
An Introduction to R

This document is designed to get you started with using R

We will learn about

• what R is and its advantages over other statistics packages
• the basics of R
• plotting data and graphs

What is R ?

R is one of many computer programs designed to carry out statistical analyses.

Some of the advantages of R are

• It's free!
• It is developed by an international team of statistical computing experts.
• It is becoming the computer program of choice for statistical research.
• All standard statistical analyses are implemented
• It is actually a complete programming language and so we can extend it in any

way we choose.
• It allows us to produce publication quality graphics.
• Add-on packages are available in a diverse range of specialized fields, e.g. Micro-

array analysis, brain imaging etc.
• There is an extensive help system and an active email help list.
• It is available on Windows, Linux, Unix and Macintosh operating systems.

Books

In addition to the extensive documentation and help system that is included in R
there are two main books that we recommend.

`Introductory Statistics with R ' by Peter Dalgaard, ISBN 0-387-95475-9

- a very good introduction to R that includes many biostatistical examples
and covers most of the basic statistics covered in this course.

Downloading and Installing R

You will also need to download and install R from this website

https://cran.rstudio.com/

We recommend that you use R Studio to work with R. This is an Integrated Development
Environment (IDE) that allows you to enter code, read in datasets, store your work and
make plots, all within a single environment.

You can download R Studio from this webpage for Windows, Mac or Linux

https://www.rstudio.com/products/rstudio/download/

The R Studio console looks like this.

Main	console	where	code	is	
evaluated.	You	can	type,	or	cut	and	
paste,	code	directly	into	this	console		

Files	:	load	specific	datafiles	
Plots	:	will	appear	in	this	window	
Packages	:	list	of	available	add	on	packages	
Help	:	browse	help	system	

Environment	:	list	of	all	R	objects	in	session		
History	:	list	of	entered	code	in	the	session	

Window	that	allows	you	to	write	and	edit	
code	before	running	it	in	the	Console	
window.	Useful	for	storing	and	saving	work.	

Your first R session

R works by a question and answer model: you enter a command, press Enter.

R carries out the command and prints the results to the screen if required.

Q. For example, if we want to know the answer of 2 + 2 we would simply enter 2 + 2 into
the Console and press Enter. Try this

R Basics

Q. R can be thought of as an overgrown calculator and as such we do all of things we can
do on a standard calculator. Try typing in the following expressions

Multiplication
5 * 4

Exponentiation
exp(-2)

Square root
sqrt(12)

Raising to a power
3^5

Often we will want to store the results of a command. To do so we `assign' the result to a
`variable' with a name of our choice.

Q. Type in the following command and press Enter.

a = (3 * 7) + 1

Q. The above command has stored the result in a variable called a. To examine the value
stored in a variable we simply enter its name. Enter the command

a

Q. Variables can be manipulated in any way we wish. For example, to raise the value
stored in the variable a to the power 3 enter the command

a^3

Q. Calculate 41 * 13 – 67 and store the answer as a variable called x. Also, calculate
123 - e7 and store the answer in a variable called y. Calculate y – x (ans. 165.3668).

Vectors

Often we need to work with vectors of numbers. We can assign vectors in several ways.

Q. A vectors of consecutive integers can be assigned using the command like

v1 = 11:15

Q. Look at the vector by entering its name

v1

Q. More generally, sequences with set intervals can be assigned using the seq() function.
For example, to create a vector of numbers starting with 11 and increasing to 15 in units
of 0.5 enter the command

v2 = seq(11, 15, by = 0.5)

Q. Look at the result by entering its name

v2

Q. Alternatively, we can assign the vector directly using the command

v3 = c(11, 2, 73, 24, 35)

Q. Look at the result

Q. We can manipulate vectors as if they were numbers. For example, if we want to
square all the elements of the vector and add 6 we could use

v3^2 + 6

Q. If we want to count how many elements of the vector are greater than 13.5 we can use

sum(v3 > 13.5)

Q. Specific elements or subsets of elements of the vector can be extracted. For example
we can extract the 4th element of vector v3 using

v3[4]

Q. We can extract the first three elements of v3 using

v3[1:3]

Q. If we want elements 1, 2 and 5 we can use

v3[c(1, 2, 5)]

Q. Vectors can also contain strings

v4 = c("tree", "apple", "pear", "ball", "sky")

Q. Look at the result

Q. Create a vector (called x1) of integers that increases from 1 to 19 in units of 2. Square
all the elements in the vector and subtract 100 and store the answer in another vector
(called x2). Use an R command to calculate how many elements of x2 are greater or
equal to zero. (ans. 5)

Matrices

Q. Matrices can be constructed from vectors using the matrix() function. Type in the
commands and look at the result

v1 = 1:12
m1 = matrix(v1, nrow = 3, ncol = 4, byrow = TRUE)

