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Overview

@ Review of convex optimization
@ Support vector classification, the C-SV machine

@ The representer theorem
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Short overview of convex optimization



Convex set

) & N

(Figure from Boyd and Vandenberghe)

Leftmost set is convex, remaining two are not.
Every point in the set can be seen from any other point in the set,
along a straight line that never leaves the set.

Definition

C is convex if for all x3,x € C and any 0 < 0 <1 we have

Ox1 + (1 — 0)xx € C, i.e. every point on the line between x; and x;
lies in C.
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Convex function: no local optima

(v, f(y))

(z, f(x)) =

(Figure from Boyd and Vandenberghe)

Definition (Convex function)

A function f is convex if its domain domf is a convex set and if
Vx,y € domf, and any 0 < 0 < 1,

f(Ox + (1 —=0)y) <0f(x)+ (1 —0)f(y).

The function is strictly convex if the inequality is strict for x # y.
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Optimization and the Lagrangian

Optimization problem on x € R” / primal,

minimize fo(x)
subject to  fi(x) <0 i=1,....,m (1)
hi(x) =0 j=1...p

o domain D := "y domf; N (7_; domh; (nonempty).
e p* the optimal value of (1)
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Optimization and the Lagrangian

Optimization problem on x € R” / primal,
minimize fo(x)

subject to  fi(x) <0 i=1,....,m (1)
hi(x) =0 j=1...p

o domain D := "y domf; N (7_; domh; (nonempty).
e p* the optimal value of (1)

Idealy we would want an unconstrained problem

m P
minimize fo(x) + Y _ I (fi(x)) + Y _ b (hj(x)),
i—1 j=1
< =
where I_(u) = {07 us0 and Io(u) = {O’ ! O.
oo, u>0 oo, u#0
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Lower bound interpretation of Lagrangian

The Lagrangian L : R" x R™ x RP — R is an (easier to optimize)
lower bound on the original problem:

P
L(x, A, v) = fo(x +Z difi(x) )+ yiki(x),
— N —

ey <io(hi(x))

and has domain domL := D x R™ x RP. The vectors \ and v are
called Lagrange multipliers or dual variables.
To ensure a lower bound, we require A = 0.
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Lagrange dual: lower bound on optimum p*

The Lagrange dual function: minimize Lagrangian
When A\ = 0 and fi(x) < 0, Lagrange dual function is

g\ v) = Xlng L(x, A\, v). (2)

A dual feasible pair (\,v) is a pair for which A = 0 and
(A, v) € dom(g).
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Lagrange dual: lower bound on optimum p*

The Lagrange dual function: minimize Lagrangian
When A\ = 0 and fi(x) < 0, Lagrange dual function is

g\ v) = Xlng L(x, A\, v). (2)
A dual feasible pair (\,v) is a pair for which A = 0 and

(A, v) € dom(g).
We will show: (next slide) for any A = 0 and v,

g\, v) < fo(x)

wherever

(including at fo(x*) = p*).
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Lagrange dual: lower bound on optimum p*

Simplest example: minimize over x the function
L(x, A) = fo(x) + M1 (x)

(Figure from Boyd and Vandenberghe)

Jo+Af1
A

i Reminders:
4
* . .
3 b @ fy is function to
be minimized.
ol o \ .. —_>
2t \o \ fo @ f,<0is
1 =i inequality
_ constraint
f1 )
¥ @ )\ > 0is Lagrange
multiplier
-1
@ p* is minimum fy
-9
=1 —0.5 0 0.5 1 in constraint set

—>f1 <0
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Lagrange dual: lower bound on optimum p*

Simplest example:minimize over x the function
L(x, A) = fo(x) + M1 (x)

(Figure from Boyd and Vandenberghe)

penalized fo+Af1
Reminders:
4
3 @ fy is function to
be minimized.
2 @ f<0is
1 inequality
constraint
8 @ )\ >0 is Lagrange
multiplier
-1
@ p* is minimum fy
-9
=1 —0.5 0 0.5 1 in constraint set

—>f1 <0
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Lagrange dual: lower bound on optimum p*

Simplest example: minimize over x the function
L(x, A) = fo(x) + M1 (x)

