slide).
Weak duality always holds:

d∗ ≤ p∗.

Strong duality: (does not always hold, conditions given later):

d∗ = p∗.

If S.D. holds: solve the easy (concave) dual problem to �nd p∗.
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Maximizing the dual is always easy

The Lagrange dual function: minimize Lagrangian (lower bound)

g(λ, ν) = inf
x∈D

L(x , λ, ν).

Dual function is a pointwise in�mum of a�ne functions of (λ, ν),
hence concave in (λ, ν) with convex constraint set λ � 0.

λ

g(λ) Example:

One inequality constraint,

L(x , λ) = f0(x) + λf1(x),

and assume there are only four

possible values for x . Each line

represents a di�erent x .
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How do we know if strong duality holds?

Conditions under which strong duality holds are called constraint
quali�cations (they are su�cient, but not necessary)

(Probably) best known su�cient condition: Strong duality
holds if

Primal problem is convex, i.e. of the form

minimize f0(x)

subject to fi (x) ≤ 0 i = 1, . . . , n

Ax = b

for convex f0, . . . , fm, and

Slater's condition: there exists a strictly feasible point x̃ , such
that fi (x̃) < 0, i = 1, . . . , n (reduces to the existence of any
feasible point when inequality constraints are a�ne, i.e., Cx � d).
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A consequence of strong duality...

Assume primal is equal to the dual. What are the consequences?

x∗ solution of original problem (minimum of f0 under
constraints),

(λ∗, ν∗) solutions to dual

f0(x∗) =
(assumed)

g(λ∗, ν∗)

=
(g de�nition)

inf
x∈D

(
f0(x) +

m∑
i=1

λ∗i fi (x) +

p∑
i=1

ν∗i hi (x)

)

≤
(inf de�nition)

f0(x∗) +
m∑
i=1

λ∗i fi (x
∗) +

p∑
i=1

ν∗i hi (x
∗)

≤
(4)

f0(x∗),

(4): (x∗, λ∗, ν∗) satis�es λ∗ � 0, fi (x
∗) ≤ 0, and hi (x

∗) = 0.
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...is complementary slackness

From previous slide,
m∑
i=1

λ∗i fi (x
∗) = 0, (5)

which is the condition of complementary slackness. This means

λ∗i > 0 =⇒ fi (x
∗) = 0,

fi (x
∗) < 0 =⇒ λ∗i = 0.

From λi , read o� which inequality constraints are strict.
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KKT conditions for global optimum

Assume functions fi , hi are di�erentiable and strong duality. Since
x∗ minimizes L(x , λ∗, ν∗), derivative at x∗ is zero,

∇f0(x∗) +
m∑
i=1

λ∗i∇fi (x∗) +

p∑
i=1

ν∗i ∇hi (x∗) = 0.

KKT conditions de�nition: we are at global optimum,
(x , λ, ν) = (x∗, λ∗, ν∗) when (a) strong duality holds, and (b)

fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

λi ≥ 0, i = 1, . . . ,m

λi fi (x) = 0, i = 1, . . . ,m

∇f0(x) +
m∑
i=1

λi∇fi (x) +

p∑
i=1

νi∇hi (x) = 0
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KKT conditions for global optimum

In summary: if

primal problem convex and

inequality constraints a�ne

then strong duality holds. If in addition

functions fi , hi di�erentiable

then KKT conditions are necessary and su�cient for optimality.

Arthur Gretton, Dino Sejdinovic Adaptive Modelling of Complex Data: Kernels



Support vector classi�cation



Linearly separable points

Classify two clouds of points, where there exists a hyperplane which
linearly separates one cloud from the other without error.

yi = +1

yi = −1

Data given by {xi , yi}ni=1
, xi ∈ Rd , yi ∈ {−1,+1}
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Linearly separable points

Classify two clouds of points, where there exists a hyperplane which
linearly separates one cloud from the other without error.

yi = +1

yi = −1

Hyperplane equation w>x + b = 0. Linear discriminant given by

w>x + b

{
≥ 0, class +1

< 0, class �1.
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Linearly separable points

Classify two clouds of points, where there exists a hyperplane which
linearly separates one cloud from the other without error.

yi = +1

yi = −1

For a datapoint close to the decision boundary, a small change leads to a

change in classi�cation. Can we make the classi�er more robust?
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Linearly separable points

Classify two clouds of points, where there exists a hyperplane which
linearly separates one cloud from the other without error.

