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@ Preliminaries on Kernel Embeddings
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Reproducing Kernel Hilbert Spaces

@ RKHS: a Hilbert space of functions on X with continuous evaluation
f = f(x), Yx € X (norm convergence implies pointwise convergence).
@ Each RKHS corresponds to a positive definite kernel k: X x X — R, s.t.
Q@ Vxe X, k(,z) € H, and
Q Ve e X, VfecH, (fik(,x))y = f(x).
@ RKHS can be constructed as Hy, = span {k(-,x) |z € X} and includes
functions f(z) = > | a;k(z, ;) and their pointwise limits.
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Kernel Trick and Kernel Mean Trick

o implicit feature map = +— k(-,x) € Hy, . ® e
replaces = +— [¢1(x), ..., ¢ps(x)] € R® ° °
° <k'(,l‘),]€(,y)>7_£k = k(l‘,y) e .

inner products readily available
o . .. . . .
nonlinear decision boundaries, nonlinear regression [Cortes & Vapnik, 1995; Schalkopf &

functions, learning on non-Euclidean/structured
Smola, 2001]

data
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Kernel Trick and Kernel Mean Trick

o implicit feature map = +— k(-,x) € Hy, . ® e
replaces = +— [¢1(x), ..., ¢ps(x)] € R® * _
° <k(,l‘),kﬁ(,y)>7_¢k = k(l‘,y) . .

inner products readily available

hyperplane

o . .. . . .
nonlinear decision boundaries, nonlinear regression [Cortes & Vapnik, 1995; Schalkopf &

functions, learning on non-Euclidean/structured

data Smola, 2001]
@ RKHS embedding: implicit feature mean ) B0
[Smola et al, 2007; Sriperumbudur et al, 2010; Muandet et al, X”P.
2017] 14(Q) = Ey k(. V)]
P pp(P)=Ex.pk(-,X) € Hy, ﬂ‘ (P @l
replaces P — [E¢y(X),...,E¢s(X)] € R®
o <,Ulc(P)7 'uk(Q»’Hk = EXNP,YNQK(X, Y) [Gretton et al, 2005; Gretton et al,
inner products easy to estimate 2006; Fukumizu et al, 2007; DS et
e nonparametric two-sample, independence, al, 2013; Muandet et al, 2012;
conditional independence, interaction testing, Szabo et al, 2015]

learning on distributions
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Maximum Mean Discrepancy

e Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007]
between P and Q:

(P) = Ex[k(-, X)]

XNPl

mk(Q) =Ey[k(, V)] 09
Y~Q o —m

Ana le(P) ~ ie(Ql

MMDy (P, Q) = || (P) — (@)l 4, = . IEf(X) —Ef(Y)]

AN T e
y §

o Characteristic kernels: MMDy(P,Q) =0
iff P = () (also metrizes weak*
[Sriperumbudur,ZOlO]). 1

e Gaussian RBF exp(—525 ||z — Z'||2), “
Matérn family, inverse multiquadrics. 24

@ Can encode structural properties in the 2 S
data: kernels on structured and
non-Euclidean domains.

[ =P - oo o SL 0. [ Al
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Some uses of MMD

MMD has been applied to:

@ two-sample tests and independence tests
within-sample average similarity (on graphs, text, audio...) [Gretton et al,
2009, Gretton et al, 2012]

between-sample average similarity

@ model criticism and interpretability [Lioyd &
Ghahramani, 2015; Kim, Khanna & Koyejo, 2016]

— @ analysis of Bayesian quadrature [Briol et al,
j:(dog. fish ) 2015+]

@ ABC summary statistics [Park, Jitkrittum &
M@, DS, 2015; Mitrovic, DS & Teh, 2016]
=

é‘ @ summarising streaming data [Paige, DS &
Wood, 2016]

@ traversal of manifolds learned by

Q";‘—%& \ convolutional nets [Gardner et al, 2015]
Figure by Arthur Gretton @ training deep generative models [Dziugaite,

Roy & Ghahramani, 2015; Sutherland et al, 2017]

MMD} (P,Q) =E isa k(X X)+E i k(YY) = 2Exp ynoh(X,Y).
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Kernel dependence measures: HSIC

o HSIC*(X,Y;k) = |lux(Pxy) — pe(Px Py)ll3,,

S s - — o~ N @ Hilbert-Schmidt norm of the feature-space
A cross-covariance [Gretton et al, 2009]
o« . . .
e e e e @ dependence witness is a smooth function in the
VN e -\ <X O I RKHS H,. of functions on X’ x

cor vs. dcor k’(,) l(@, Q)
Dependence witness and sample ,
1 - . x([@o/0e) =
2 K(@,0) x 1(©,[0)

0.02

0.01

> 9 @ Independence testing framework that generalises
N " Distance Correlation (dcor) of [Szekely et al, 2007]:
o0 HSIC with Brownian motion kernels [DS et al, 2013]

-0.03

@ Extends to multivariate interaction and joint
-0.04
e dependence measures [DS et al, 2013; Pfister et al,
2017]

xo

Figure by Arthur Gretton
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Kernel dependence measures: HSIC (2)

Hilbert-Schmidt Independence Criterion (HSIC): similarity between the kernel

matrices <K, I~4> =

centering matrix.