(Figure from Boyd and Vandenberghe)

rewarded fo+Af1
i Reminders:
4
3 @ fy is function to
be minimized.
ol o \ .. —_>
2 fo @ f<0is
1 inequality
constraint
—>f1 _
¥ @ )\ > 0is Lagrange
multiplier
-1
@ p* is minimum fy
-9
=1 —0.5 0 0.5 1 in constraint set
T
—>f1 <0
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Lagrange dual is lower bound on p* (proof)

We now give a formal proof that Lagrange dual function g(\,v)
lower bounds p*.
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Lagrange dual is lower bound on p* (proof)

We now give a formal proof that Lagrange dual function g(\,v)
lower bounds p*.

Proof: Assume X is feasible, i.e. fi(X) <0, hj(X) =0, x € D,
A >=0. Then

m p
Z Aifi(X) + Z vihi(x) <0
im1 im1
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Lagrange dual is lower bound on p* (proof)

We now give a formal proof that Lagrange dual function g(\,v)
lower bounds p*.
Proof: Assume X is feasible, i.e. fi(X) <0, hj(X) =0, x € D,

A >=0. Then
m P
D OXfi(%)+ > wihi(%) <0
i=1 i=1
Thus
m P
g\ v) = xlng (fo(x) + ; Aifi(x) + ; I/,'h,'(X)>

m p
< ﬂ)(?)—i-z)\iﬂ()?)—l—zvl'hi(?)
i—1 i—1
< (%)

This holds for every feasible X, hence lower bound holds.
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Best lower bound: maximize the dual

Best (i.e. biggest) lower bound g(\,v) on the optimal solution p*
of original problem: Lagrange dual problem

maximize  g(A\,v)
subject to A= 0. (3)

Dual feasible: (A, v) with A = 0 and g(\,v) > —oc.
Dual optimal: solutions (\*,v*) to the dual problem, d* is
optimal value (dual always easy to maximize: next slide).
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Best lower bound: maximize the dual

Best (i.e. biggest) lower bound g(\,v) on the optimal solution p*
of original problem: Lagrange dual problem

maximize  g(A\,v)
subject to A= 0. (3)

Dual feasible: (A, v) with A = 0 and g(\,v) > —oc.
Dual optimal: solutions (\*,v*) to the dual problem, d* is
optimal value (dual always easy to maximize: next slide).
Weak duality always holds:

d* < p*.

...but what is the point of finding a biggest lower bound on a
minimization problem?
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Best lower bound: maximize the dual

Best (i.e. biggest) lower bound g(\, v) on the optimal solution p*
of original problem: Lagrange dual problem

maximize  g(\,v)
subject to A>=0. (4)

Dual feasible: (A, v) with A = 0 and g(\,v) > —oc.
Dual optimal: solutions (\*,v*) to the dual problem, d* is
optimal value (dual always easy to maximize: next slide).

Weak duality always holds:
d* < p*.

Strong duality: (does not always hold, conditions given later):
d* = p".

If S.D. holds: solve the easy (concave) dual problem to find p*.
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Maximizing the dual is always easy
The Lagrange dual function: minimize Lagrangian (lower bound)

g\ v) leng L(x, A, v).

Dual function is a pointwise infimum of affine functions of (\,v),
hence concave in (A, ) with convex constraint set A > 0.

g\ Example:
One inequality constraint,

L(x, \) = fo(x) + Ma(x),

and assume there are only four

possible values for x. Each line

represents a different x.
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How do we know if strong duality holds?

Conditions under which strong duality holds are called constraint
qualiflcations (they are sufficient, but not necessary)

(Probably) best known sufficient condition: Strong duality
holds if

@ Primal problem is convex, i.e. of the form

minimize fo(x)

subject to  fi(x) <0 i=1,....n
Ax =b
for convex fy, ..., fm, and

Slater’s condition: there exists a strictly feasible point X, such
that f;(X) <0, i =1,...,n (reduces to the existence of any
feasible point when inequality constraints are affine, i.e., Cx < d).
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A consequence of strong duality...

Assume primal is equal to the dual. What are the consequences?