You should have got

> m1
 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12

Q. In the above command we set the argument byrow = TRUE which specifies that the
elements of the vector v1 are to be placed into the matrix starting with the first row, then
the second row etc. The default value of this argument is FALSE, thus if we simply omit
this part of the command we get a matrix which has been filled by column. Type in the
command to try this

m2 = matrix(v1, nrow = 3, ncol = 4)

Q. Like vectors, matrices can be manipulated as if they were variables. To square all the
elements and add 3 enter the command and check this is what has happened

m1^2 + 3

Q. We can also extract elements in a similar way to vectors. For example, to extract the
element of m2 in the 2nd row and 3rd column we can use

m1[2, 3]

Q. You can transpose matrices using the t() operator. For example,

t(m1)

Q. Create a 10x10 matrix of integers from 1 to 100, filled one row at a time. Square all
the elements of the matrix, subtract 400 and extract the element in the 5th row and 8th
column. (ans. 1904)

Q. You can multiply matrices together using the %*% operator. For example,

m1 %*% t(m1)

Lists

Often we would like to store data of several different types and sizes in one object.
This can be achieved using a list.

Q. To create a list that include the vectors v1 and v4 and the matrix m1 enter the
command and look at the result

list1 = list(v1 = v1, v4 = v4, m1 = m1)

Q. Components of a list can be accessed by name using the $ symbol. For example, the
component v1 can be extracted by entering the command

list1$v1

Q. To access the 2nd component of the list (without reference to its name) enter the
command

list1[[2]]

Obtaining a list of the stored objects

Q. The variables, vectors, matrices and lists we have assigned so far will be stored until
the end of the R session. We can look at which objects we have created using the function
ls(). Type in the command

ls()

Or you can use the Environment window in the top right of the R Studio window to
browse the different objects.

Functions

So far we have used the `functions' exp, sqrt, seq, c, matrix, and ls. The statistical
functionality of R is accessed through functions so we need to be familiar with their use.
The format of a function call is the function name followed by a set of parentheses
containing one or more arguments. The ? symbol can be used to get a description of any
given function.

Q. Enter the following command to produce a description of matrix() in the Help window
on the bottom right of R Studio

?matrix

The most precise way to specify the arguments to a function is by name.

Q. For example, enter the following command to create a 2x2 matrix of integers from 1
to 4, filled one row at a time. Look at the result to make sure this is what you get

matrix(data = 1:4, nrow = 2, ncol = 2, byrow = FALSE)

Q. What happens if you change the argument byrow from FALSE to TRUE?

Q. Alternatively arguments can be specified by position if we know the form of the
function. For example, create a matrix equivalent to the first one above by entering

matrix(1:4, 2, 2)

Many function arguments have sensible default settings and thus can be ignored in
standard function calls. For example, the second call to matrix() above did not include the
byrow argument as the default is FALSE.

Often we will want to do something R cannot do directly so we can write our own
functions. For example, we might want to evaluate the quadratic x2 - 2x + 4 many times
so we can write a function that evaluates the quadratic for a specific value of x.

Q. To do this enter the command

my.f = function(x) { x^2 - 2*x + 4}

Q. Calculate the value of the function at x = 3 using the command

my.f(3)

Q. The R function curve() can be used to plot a given function or expression over a given
range. To plot the function we have created use the command

curve(my.f(x), from = -10, to = 10)

Q. If we have another function that we want to plot then we can add to the existing plot
using the argument add = TRUE. To try this out enter the commands

myg = function(x) { 20*sin(x) + 50}
curve(myg, add = TRUE)

Q. Write an R function to evaluate the quadratic f(x) = x2 + 4x - 7 and evaluate it at
x=5 (ans. 38)

The R Help System

In addition to the ? command R has extensive documentation and a user friendly help
system. These can be accessed by clicking the Home symbol in the Help window, or by
entering

help.start()

in the Console window. From this window you will be able to browse the manuals and
search for functions.

Reading in your own data

R has a very useful function called read.table for reading data into a session.

Q. Use a text editor to create a file called data.txt which should look something like this

subject weight length
1 34.6 87.20
2 65.3 76.20
3 76.6 71.90
4 42.0 9.01
5 45.3 87.10

Q. Read the data into R using the command

a = read.table(file = ''data.txt'', header = TRUE)

Q. Look at the result to check you read in the data correctly

Q. Many R statistical functions work with data in the form of a `data
frame'. We can turn our data into a data frame using

d1 = data.frame(a)

We can refer to individual variables e.g. using

d1$length

We can also `attach' to this data frame using

attach(d1)

and then we can refer to the individual variables in the data frame without referring to the
data frame itself:

length
[1] 87.20 76.20 71.90 9.01 87.10

Plotting and summarizing data

One of the most important parts of any statistical analysis is the graphical exploration and
presentation of the data and results. R has excellent graphics functionality that allows us
to produce publication quality plots.

First we need some data to plot! There are many useful biostatistical datasets contained in
the package ISwR which accompanies the book `Introductory Statistics with R ' by Peter
Dalgaard.

