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Statistical Machine Learning

Statistical Machine Learning refers to a vast set of tools for extracting
information from (typically large quantities of) data, and is closely related to Data
Science and Artifical Intelligence.

Massive amounts of data are being collected in many different fields: financial
institutions, businesses, governments, healthcare organisations, and universities are
all interested in utilizing and making sense of data they collect.

The majority of mathematics and engineering students will go on to work in
careers that involve carrying out or interpreting analysis of data.
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What is Machine Learning?

Arthur Samuel, 1959
Field of study that gives computers the ability to learn without being explicitly
programmed.

Tom Mitchell, 1997
Any computer program that improves its performance at some task through
experience.

Kevin Murphy, 2012
To develop methods that can automatically detect patterns in data, and then to
use the uncovered patterns to predict future data or other outcomes of interest.
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What is Machine Learning?

recommender systems
machine translation self-driving cars

image recognition
DQN Atari games

AlphaGo
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http://link.springer.com/article/10.1007%2Fs00144-010-0005-2
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
http://spectrum.ieee.org/cars-that-think/transportation/advanced-cars/deep-learning-makes-driverless-cars-better-at-spotting-pedestrians
http://bits.blogs.nytimes.com/2014/08/18/computer-eyesight-gets-a-lot-more-accurate
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf
https://www.youtube.com/watch?v=mArrNRWQEso&t=2m35s
https://blog.google/topics/machine-learning/alphago-machine-learning-game-go/


Machine Learning

data

Information
Structure
Prediction
Decisions
Actions

“...procedures for analyzing data, techniques for interpreting the results of such procedures, ways
of planning the gathering of data to make its analysis easier, more precise or more accurate, and
all the machinery and results of (mathematical) statistics which apply to analyzing data...”
John Tukey, The Future of Data Analysis, 1962.
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Statistical Machine Learning

Examples of recent advances in AI which make use of machine learning models:

learning game strategies from sensory input,
computer vision,
machine translation,
AlphaGO.
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https://www.youtube.com/watch?v=TmPfTpjtdgg
https://www.youtube.com/watch?v=mArrNRWQEso&t=3m30s
https://www.youtube.com/watch?v=uKU2pzpGUlM
https://www.youtube.com/watch?v=Nu-nlQqFCKg
https://www.youtube.com/watch?v=SUbqykXVx0A


Types of Machine Learning

Supervised learning
Data contains “labels”: every example is an input-output pair
classification, regression
Goal: prediction on new examples

Unsupervised learning
Extract key features of the “unlabelled” data
clustering, signal separation, density estimation
Goal: representation, hypothesis generation, visualization
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Types of Machine Learning

Semi-supervised Learning
A database of examples, only a small subset of which are labelled.

Multi-task Learning
A database of examples, each of which has multiple labels corresponding to
different prediction tasks.

Reinforcement Learning
An agent acting in an environment, given rewards for performing appropriate
actions, learns to maximize their reward.
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Software

Python: scikit-learn, mlpy, Theano
TensorFlow, Torch, Keras, Shogun, Weka.
R
Matlab/Octave
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http://scikit-learn.org/stable/
http://mlpy.sourceforge.net/
http://deeplearning.net/software/theano/
https://www.tensorflow.org/
http://torch.ch/
https://keras.io/
http://www.shogun-toolbox.org/
http://www.cs.waikato.ac.nz/ml/weka/


Overview of Unsupervised learning

In unsupervised learning we just have observations on the a set of variables
X1, . . . , Xp, measured on n observations.

Interest lies in looking for patterns and structure in the data, which is often large
and high-dimensional.

Relevant questions include

1 Can we find a way to visualize the data that is informative?
2 Can we compress the dataset without losing any relevant information?
3 Can we find separate subgroups (or clusters) of observations that describe the

structure of the dataset?
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Dimensionality reduction

deceptively many variables to measure, many of them redundant / correlated
to each other (large p)
often, there is a simple but unknown underlying relationship hiding
example: ball on a frictionless spring recorded by three different cameras

• our imperfect measurements obfuscate the true underlying dynamics
• are our coordinates meaningful or do they simply reflect the method of data

gathering?