2/‖w‖

w

yi = +1

yi = −1

Smallest distance from each class to the separating hyperplane
w>x + b is called the margin.
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Maximum margin classi�er, linearly separable case

This problem can be expressed as follows:

max
w ,b

(margin) = max
w ,b

(
1

‖w‖

)
(6)

subject to {
w>xi + b ≥ 1 i : yi = +1,

w>xi + b ≤ −1 i : yi = −1.
(7)

The resulting classi�er is

y = sign(w>x + b),

We can rewrite to obtain a quadratic program:

min
w ,b

1

2
‖w‖2

subject to
yi (w

>xi + b) ≥ 1. (8)
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Maximum margin classi�er: with errors allowed

Allow �errors�: points within the margin, or even on the wrong side
of the decision boudary. Ideally:

min
w ,b

(
1

2
‖w‖2 + C

n∑
i=1

I[yi
(
w>xi + b

)
< 0]

)
,

where C controls the tradeo� between maximum margin and loss.
Replace with convex upper bound:

min
w ,b

(
1

2
‖w‖2 + C

n∑
i=1

θ
(
yi

(
w>xi + b

)))
.

with hinge loss,

θ(α) = (1− α)+ =

{
1− α, 1− α > 0

0, otherwise.
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Hinge loss

Hinge loss:

θ(α) = (1− α)+ =

{
1− α, 1− α > 0

0, otherwise.

α

I(α < 0)

(1− α)+
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Support vector classi�cation

Substituting in the hinge loss, we get

min
w ,b

(
1

2
‖w‖2 + C

n∑
i=1

θ
(
yi

(
w>xi + b

)))
.

To simplify, use substitution ξi = θ
(
yi
(
w>xi + b

))
:

min
w ,b,ξ

(
1

2
‖w‖2 + C

n∑
i=1

ξi

)
(9)

subject to

ξi ≥ 0 yi

(
w>xi + b

)
≥ 1− ξi
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Support vector classi�cation

2/‖w‖

w

yi = +1

yi = −1

ξ/‖w‖
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Does strong duality hold?

1 Is the optimization problem convex wrt the variables w , b, ξ?

minimize f0(w , b, ξ) :=
1

2
‖w‖2 + C

n∑
i=1

ξi

subject to fi (w , b, ξ) := 1− ξi − yi

(
w>xi + b

)
≤ 0, i = 1, . . . , n

fi (w , b, ξ) := −ξi ≤ 0, i = n + 1, . . . , 2n

Each of f0, f1, . . . , fn are convex. No equality constraints.

2 Does Slater's condition hold? Yes (trivially) since inequality
constraints a�ne.

Thus strong duality holds, the problem is di�erentiable, hence the
KKT conditions hold at the global optimum.
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Support vector classi�cation: Lagrangian

The Lagrangian: L(w , b, ξ, α, λ) =

1

2
‖w‖2 +C

n∑
i=1

ξi +
n∑

i=1

αi

(
1− ξi − yi

(
w>xi + b

))
+

n∑
i=1

λi (−ξi )

with dual variable constraints

αi ≥ 0, λi ≥ 0.

Minimize wrt the primal variables w , b, and ξ.
Derivative wrt w :

∂L

∂w
= w −

n∑
i=1

αiyixi = 0 w =
n∑

i=1

αiyixi . (10)

Derivative wrt b:
∂L

∂b
=
∑
i

yiαi = 0. (11)
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Support vector classi�cation: Lagrangian
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2
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n∑
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n∑
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Support vector classi�cation: Lagrangian

Derivative wrt ξi :

∂L

∂ξi
= C − αi − λi = 0 αi = C − λi . (12)

Since λi ≥ 0,
αi ≤ C .

Now use complementary slackness:
Non-margin SVs (margin errors): αi = C > 0:

1 We immediately have yi
(
w>xi + b

)
= 1− ξi .

2 Also, from condition αi = C − λi , we have λi = 0, so ξi ≥ 0

Margin SVs: 0 < αi < C :
1 We again have yi

(
w>xi + b

)
= 1− ξi .

2 This time, from αi = C − λi , we have λi > 0, hence ξi = 0.

Non-SVs (on the correct side of the margin): αi = 0:
1 From αi = C − λi , we have λi > 0, hence ξi = 0.
2 Thus, yi

(
w>xi + b

)
≥ 1
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Support vector classi�cation: Lagrangian
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The support vectors

We observe:

1 The solution is sparse: points which are neither on the margin
nor �margin errors� have αi = 0

2 The support vectors: only those points on the decision
boundary, or which are margin errors, contribute.

3 In�uence of the non-margin SVs is bounded, since their weight
cannot exceed C .
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Support vector classi�cation: dual function

Thus, our goal is to maximize the dual,

g(α, λ) =
1

2
‖w‖2 + C

n∑
i=1

ξi +
n∑

i=1

αi

(
1− yi

(
w>xi + b

)
− ξi

)
+

n∑
i=1

λi (−ξi )