@ x* solution of original problem (minimum of fy under
constraints),

e (\*,v*) solutions to dual

fo(x*) = g(A\",v7)

(assu_med)

m P
= inf | 1 N “hi
(g definition) <eD < o(x) + ; ifi(x) + ; i (X)>

(inf definition)

< fo(x*),
0)

m 4
=< fo(x*) + D ATB() + D vihi(x)
i=1 i=1

(4): (x*, \*,v*) satisfies \* = 0, fi(x*) <0, and h;(x*) = 0.
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...Is complementary slackness

From previous slide,
m
D Nfilx*) =0, (5)
i=1

which is the condition of complementary slackness. This means

AP >0 = fi(x*)=0,
filx') <0 = X =0.

From )\;, read off which inequality constraints are strict.
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KKT conditions for global optimum
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KKT conditions for global optimum

Assume functions f;, h; are differentiable and strong duality. Since
x* minimizes L(x, \*,*), derivative at x* is zero,

Vi(x +Z)\*Vf +Zth =0.
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KKT conditions for global optimum

Assume functions f;, h; are differentiable and strong duality. Since
x* minimizes L(x, \*,*), derivative at x* is zero,

Vi (x +Z)\*Vf +Zu Vhi(x

KKT conditions definition: we are at global optimum,
(x, \,v) = (x*, \*, v*) when (a) strong duality holds, and (b)

filx) < 0,i=1,...;m
hi(x) = 0,i=1,...,p

Ai > 0,i=1,....m
Aifilx) = 0,i=1,....,m

Viy(x Z)\ VEi(x Zu,w = 0
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KKT conditions for global optimum

In summary: if
@ primal problem convex and
@ inequality constraints affine

then strong duality holds. If in addition
o functions f;, h; differentiable

then KKT conditions are necessary and sufficient for optimality.
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Support vector classification



Linearly separable points

Classify two clouds of points, where there exists a hyperplane which
linearly separates one cloud from the other without error.

Data given by {x;,y;};_;, x; € R?, y; € {-1,+1}
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Linearly separable points

Classify two clouds of points, where there exists a hyperplane which
linearly separates one cloud from the other without error.

Hyperplane equation w'x + b = 0. Linear discriminant given by
wTx + b >0, class +1
<0, class 1.
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Linearly separable points

Classify two clouds of points, where there exists a hyperplane which
linearly separates one cloud from the other without error.

For a datapoint close to the decision boundary, a small change leads to a
change in classification. Can we make the classifier more robust?
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Linearly separable points

Classify two clouds of points, where there exists a hyperplane which
linearly separates one cloud from the other without error.

Smallest distance from each class to the separating hyperplane
w' x 4 b is called the margin.
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Maximum margin classifier, linearly separable case

This problem can be expressed as follows:

max (margin) — rrv1vax< ! ) (6)

w,b NI

subject to
wlxi+b>1 iy =41,
wlxi+b<—1 i y=-1.

The resulting classifier is

y =sign(w ' x + b),
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Maximum margin classifier, linearly separable case

This problem can be expressed as follows:

1
rvv?g( (margin) = ng( (H”’H) (6)
subject to
wlxi+b>1 iy =41, )
wixi+b<—1 i y=-1.

The resulting classifier is
y =sign(w ' x + b),

We can rewrite to obtain a quadratic program:

1
min §HWH2

)

subject to
yi(w'x; + b) > 1. (8)
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Maximum margin classifier: with errors allowed

Allow “errors”: points within the margin, or even on the wrong side
of the decision boudary. Ideally:

(1 2 ” T
min <2HW! +C;H[J’i (w x,-+b) <0]>,

where C controls the tradeoff between maximum margin and loss.
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Maximum margin classifier: with errors allowed

Allow “errors”: points within the margin, or even on the wrong side
of the decision boudary. Ideally:

(1 2 ” T
min <2HW! +C;H[J’i (w x,-+b) <0]>,

where C controls the tradeoff between maximum margin and loss.
Replace with convex upper bound:

mp (31wt €370 (5 (w7 5)) ).