J. Shlens, A Tutorial on Principal Component Analysis, 2005
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http://arxiv.org/abs/1404.1100


Principal Components Analysis (PCA)

PCA considers interesting directions to be those with greatest variance.
A linear dimensionality reduction technique: looks for a new basis to
represent a noisy dataset.
Workhorse for many different types of data analysis (often used for data
preprocessing before supervised techniques are applied).
Often the first thing to run on high-dimensional data.
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Data Matrix notation

Notation
Data consists of p variables (features/attributes/dimensions) on n examples
(items/observations).
X = (xij) is a n× p-matrix with xij := the j-th variable for the i-th example

X =



x11 x12 . . . x1j . . . x1p
x21 x22 . . . x2j . . . x2p
...

...
. . .

...
. . .

...
xi1 xi2 . . . xij . . . xip
...

...
. . .

...
. . .

...
xn1 xn2 . . . xnj . . . xnp


.

Denote the i-th data item by xi ∈ Rp (we will treat it as a column vector: it
is the transpose of the i-th row of X).
Assume x1, . . . , xn are independently and identically distributed samples of a
random vector X over Rp. The j-th dimension of X will be denoted X(j).
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PCA
PCA
Find an orthogonal basis {v1, v2, . . . , vp} for the data space such that:

The first principal component (PC) v1 is the direction of greatest variance of
data.
The j-th PC vj is the direction orthogonal to v1, v2, . . . , vj−1 of greatest
variance, for j = 2, . . . , p.

Eigendecomposition of the sample covariance matrix S = 1
n−1

∑n
i=1 xix

>
i

(data is assumed centred).
S =

1

n− 1
X>X = V ΛV >.

• Λ is a diagonal matrix with eigenvalues (variances along each principal
component) λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0

• V (loadings matrix) is a p× p orthogonal matrix whose columns are the p
eigenvectors of S, i.e. the principal components v1, . . . , vp

Dimensionality reduction by projecting xi ∈ Rp onto first k principal
components, to obtain scores matrix:

zi =
[
v>1 xi, . . . , v

>
k xi

]> ∈ Rk.
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PCA on Face Images: Eigenfaces

Turk and Pentland, CVPR 1995
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https://www.cs.ucsb.edu/~mturk/Papers/mturk-CVPR91.pdf


PCA on European Genetic Variation

3,000 individuals from different European countries, each with measurements at
∼500,000 genes.

From the paper by Novembre et al. (2008) Nature 456:98-101

Scientific question

“not clear to what extent populations within continental regions exist as discrete
genetic clusters versus as a genetic continuum, nor how precisely one can assign
an individual to a geographic location on the basis of their genetic information
alone."
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PCA on European Genetic Variation
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Germany
Netherlands
Austria
Luxembourg
Czech Republic
Hungary
Slovakia
Sweden
Norway
Denmark
Poland
Russian Federation
Ukraine
Finland
Latvia
United Kingdom
Ireland
Scotland
Wales
Italy
Yugoslavia
Romania
Bulgaria
Croatia
Macedonia, The Former Yugoslav Republic Of
Kosovo
Slovenia
Bosnia and Herzegovina
Albania
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Greece
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Swiss−French
Swiss−German
Swiss−Italian
France
Belgium
Turkey
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D.Sejdinovic (Department of Statistics) Statistical Machine Learning Oxford, 24/01/2020 17 / 53



PCA on European Genetic VariationExample of PCA: Genetic variation within Europe

Novembre et al. (2008) Nature 456:98-101
Genes mirror geography within Europe, Nature 2008
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http://www.nature.com/nature/journal/v456/n7218/full/nature07331.html


Overview of Supervised Learning

Unsupervised learning:

To “extract structure” and postulate hypotheses about data generating
process from “unlabelled” observations of some data objects X.
Visualize, summarize and compress data.

Supervised learning:

In addition to the observations of X, we have access to their response
variables / labels Y ∈ Y: we observe {(xi, yi)}ni=1.
Types of supervised learning:

• Classification: discrete responses, e.g. Y = {+1,−1} or {1, . . . ,K}.
• Regression: a numerical value is observed and Y = R.