Tr (KL)

 where K= HKH, and H=1— 1117 is the

[Gretton et al, 2008; Fukumizu et al, 2008; Song et al, 2012]
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Distribution Regression

@ supervised learning where labels are available at the group, rather than at the

individual level.

% vote for Obama

4 P

region 1 region 2 region 3

Figure from Flaxman et al, 2015
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Figure from Mooij et al, 2014

classifying text based on word features [Yoshikawa et al, 2014; Kusner et al, 2015]
aggregate voting behaviour of demographic groups [Flaxman et al, 2015; 2016]
image labels based on a distribution of small patches [Szabo et al, 2016]
“traditional” parametric statistical inference by learning a function from sets of

samples to parameters: ABC [Mitrovic et al, 2016], EP [Jitkrittum et al, 2015]
e identify the cause-effect direction between a pair of variables from a joint

sample [Lopez-Paz et al,2015]

@ Possible (distributional) covariate shift?

Inference with Kernel Embeddings
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Bag-specific noises in Distribution Regression

figure from Wang et al, 2012

Aerosol MISR1 Dataset [Wang et al, 2012]:

@ Aerosol Optical Depth (AOD) multiple-instance learning problem with 800
bags, each containing 100 randomly selected 16-dim multispectral pixels
(satellite imaging) within 20km radius of AOD sensor.

@ Large image variability due to surface properties, but small spatial variability
of AOD — can be treated as distribution regression.

@ The label y; provided by the ground AOD sensors.
e Different noise (“cloudy pixels”) distribution in different images.
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This talk:

o Kernel embeddings as nonparametric modules which “automate” difficult
choices in parametric (Bayesian) inference.
e This talk considered summary statistics for ABC, but there are several other
examples (proposal distributions in MCMC, passing messages in Expectation
Propagation...)

@ When measuring nonparametric distances between distributions, can we
disentangle the differences in the noise from the differences in the signal?
e Weighted distance between the empirical phase functions can be used for
learning algorithms on distribution inputs which are robust to measurement
noise and covariate shift.
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© Kernel Embeddings for ABC
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Motivating example: ABC for modelling ecological dynamics

o Given: a time series Y = (Y7,...,Yr) of population sizes of a blowfly.

@ Model: A dynamical system for blowfly population (a discretised ODE)
[Nicholson, 1954; Gurney et al, 1980; Wood, 2010; Meeds & Welling, 2014]

Y,
Yiy1 = PY;_;exp (- ;, ) e + Yy exp(—det),
0

where e; ~ Gamma ((%2,0%), €; ~ Gamma (G%,Ui).
P d

Parameter vector: 0 = {P, Yo,04,0p,T, 5}-

Y =— from prior

@ Goal: For a prior p(6), sample from p(6]Y).
e Cannot evaluate p(Y|6). But, can sample from p(:|6).
e For X = (Xi,...,X7) ~ p(:|8), how to measure distance p(X,Y)?

D.Sejdinovic (University of Oxford) Inference with Kernel Embeddings Oxford, 31/05/2017 11 / 23



Data Similarity via Summary Statistics

@ Distance p is typically defined via summary statistics

p(X,Y) = [[s(X) = s(Y)ll2-

@ How to select the summary statistics s(-)? Unless s(-) is sufficient, even as
€ — 0, targets an incorrect (partial) posterior p(0|s(Y)) rather than p(0]Y).

@ Hard to quantify additional bias.

e Adding more summary statistics decreases "information loss":
p(01s(Y)) ~ p(8] Y)

e p computed on a higher dimensional space - without appropriate calibration of
distances therein, leads to a higher rejection rate so need to increase e:

pe(0]s5(Y)) % p(6]s(Y))
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Data Similarity via Summary Statistics

@ Distance p is typically defined via summary statistics

p(X,Y) = [[s(X) = s(Y)ll2-

@ How to select the summary statistics s(-)? Unless s(-) is sufficient, even as
€ — 0, targets an incorrect (partial) posterior p(0|s(Y)) rather than p(0]Y).
@ Hard to quantify additional bias.

e Adding more summary statistics decreases "information loss":
p(0ls(Y)) =~ p(0]Y)

e p computed on a higher dimensional space - without appropriate calibration of
distances therein, leads to a higher rejection rate so need to increase e:
pe(0]s5(Y)) % p(6]s(Y))

o A very simple idea: Use a nonparametric distance (MMD) between the
empirical measures of datasets X and Y).

e No need to design s(-).
e Rejection rate does not blow up since MMD penalises the higher order
moments (Mercer expansion).
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Blowfly example
Number of blow flies over time

Y, -
Yit1 = PY, rexp <* ;,0 ) e + Yy exp(—de;)

e ¢, ~ Gam <i af,) and ¢ ~ Gam (0—12703).
d

e Want 0 := {P,Yy,04,0p,7,0}.