=
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj + C

n∑
i=1

ξi −
n∑

i=1

n∑
j=1

αiαjyiyjx
>
i xj

−b
n∑

i=1

αiyi︸ ︷︷ ︸
0

+
n∑

i=1

αi −
n∑

i=1

αiξi −
n∑

i=1

(C − αi )ξi

=
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj .
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Support vector classi�cation: dual problem

Maximize the dual,

g(α) =
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj ,

subject to the constraints

0 ≤ αi ≤ C ,

n∑
i=1

yiαi = 0

This is a quadratic program. From α, obtain the hyperplane with
w =

∑n
i=1 αiyixi

O�set b can be obtained from any of the margin SVs:
1 = yi

(
w>xi + b

)
.
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Support vector classi�cation: kernel version

Schölkopf and Smola: Learning with Kernels 2001/11/13 18:49
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Figure 7.9 Toy problem (task: separate circles from disks) solved using -SV classification,
with parameter values ranging from 0 1 (top left) to 0 8 (bottom right). The larger
we make , the more points are allowed to lie inside the margin (depicted by dotted lines).
Results are shown for a Gaussian kernel, k(x x ) exp( x x 2).

Table 7.1 Fractions of errors and SVs, along with the margins of class separation, for the
toy example in Figure 7.9.
Note that upper bounds the fraction of errors and lower bounds the fraction of SVs, and
that increasing , i.e., allowing more errors, increases the margin.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

fraction of errors 0.00 0.07 0.25 0.32 0.39 0.50 0.61 0.71

fraction of SVs 0.29 0.36 0.43 0.46 0.57 0.68 0.79 0.86

margin w 0.005 0.018 0.115 0.156 0.364 0.419 0.461 0.546

at a toy example illustrating the influence of (Figure 7.9). The corresponding
fractions of SVs and margin errors are listed in table 7.1.
The derivation of the -SVC dual is similar to the above SVC formulations, onlyDerivation of the

Dual slightly more complicated. We consider the Lagrangian

L(w b )
1

2
w 2 1

m

m

!
i 1

i

m

!
i 1

( i(yi( xi w b) i) i i) (7.44)

using multipliers i i 0. This function has to be minimized with respect to
the primal variables w b , and maximized with respect to the dual variables

. To eliminate the former, we compute the corresponding partial derivatives

Taken from Schoelkopf and Smola (2002)
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Support vector classi�cation: kernel version

Maximum margin classi�er in RKHS: write the hinge loss
formulation

min
w

(
1

2
‖w‖2H + C

n∑
i=1

θ (yi 〈w , k(xi , ·)〉H)

)
for the RKHS H with kernel k(x , x ′). Maximizing the margin
equivalent to minimizing ‖w‖2H: for many RKHSs a smoothness
constraint (e.g. Gaussian kernel).
Optimization over an in�nitely dimensional space!
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Support vector classi�cation: kernel version

Dual in the linear case:

g(α) =
n∑

i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
>
i xj ,

subject to the constraints

0 ≤ αi ≤ C ,

n∑
i=1

yiαi = 0

Dual in the kernel case:

max
α

 n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi , xj)

 ,

subject to the constraints

0 ≤ αi ≤ C ,
n∑

i=1

yiαi = 0

Convex in α since K is positive de�nite.Arthur Gretton, Dino Sejdinovic Adaptive Modelling of Complex Data: Kernels
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Primal and the representer theorem

After solving the dual we can obtain the decision function

w(·) =
n∑

i=1

yiαik(xi , ·).

which lies in a �nite dimensional subspace of H , i.e., it is a
(sparse) linear combination of the features (representer theorem).
Thus, we can also derive the �nite-dimensional primal by setting
w(·) =

∑n
i=1 βik(xi , ·).

min
β,ξ

(
1

2
β>Kβ + C

n∑
i=1

ξi

)
(13)

where the matrix K has i , jth entry Kij = k(xi , xj), subject to

ξi ≥ 0 yi

n∑
j=1

βjk(xi , xj) ≥ 1− ξi .

What is an advantage of the dual?
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Questions?
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Representer theorem



Learning problem: setting

Given a set of paired observations (x1, y1), . . . (xn, yn) (regression or
classi�cation).
Find the function f ∗ in the RKHS H which satis�es

J(f ∗) = min
f ∈H

J(f ), (14)

where
J(f ) = Ly (f (x1), . . . , f (xn)) + Ω

(
‖f ‖2H

)
,

Ω is non-decreasing, and y is the vector of yi .