[NB. A package is set of functions and datasets that can be loaded into an R session to
provide extra functionality or access to datasets]

You will probably need to Install the package ISwR. This can be done by selecting

Tools->Install Packages

from the main R Studio menu and typing in the name of the package you want to install.

Q. Load the package by typing the following into the Console, or use the Packages tab in
the bottom right R Studio window

library(ISwR)

Q. The dataset we will use consists of lung function data for 25 cystic fibrosis patients.
The dataset can be loaded into the session using

data(cystfibr)

Q. Once loaded the dataset can be viewed by entering its name. [NB. the columns
represent the variables and rows represent individuals/observations.]

cystfibr

Q. To use the variables in the dataset without reference to the dataset itself we attach to
the dataset using the command

attach(cystfibr)

Q. Now we can just enter the name of a variable to view it. Try entering
tlc

Summary measures

R has functions that calculate various simple summary measures. Try out the following
commands (use the help to find out what the function do)

mean(tlc)

median(tlc)

sd(tlc)

var(tlc)

range(tlc)

quantile(tlc)

summary(cystfibr)

hist

Q. The function hist plots histograms. The dataset has data on both males and females
and it would be nice to view the data separately for each sex. First, we split the graphical
display into two parts (one above the other using the command)

par(mfrow = c(2, 1))

Then we can plot a histogram of the variable tlc for just males using

hist(tlc[sex == 0], xlim = c(80, 150))

Finally, we can plot the tlc histogram from females using

hist(tlc[sex == 1], xlim = c(80, 150))

density

The function density can be used in conjunction with plot to produce a density estimate
from a given dataset. A density estimate is effectively a smooth version of a histogram.
The function lines can be used to overlay a density estimate on a histogram.

Q. A histogram (normalized so that the total area under the bars is 1.0) can be produced
by setting the argument freq = FALSE in the hist function, i.e.

hist(tlc, freq = FALSE)

Q. The density plot can be added using the command

lines(density(tlc))

boxplot

The function boxplot can be used to plot a boxplot of a given dataset.

Q. For example, we can plot boxplots of the variable tlc for each value of sex using the
commands

par(mfrow = c(1, 1))
boxplot(tlc ~ sex)

stripchart

The function stripchart is another useful way of plotting data that occur in groups. Using
the argument method = ``jitter'' avoids the problem of multiple points being overlaid on
top of each other.

Q. Try this type of plot using

par(mfrow = c(1, 2))
stripchart(tlc ~ sex)
stripchart(tlc ~ sex, method = "jitter")

barplot

Barplots are useful for plotting categorical data that occur in groups.

Q. To demonstrate the barplot load the juul dataset in the ISwR library.

detach(cystfibr)
data(juul)
attach(juul)

Q. After attaching to the dataset we use the function table to tabulate two categorical
variables from the dataset using the command

tab1 = table(sex, tanner)

Q. Look at the table by entering its name

tab1

Q. There are two main forms of a barplot, specified by the argument beside

par(mfrow = c(1, 2))
barplot(tab1)
barplot(tab1, beside = TRUE)

Q. Barplots of the table the other way round are produced by `transposing’ the table using
the function t(). To do this enter

par(mfrow = c(1, 2))
barplot(t(tab1))
barplot(t(tab1), beside = TRUE)

Q. By changing the rownames of the table we clarify which barplot refers to which group

rownames(tab1) = c(``boy'', ``girl'')
barplot(t(tab1), beside = TRUE)

Q. Add legends to the barplots using the argument legend.text

par(mfrow = c(1, 2))
barplot(tab1, beside = TRUE, legend.text = rownames(tab1))
barplot(t(tab1), beside = TRUE, legend.text = rownames(t(tab1)))

dotchart and pie

Q. Dotcharts and piecharts can also be produced in R. Try these out using

par(mfrow = c(1, 2))
dotchart(tab1)
dotchart(t(tab1))

par(mfrow = c(1, 2))
pie(tab1[1,], main = ``boy'')
pie(tab1[2,], main = ``girl'')

Creating images from plots

Often you will want to save a copy of a plot produced by a statistical analysis.

This is easy to do using R Studio.

When a plot is displayed in the plot window in the bottom right of the R Studio window
you click the ‘Export’ button which will give you the option to “Save as Image…” or
“Save as PDF…” or “Copy to Clipboard”.

Once you have saved your plot in a file you can include it in other documents or reports.

Calculating probabilities in R

Q. R has functions that can calculate probabilities from many widely used probability
models. As an example lets suppose birth weights have a N(3350, 5002) distribution and
we want to calculate the probability that a baby is born who weighs less than 3000g. We
can do this is R using

pnorm(3000, mean = 3350, sd = 500)

Q. What is the probability that a baby is born who weighs more than 3000g?

Q. What is the probability that a baby is born who weighs between 3000g and 4000g?