— actual observation @ Simulated trajectories with inferred

ledi — K2-ABC .
g posterior mean of 6
e \ o Observed sample of size 180.
— K-ABC e Other methods use handcrafted
Te4 AD!
10-dimensional summary statistics s(-)
from [Meeds & Welling, 2014]: quantiles
0 of marginals, first-order differences,
1e4] = SL-ABC maximal peaks, etc.
% time 180
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Blowfly example: comparisons

. T @ Let § be the posterior mean.
: @ Simulate X ~ p(-|6).
= . Q o s =5(X) and s* = s(Y).
Ly o .
o . g : @ Improved mean squared error on s,
2 E] | EI Los even though SL-ABC, SA-custom
[ A | explicitly operate on s while K2-ABC
0
K2 SL  SA-custom IS SAQ  K-ABC does not.
; DT 2
. ; @ Computation of MMD (X,Y) costs
[l : L 2
% 5 : O(n )
A . : @ Linear-time unbiased estimators of
=z - - ' MMD? or random feature expansions
! . reduce the cost to O(n).
B — -
K2 K2-rf K2-lin SL

[M. Park, W. Jitkrittum, and DS. K2-ABC: Approximate Bayesian Computation with Kernel
Embeddings, AISTATS 2016. code: https://github.com/wittawatj/k2abc]
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ABC and Modelling Invariance

aaaaaaaaaaaaaaaaaaaaaaaa

0 ~T(a,B), Z~U|0,0]

{ei}|Z "= N (0, 2), LLLL

Xi|0, 6 ~ %2;/2) s g 1 e

@ MMD is simple and effective when {X;} i s p(+|#). However, in the model

above there is an additional variability in {X;} due to the noise distribution
which differs for every bag of observations.

@ Semi-Automatic ABC [Fearnhead & Prangle, 2012] uses posterior mean estimates
[ [0]{X;}] as summary statistics, which requires learning a map {X,} — 0,
using e.g. distribution regression from (conditional) kernel embeddings
[Mitrovic, DS and Teh, 2016].

o If {X;}, Z are both observed can build a regression from the joint distribution
p(X, Z) or from the conditional p(X|Z) (note that @ parametrizes {X;}|Z)
e But Z is generally not observed on the real data — a different idea: build a
regression function invariant to Z?
Inference with Kernel Embeddings



© Learning on Distributions with Symmetric Noise Invariance
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All possible differences between generating processes?’

@ Learning on distributions: each label y; in supervised learning is associated to
a whole bag of observations B; = {Xij}y;l — assumed to come from a
probability distribution P;

e Each bag of observations could be impaired by a different measurement noise
process. Distributional covariate shift: different measurement noise on test
bags?

o differences discovered by an MMD two-sample test can be due to different
types of measurement noise or data collection artefacts

e With a large sample-size, uncovers potentially irrelevant sources of variability:
slightly different calibration of the data collecting equipment, different
numerical precision, different conventions of dealing with edge-cases

@ Both problems require encoding the distribution with a representation
invariant to symmetric noise.

Testing and Learning on Distributions with Symmetric Noise Invariance.
Ho Chung Leon Law, Christopher Yau, DS.
http://arxiv.org/abs/1703.07596
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Characteristic Functions and (Approximate) Kernel Embedding

If k is translation-invariant, MMD becomes the weighted L,-distance between the
characteristic functions of P and @) [Sriperumbudur, 2010].

lnr = nall = [ lor () = vq (@) dA @),

Approximate mean embedding using random Fourier features [Rahimi & Recht, 2007] is
simply the evaluation (real and complex part stacked together) of the
characteristic function at the frequencies {w; };":1 ~ A:

®(P) = Ex.péa(X)
= /%EXNP [cos (wy @) ,sin (wy @),...,cos (wyz),sin (w;x)]T

Used for distribution regression [Sutherland et al, 2015] and for sketching / compressive
learning [Keriven et al, 2016].
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The Noise and the Signal

Adopting similar ides from nonparametric deconvolution of [Delaigle and Hall, 2016].

o define a symmetric positive definite (SPD) noise component to be any
random vector E on R? with a positive characteristic function,
¢p(w) =Ex~p [exp(iw' E)] >0, Vw € R? (but E is not a.s. 0)
e symmetric about zero, i.e. E and —F have the same distribution
e if E has a density, it must be a positive definite function
e spherical zero-mean Gaussian distribution, as well as multivariate Laplace,
Cauchy or Student’s ¢ (but not uniform).

o define an (SPD-)decomposable random vector X if its characteristic function
can be written as px = ¢x,¢r, with £ SPD noise component.