The goal is to accurately predict the response Y on new observations of X, i.e., to
learn a function f : Rp → Y, such that f(X) will be close to the true response Y .
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Loss function

Suppose we made a prediction Ŷ = f(X) ∈ Y based on observation of X.
How good is the prediction? We can use a loss function L : Y × Y 7→ R+ to
formalize the quality of the prediction.
Typical loss functions:

• Misclassification loss (or 0-1 loss) for classification

L(y, f(x)) =

{
0 f(x) = y
1 f(x) 6= y

.

• Squared loss for regression

L(y, f(x)) = (f(x)− y)2 .

Many other choices are possible.
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Risk

paired observations {(xi, yi)}ni=1 viewed as i.i.d. realizations of a random
variable (X,Y ) on X × Y with joint distribution PXY

Risk
For a given loss function L, the risk R of a learned function f is given by the
expected loss

R(f) = EPXY
[L(Y, f(X))] ,

where the expectation is with respect to the true (unknown) joint distribution of
(X,Y ).

The risk is unknown, but we can compute the empirical risk:

Rn(f) =
1

n

n∑
i=1

L(yi, f(xi)).
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Hypothesis Space and Empirical Risk Minimization
The goal of learning is to find the function in hypothesis space H which
minimises the risk:

f? = argmin
f∈H

EX,Y [L(Y, f(X))]

Empirical Risk Minimization (ERM): minimize the empirical risk instead,
since we typically do not know PX,Y .

f̂ = argmin
f∈H

1

n

n∑
i=1

L(yi, f(xi))

Hypothesis space H is the space of functions f under consideration.
How complex should we allow functions f to be? If hypothesis space H is
“too large”, ERM can lead to overfitting.

f̂(x) =

{
yi if x = xi,

0 otherwise

will have zero empirical risk, but is useless for generalization, since it has
simply “memorized” the dataset.
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Examples of Hypothesis Spaces

Say X ⊆ Rp.

all linear functions f(x) = w>x+ b, parametrized by w ∈ Rp and b ∈ R
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One-Dimensional Inputs

A simple model for the dependence of yi on xi is:

yi = b+ wxi + “error”

The errors represent a random scatter of the points (xi, yi) about the unknown
line y = b+ wx, which we wish to infer, i.e., the parameters are θ = (b, w).
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Estimating the parameters θ = (b, w)

In order to complete the model, we need to specify the noise distribution.
The simplest choice is to use noise εi = yi − b− wxi ∼ N (0, σ2) - we regard
σ2 as being known but it can also be inferred from the data.
Thus, we can write down the likelihood

L(w, b) =

n∏
i=1

1√
2πσ2

exp

(
− 1

2σ2
(yi − b− wxi)2

)

=
1

(2πσ2)n/2
exp

(
− 1

2σ2

n∑
i=1

(yi − b− wxi)2
)

Maximizing the likelihood is equivalent to minimizing the sum of squares
S(w, b) =

∑n
i=1(yi − b− wxi)2 (least-squares estimation), i.e. empirical risk with

respect to the squared loss.
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Estimating the parameters θ = (b, w)

Vertical distances from the points
(xi, yi) to the line y = b+ wx

represent the errors. Least-squares
estimates of b and w minimize the
sum of these squared distances.

To find estimates, we calculate and set to zero:

∂S

∂b
= −2

n∑
i=1

(yi − b− wxi)
∂S

∂w
= −2

n∑
i=1

xi(yi − b− wxi)

Assuming centred inputs, i.e.
∑n
i=1 xi = 0, we obtain:

b̂ =
1

n

n∑
i=1

yi ŵ =

∑n
i=1 xiyi∑n
i=1 x

2
i

.