Classi�cation: Ly (f (x1), . . . , f (xn)) =
∑n

i=1 Iyi f (xi )≤0

Regression: Ly (f (x1), . . . , f (xn)) =
∑n

i=1(yi − f (xi ))2
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Representer theorem

The representer theorem: solution to

min
f ∈H

[
Ly (f (x1), . . . , f (xn)) + Ω

(
‖f ‖2H

)]
takes the form

f ∗ =
n∑

i=1

αik(xi , ·).

If Ω is strictly increasing, all solutions have this form.
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Representer theorem: proof

Proof: Denote fs projection of f onto the subspace

span {k(xi , ·) : 1 ≤ i ≤ n} , (15)

such that
f = fs + f⊥,

where fs =
∑n

i=1 αik(xi , ·).
Regularizer:

‖f ‖2H = ‖fs‖2H + ‖f⊥‖2H ≥ ‖fs‖2H ,

then
Ω
(
‖f ‖2H

)
≥ Ω

(
‖fs‖2H

)
,

so this term is minimized for f = fs .
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Representer theorem: proof

Proof (cont.): Individual terms f (xi ) in the loss:

f (xi ) = 〈f , k(xi , ·)〉H = 〈fs + f⊥, k(xi , ·)〉H = 〈fs , k(xi , ·)〉H ,

so
Ly (f (x1), . . . , f (xn)) = Ly (fs(x1), . . . , fs(xn)).

Hence

Loss L(. . .) only depends on the component of f in the data
subspace,

Regularizer Ω(. . .) minimized when f = fs .

If Ω is strictly non-decreasing, then ‖f⊥‖H = 0 is required at
the minimum.
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ν-SVM



Support vector classi�cation: the ν-SVM

Parameter C in SVMs can be hard to interpret. Modify the
formulation to get a more intuitive parameter ν:

min
w ,ρ,ξ

(
1

2
‖w‖2 − νρ+

1

n

n∑
i=1

ξi

)
subject to

ρ ≥ 0

ξi ≥ 0

yiw
>xi ≥ ρ− ξi ,

(now we directly adjust the constraint threshold ρ).
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The ν-SVM: Lagrangian

1

2
‖w‖2H+

1

n

n∑
i=1

ξi−νρ+
n∑

i=1

αi

(
ρ− yiw

>xi − ξi
)

+
n∑

i=1

βi (−ξi )+γ(−ρ)

for dual variables αi ≥ 0, βi ≥ 0, and γ ≥ 0.
Di�erentiating and setting to zero for each of the primal variables
w , ξ, ρ,

w =
n∑

i=1

αiyixi

αi + βi =
1

n
(16)

ν =
n∑

i=1

αi − γ (17)

From βi ≥ 0, equation (16) implies

0 ≤ αi ≤ 1/n.

From γ ≥ 0 and (17), we get

ν ≤
n∑

i=1

αi .
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The ν-SVM: Lagrangian

1

2
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Complementary slackness (1)

Complementary slackness conditions:
Assume ρ > 0 at the global solution, hence γ = 0, and

n∑
i=1

αi = ν. (18)

Case of ξi > 0: complementary slackness states βi = 0, hence from
(16) we have αi = 1/n. Denote this set as N(α). Then

∑
i∈N(α)

1

n
=
∑

i∈N(α)

αi ≤
n∑

i=1

αi = ν,

so
|N(α)|

n
≤ ν,

and ν is an upper bound on the proportion of non-margin SVs.
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Complementary slackness (2)

Case of ξi = 0: αi < 1/n. Denote by M(α) the set of points
1/n > αi > 0. Then from (18),

ν =
n∑

i=1

αi =
∑

i∈N(α)

1

n
+

∑
i∈M(α)

αi ≤
∑

i∈M(α)∪N(α)

1

n
,

thus

ν ≤ |N(α)|+ |M(α)|
n

,

and ν is a lower bound on the proportion of support vectors with
non-zero weight (both on the margin, and �margin errors�).
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Dual for ν-SVM

Substituting into the Lagrangian, we get

1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
>
i xj +

1

n

n∑
i=1

ξi − ρν −
m∑
i=1

m∑
j=1

αiαjyiyjx
>
i xj

+
n∑

i=1

αiρ−
n∑

i=1

αiξi −
n∑

i=1

(
1

n
− αi

)
ξi − ρ

(
n∑

i=1

αi − ν
)

=− 1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
>
i xj

Maximize:

g(α) = −1
2

m∑
i=1

m∑
j=1

αiαjyiyjx
>
i xj ,

subject to
n∑

i=1

αi ≥ ν 0 ≤ αi ≤
1

n
.
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Dual for ν-SVM

Substituting into the Lagrangian, we get

1

2
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1

n
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m∑
i=1

m∑
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n∑
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n∑

i=1
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n∑

i=1

(
1

n
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αi − ν
)
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2
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m∑
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2
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1

n
.
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