with hinge loss,

l—-a, 1—a>0

0, otherwise.
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Hinge loss:
l—a, 1—a>0
0la)=(1—a)L = ’
(a) = )+ 0, otherwise.
(1-a)y A
I(a < 0)

/
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Support vector classification

Substituting in the hinge loss, we get

min (;HWIIQ + cie (i (Wi + b))> .

i=1

To simplify, use substitution & = 6 (y; (w'x + b)) :
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Support vector classification

Substituting in the hinge loss, we get

min (;HWIIQ + cie (i (Wi + b))> .

i=1

To simplify, use substitution & = 6 (y; (w'x + b)) :

(1, .
min <2HWH +C§§f> (9)

subject to
£ >0 )/i(WTXier)Zl—fi
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Support vector classification
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Does strong duality hold?
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Does strong duality hold?

@ Is the optimization problem convex wrt the variables w, b, £7
1 n
minimize fo(w, b,§) := EHWH2 + C;{;
=

subject to fi(w, b,&) :=1—& —y; (WTX,'—l-b> <0,i=1,...,n
filw,b,8): =& <0,i=n+1,...,2n

Each of 5, f1, ..., f, are convex. No equality constraints.

@ Does Slater’s condition hold? Yes (trivially) since inequality
constraints affine.
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Does strong duality hold?

@ Is the optimization problem convex wrt the variables w, b, £7
1 n
minimize fo(w, b,§) := §HWH2 + C;{;
=

subject to fi(w, b,&) :=1—& —y; (WTX,'—l-b> <0,i=1,...,n
filw,b,8): =& <0,i=n+1,...,2n

Each of 5, f1, ..., f, are convex. No equality constraints.

@ Does Slater’s condition hold? Yes (trivially) since inequality
constraints affine.

Thus strong duality holds, the problem is differentiable, hence the
KKT conditions hold at the global optimum.
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Support vector classification: Lagrangian

The Lagrangian: L(w,b,{, a, \) =

n n n
%Hsz +C> &G+ a (1 —&i— i (WTX; + b)) +> (&)
i=1 i=1 i=1
with dual variable constraints

a; >0, Ai > 0.

Minimize wrt the primal variables w, b, and £.
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Support vector classification: Lagrangian

The Lagrangian: L(w,b,{, a, \) =
1 n n n
§HW|!2 + C;éf + ;a; (1 —&i—yi (WTX; + b)) +;)\i(_§i)
with dual variable constraints
a; >0, A > 0.

Minimize wrt the primal variables w, b, and £.
Derivative wrt w:

oL " .
Biw = W—Za;y,-x,- =0 szai}’ixﬂ (10)
i=1 i=1

Derivative wrt b:

oL
o= > yiaj =0. (11)
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Support vector classification: Lagrangian

Derivative wrt &;:

oL
Since \; > 0,
a; < C.
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Support vector classification: Lagrangian

Derivative wrt &;:

géi:C—a,-—)\,-zo a; = C — )\ (12)
Since \; > 0,
o; < C.
Now use complementary slackness:
Non-margin SVs (margin errors): a; = C > 0:
© We immediately have y; (WTX,' + b) =1-¢.
@ Also, from condition a;j = C — A;, we have \; =0,s0& >0
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Support vector classification: Lagrangian

Derivative wrt &;:

géi:C—a,-—)\,-zo aj=C— . (12)
Since \; > 0,
o; < C.

Now use complementary slackness:
Non-margin SVs (margin errors): a; = C > 0:

© We immediately have y; (WTX,' + b) =1-¢.

@ Also, from condition a;j = C — A;, we have \; =0,s0& >0
Margin SVs: 0 < ¢; < C:

Q@ We again have y; (w'xj + b) =1 —¢.

@ This time, from a; = C — \;, we have A; > 0, hence & = 0.
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Support vector classification: Lagrangian

Derivative wrt &;:

géi:C—a,-—)\,-zo aj=C— . (12)
Since \; > 0,
o; < C.

Now use complementary slackness:
Non-margin SVs (margin errors): a; = C > 0:

© We immediately have y; (WTX,' + b) =1-¢.