D.Sejdinovic (Department of Statistics) Statistical Machine Learning Oxford, 24/01/2020 26 / 53



Multiple Linear Regression

Now we have p explanatory variables and

yi = b+ w1xi1 + w2xi2 + · · ·+ wpxip + εi = b+ w>xi + εi

and we wish to minimize the empirical risk:

min
w,b

1

n

n∑
i=1

(yi − w>xi − b)2

Intercept b can be estimated by ȳ = 1
n

∑n
i=1 yi. For w by differentiating and

setting to zero there is a closed form solution

ŵ =
(
X>X

)−1
X>y.
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Examples of Hypothesis Spaces

Say X ⊆ Rp.

all linear functions f(x) = w>x+ b, parametrized by w ∈ Rp and b ∈ R
consider a specific nonlinear feature expansion ϕ : X → RD, with D > p and
use functions linear in those features: f(x) = w>ϕ(x) + b, but nonlinear in
the original inputs X , parametrized by w ∈ RD and b ∈ R. For example,
starting with X = R2, we can consider

ϕ

([
xi1
xi2

])
= [xi1, xi2, x

2
i1,
√

2xi1xi2, x
2
i2]>, such that the resulting function

can depend on quadratic and interaction terms as well.
This has an interpretation of simply adding more features and thereby also
increasing the number of parameters - but can be solved in exactly the same
way!
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Beyond Linear Classifiers
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No linear classifier separates red from blue.
Linear separation after mapping to a higher dimensional feature space:

R2 3
(
x(1) x(2)

)>
= x 7→ ϕ(x) =

(
x(1) x(2) x(1)x(2)

)> ∈ R3
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Kernel trick
Suppose we have 2-dimensional inputs x, and we would like to introduce
quadratic non-linearities,

ϕ(x) =

(
1,
√

2x(1),
√

2x(2),
√

2x(1)x(2),
(
x(1)

)2
,
(
x(2)

)2)>
.

Then

ϕ(xi)
>ϕ(xj) = 1 + 2x

(1)
i x

(1)
j + 2x

(2)
i x

(2)
j + 2x

(1)
i x

(2)
i x

(1)
j x

(2)
j

+
(
x
(1)
i

)2 (
x
(1)
j

)2
+
(
x
(2)
i

)2 (
x
(2)
j

)2
= (1 + x>i xj)

2

Since only inner products are needed, non-linear transform need not be
computed explicitly - inner product between features can be a simple function
(kernel) of xi and xj : k(xi, xj) = ϕ(xi)

>ϕ(xj) = (1 + x>i xj)
2

d-order interactions can be implemented by k(xi, xj) = (1 + x>i xj)
d

(polynomial kernel). Never need to compute explicit feature expansion of
dimension

(
p+d
d

)
where this inner product happens!

kernel functions can correspond to inner products of features in
infinite-dimensional spaces: kernel trick.
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Kernel methods

In a learning algorithm, if only inner products x>i xj are explicitly used, rather
than data items xi, xj directly, we can replace them with a kernel function
k(xi, xj) = 〈ϕ(xi), ϕ(xj)〉, where ϕ(x) could be nonlinear, high- and
potentially infinite-dimensional features of the original data.

• Kernel ridge regression
• Kernel logistic regression
• Kernel PCA, CCA, ICA
• Kernel K-means
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Figure: Underfitting and Overfitting
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Training and Test Performance

Training error is the empirical risk

R̂tr(f̂) =
1

n

n∑
i=1

L(yi, f̂(xi))

of the learned function f̂ . For example, for 0-1 loss in classification, this is
the number of misclassified training examples which were used in learning
f̂ . Note that

EPXY
R̂tr(f̂) 6= R(f).

Test error is the empirical risk on new, previously unseen observations
{x̃i, ỹi}mi=1

R̂tst(f̂) =
1

m

m∑
i=1

L(ỹi, f̂(x̃i))

which were NOT used in learning f .
Test error tells us how well the learned function generalizes to new data
(EPXY

R̂tst(f̂) 6= R(f)) and is in general larger than the training error.
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Generalization

Generalization ability: what is the out-of-sample error of learner f?
training error 6= testing error.
We learn f by minimizing some variant of empirical risk Remp(f)- what can
we say about the true risk R(f)?
Two important factors determining generalization ability:

• Model complexity
• Training data size

To control overfitting, we need to reduce the model complexity to an
appropriate level, i.e. regularize learning.
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Learning Curves

Model complexity/flexibility
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The relationship between training and test error as a function of model complexity.
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Learning Curves
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Fixed model complexity, varying dataset size.
Two models: one simple, one complex. Which is which?
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Bias-Variance Tradeoff

Where does the prediction error come from?