@ Assume that only the indecomposable components of distributions are of
interest.
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Phase Discrepancy and Phase Features

[Delaigle and Hall, 2016] construct density estimators for nonparametric deconvolution,
i.e. estimate density fy of X with observations X; ~ Xq + E. E has unknown
SPD distribution. Matching phase functions:

ex (w) :

px (W) = & = exp (itx (w))

lpx (w)]
Phase function is invariant to SPD noise as it only changes the amplitude of the
characteristic function.
We are not interested in density estimation but in measuring differences up to
SPD noise. In analogy to MMD, define phase discrepancy:

PhD(X,Y) = / ox (@) = py (@) dA (@)

for some spectral measure A.

Construct distribution features by simply normalising approximate mean
embeddings to unit norm:

1 B, (X) E,, (X)
TP = \/; {Eém COIT IBE,, (X)]
where &, (x) = [cos (] 2) .sin (w] 2)].
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Learning Phase Features

Output Layer

Batch Normalisation Layer

Normalisation I I3 (X)
!

Mean Pooling 1o(X)

[ —
W 005(/10()()) ]
.

WeRpn LT =xwe RV

Xe bepr

D.Sejdinovic (University of Oxford)

Inference with Kernel Embeddings

@ Given a supervised signal, we can also

optimise a set of frequencies {w; }!™, that
will give us a useful discriminative
representation. In other words, we are no
longer focusing on a specific
translation-invariant kernel k (specific A),
but are learning Fourier/phase features.

A neural network with coupled cos/sin
activation functions, mean pooling and
normalisation.

Straightforward implementation in
Tensorflow

(code: https://github.com/hcllaw/
Fourier—Phase—Neural-Network)
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Synthetic Example

0~T(a,B), Z~U|0,0]
{e}1Z "= (0, 2)
r(0/2,1/2) e
\/% 617

)
b

Xi|97€i ~

=—= Fourier
«— Phase

.0 0.5 1.0 15 2.0 25 3.0 35
Noise Level o

@ Goal: Learn a mapping {X;} — 6

for Semi-Automatic ABC. Figure: MSE of 6, using the Fourier and

phase neural network based SA-ABC
averaged over 100 runs. Here noise o is
varied between 0 and 3.5, and the 5" and
the 95" percentile is shown.

D.Sejdinovic (University of Oxford) Inference with Kernel Embeddings Oxford, 31/05/2017 21 /23



Aerosol MISR1 Dataset (wane e 21, 2012 with Covariate Shift

The test data is impaired by additive SPD noise

components.
o
oo 0.20 —
o — Fourier NN «
I o.18l| = Phase NN
210 .
200 ~— GLRR
-
100 PLRR

0.16

figure from Wang et al, 2012

@
20.14
o
@ Aerosol Optical Depth
(AOD) multiple-instance 0.12
learning problem with 800 -
bags, each containing 100 0.10 e
randomly selected 16-dim . X
multls.pec.tral [?IX€|S L 0-9%5 05 1.0 15 2.0 25 3.0
(satellite imaging) within Noise Level o
20km radius of AOD .
radiu Flgure: RMSE on the test set, corrupted by various levels of noise
sensor.

on the test set. 5'" and the 95" percentile is shown.
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Phase and Indecomposability

Is phase discrepancy a metric on indecomposable random variables?
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Phase and Indecomposability

Is phase discrepancy a metric on indecomposable random variables? No

025

020

0.15

0.10

0.05

0.00

Figure: Example of two indecomposable distributions which have the same phase
function. Left: densities. Right: characteristic functions.

(@) = Z=atesp(=a®/2). fy(z) = gl exp(a]).
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Can Fourier features learn invariance?

@ Discriminative frequencies learned B sy et o
on the “noiseless” training data o
correspond to Fourier features that . o
are nearly normalised (i.e. they are o
close to unit norm). s 51

. . .l |
@ This means that the Fourier NN has ™ i vomiaemnmmmms ©°  ososanot 1 v or s resney oty
learned to be approximately

; - e Figure: Histograms for the distribution of
invariant based on training data,

the modulus of Fourier features over each

indicat_ing that Aeroso| data ~ frequency w for the Aerosol data (test set);

potentially has irrelevant SPD noise Green: Random Fourier Features (with the

components (“cloudy pixels”) kernel bandwidth optimised on training
data)

Bottom Blue: Learned Fourier features;
Left: Original test set; Right: Test set with
(additional) noise.
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