@ Also, from condition a;j = C — A;, we have \; =0,s0& >0
Margin SVs: 0 < ¢; < C:

Q@ We again have y; (w'xj + b) =1 —¢.

@ This time, from a; = C — \;, we have A; > 0, hence & = 0.
Non-SVs (on the correct side of the margin): «; = 0:

@ From «j = C — );, we have )\; > 0, hence & = 0.

@ Thus, y; (WTX,‘ + b) >1
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The support vectors

We observe:

© The solution is sparse: points which are neither on the margin
nor “margin errors” have a; =0

@ The support vectors: only those points on the decision
boundary, or which are margin errors, contribute.

© Influence of the non-margin SVs is bounded, since their weight
cannot exceed C.
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Support vector classification: dual function

Thus, our goal is to maximize the dual,

B0.0) = 2wl CY 6+ (1w 5) —6)
i=1 i=1

—i—z)\i(—
= 7ZZany,ij xj—f—CZé, Zzaaj)/:ij X

i=1 j=1 i= 1J 1
_bz o;yi + Zal Za §i — Z - O(,‘)f,'
i=1
0
= Za,—fZZany,ij X;.
i=1 j=1
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Support vector classification: dual problem

Maximize the dual,
n 1 n n
T
gla)=> aj- > SN aigyiyix X,
i=1 i=1 j=1
subject to the constraints

n
0<o; <C, Z)/iaizo
i—1

This is a quadratic program. From «, obtain the hyperplane with
w=>", QiyiXi

Offset b can be obtained from any of the margin SVs:

l=y; (WTX,' + b).
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Support vector classification: kernel versio

Taken from Schoelkopf and Smola (2002)

Kernels

Adaptive Modelling of Complex Data:
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Support vector classification: kernel version

Maximum margin classifier in RKHS: write the hinge loss
formulation

(1 -
min <2”WH%L + C;“Yi (w, k(xi, ))H))
=
for the RKHS H with kernel k(x, x"). Maximizing the margin
equivalent to minimizing |w/||3,: for many RKHSs a smoothness

constraint (e.g. Gaussian kernel).
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Support vector classification: kernel version

Maximum margin classifier in RKHS: write the hinge loss
formulation

(1 :
min <2”WH%L + C;“Yi (w, k(xi, ))H))
1=
for the RKHS H with kernel k(x, x"). Maximizing the margin
equivalent to minimizing |w/||3,: for many RKHSs a smoothness

constraint (e.g. Gaussian kernel).
Optimization over an infinitely dimensional space!
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Support vector classification: kernel version

Dual in the linear case:

n

1 n
gla) = Za; —3 Z ) a,'ajy,-ij,-—rxj,
i=1 i=1 j=1
subject to the constraints

n
0<o; <C, Z)/iaizo
i—1
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Support vector classification: kernel version

Dual in the linear case:

n

1 n
gla) = Za; —3 Z ) a,'ajy,-ij,-—rxj,
i=1 i=1 j=1
subject to the constraints

n
0<o; <C, Z)/iaizo
i=1
Dual in the kernel case:
n 1 n n
mozj\x Z o — 5 Z Z OéiOéjYi)/jk(Xia Xj) )
i=1 i=1 j=1
subject to the constraints
n
0<a;<C, Z)/iaizo

i=1
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Primal and the representer theorem

After solving the dual we can obtain the decision function

w(-) = Zy,-a;k(x,-, )-

which lies in a finite dimensional subspace of H , i.e., it is a
(sparse) linear combination of the features (representer theorem).
Thus, we can also derive the finite-dimensional primal by setting

w(-) = 321y Bik(xis )
(1 -
min <25TKB +C ;1 &) (13)

)

where the matrix K has 7, jth entry Kj; = k(x;, x;), subject to

n
G20y Bik(xi, ) >1-&.
j=1
What is an advantage of the dual?
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Representer theorem



Learning problem: setting

Given a set of paired observations (x1,y1), ... (Xn, ¥n) (regression or
classification).
Find the function f* in the RKHS A which satisfies

J(F7) = min J(F), (14)

where
JE) = L (F6a), - FO)) + 2 (IF15,)
Q is non-decreasing, and y is the vector of y;.
o Classification: Ly (f(x1),...,f(xn)) = >2/_1 Lt (x)<o
o Regression: L,(f(x1),...,f(xn)) =D i (yi — f(x:))?
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Representer theorem

The representer theorem: solution to

min [Ly(f(xl), )+ Q (Hﬂli)}

takes the form .
= Z ajk(xi, ).
i=1

If Q is strictly increasing, all solutions have this form.

Arthur Gretton, Dino Sejdinovic Adaptive Modelling of Complex Data: Kernels



Representer theorem: proof

Proof: Denote f; projection of f onto the subspace

span {k(x;,-): 1 <i<n}, (15)
such that
f="f+1f,
where fs = >"7 | aik(xi, ).
Regularizer:
IF13 = I ll5 + 115, = 16115
then

o (IF12) > 2 (1613,

so this term is minimized for f = £.
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Representer theorem: proof

Proof (cont.): Individual terms f(x;) in the loss:
f(xi) = (f, k(xis )y = (fs + F1, k(xi,))gy = (s, k(i) )y

Ly(f(x1),...,f(xn)) = Ly(fs(x1), ..., fs(xn))-
Hence

@ Loss L(...) only depends on the component of f in the data
subspace,

@ Regularizer Q(...) minimized when f = .

o If Q is strictly non-decreasing, then ||, ||,, = 0 is required at
the minimum.
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v-SVM



Support vector classification: the v-SVM

Parameter C in SVMs can be hard to interpret. Modify the
formulation to get a more intuitive parameter v:

1 1<
o (S10? -0 136 )

w,p,§
subject to
p > 0
& > 0
-
yiw xi > p—E&,

(now we directly adjust the constraint threshold p).
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The v-SVM: Lagrangian

Wl S Gmvpt Y i (p— yiw T~ &)+ A€+ (—)
i=1 i=1 i=1

for dual variables a; > 0, 8; > 0, and v > 0.
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The v-SVM: Lagrangian

Wl S Gmvpt Y i (p— yiw T~ &)+ A€+ (—)
i=1 i=1 i=1

for dual variables a; > 0, 8; > 0, and v > 0.
Differentiating and setting to zero for each of the primal variables
w, & p,

n
wo= ) aiyix
i=1
1
ai+pi = - (16)

n
n

v o= Za;—’y (17)
i=1

From 3; > 0, equation (16) implies
0<a;<1/n.
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Complementary slackness (1)

Complementary slackness conditions:
Assume p > 0 at the global solution, hence v = 0, and

Za; = . (18)
i=1
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Complementary slackness (1)

Complementary slackness conditions:
Assume p > 0 at the global solution, hence v = 0, and

Za; = . (18)
i=1

Case of & > 0: complementary slackness states 3; = 0, hence from
(16) we have a; = 1/n. Denote this set as N(«). Then

n
Z %: Z aiézai:%
i=1

ieN(a) ieN(a)

o)
[N(a)]

n

<v

)

and v is an upper bound on the proportion of non-margin SVs.
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Complementary slackness (2)

Case of & = 0: «j < 1/n. Denote by M(«) the set of points
1/n > aj > 0. Then from (18),

4 1
V= Z a; = Z - + Z 041 =~ Z ;7
i=1 ieN(a ) ieM(a) ieM(a)UN(a)
thus

_ IN@)] + [M(0)

i

and v is a lower bound on the proportion of support vectors with
non-zero weight (both on the margin, and “margin errors”).
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Dual for v-SVM

Substituting into the Lagrangian, we get

m
5 Z S oy + Z R

I].j]. i=1 j=1

+Za,p Za,g,_;<_a> (Za,_y>
=- %Zzaiaj)/i}’inT Xj

i=1 j=1
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Dual for v-SVM

Substituting into the Lagrangian, we get

m
5 Z S oy + Z R

I].j]. i=1 j=1

+Za,p Za,g,_;<_a> (Za,_y>
=- %Zzaiaj)/i}’inT Xj

i=1 j=1
Maximize:
g(a) = —*ZZQ Yy X
i=1 j=1
subject to
- 1
daizv 0<ai<=
. n’
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