Noise: Intrinsic difficulty of regression problem.
Bias: How far away is the best learner in the model (average learner over all
possible datasets) from the optimal one?
Variance: How variable is our learning method if given different datasets?
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Learning Curves

training error

testing error

training dataset size

overfit

p
re

d
ic

ti
o

n
er

ro
r

bias

variance

training error

testing error

training dataset size

p
re

d
ic

ti
o

n
er

ro
r

bias

variance

overfit

D.Sejdinovic (Department of Statistics) Statistical Machine Learning Oxford, 24/01/2020 38 / 53



Building models to trade bias with variance

Model complexity/flexibility

Pr
ed
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r

Underfit:
high bias

low variance
Overfit:
low bias

high variance

Just right

Training error

Test
error

Building a machine learning model involves trading between its bias and
variance.

• Bias reduction at the expense of a variance increase: building more complex
models, e.g. adding nonlinear features and additional parameters, increasing
the number of hidden units in neural nets, using decision trees with larger
depth.

• Variance reduction at the expense of a bias increase: increasing the
regularization parameter, early stopping, using k-nearest neighbours with larger
k.
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Regularisation

Flexible models for high-dimensional problems require many parameters.
With many parameters, learners can easily overfit.
regularisation: Limit flexibility of model to prevent overfitting.
Add term penalizing large values of parameters θ.

min
θ
R̂(fθ) + λ‖θ‖ρρ = min

θ

1

n

n∑
i=1

L(yi, fθ(xi)) + λ‖θ‖ρρ

where ρ ≥ 1, and ‖θ‖ρ = (
∑p
j=1 |θj |ρ)1/ρ is the Lρ norm of θ (also of

interest when ρ ∈ [0, 1), but is no longer a norm).
Also known as shrinkage methods—parameters are shrunk towards 0.
λ is a tuning parameter (or hyperparameter) and controls the amount of
regularisation, and resulting complexity of the model.
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Types of regularisation

Ridge regression / Tikhonov regularisation: ρ = 2 (Euclidean norm)
LASSO: ρ = 1 (Manhattan norm)
Sparsity-inducing regularisation: ρ ≤ 1 (nonconvex for ρ < 1)
Elastic net regularisation: mixed L1/L2 penalty:

min
θ

1

n

n∑
i=1

L(yi, fθ(xi)) + λ
[
(1− α)‖θ‖22 + α‖θ‖1

]

Regularization in kernel methods: directly penalise some notion of
smoothness of function f , e.g. for X = R, the regularisation term can consist
of the Sobolev norm

‖f‖2W 1 =

ˆ +∞

−∞
f(x)2dx+

ˆ +∞

−∞
f ′(x)2dx, (1)

which penalises functions with large derivative values.
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Neural Networks and Adaptive Feature Maps

xi1

xi2
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Deep Networks
ŷi = hL+1

i

b b b b b b
hL
i1 hL

im

b b b b b bh1
i1 h1

im

b b b

xi1 = h0
i1

xip = h0
ip

h`+1
i = s

(
W `+1h`i

)
W `+1 =

(
w`jk

)
jk
: weight matrix at

the (`+ 1)-th layer, weight w`jk on
the edge between h`−1ik and h`ij
s: entrywise nonlinear transfer
function, e.g. ReLU:
s(z) = max(0, z)

ŷi = s
(
WL+1s

(
WL

(
· · · s

(
W 1xi

))))

Many hidden layers can be used: they are usually thought of as forming a
hierarchy from low-level to high-level features.

D.Sejdinovic (Department of Statistics) Statistical Machine Learning Oxford, 24/01/2020 43 / 53



Dropout Regularization of Neural Networks

Neural network with single layer of hidden
units:

• Hidden unit activations:

hik = s

(
bhk +

p∑
j=1

Wh
jkxij

)
• Output probability:

ŷi = s

(
bo +

m∑
k=1

W o
khik

)

Large, overfitted networks often have
co-adapted hidden units.
What each hidden unit learns may in fact be
useless, e.g. predicting the negation of
predictions from other units.
Can prevent co-adaptation by randomly
dropping out units from network.

xi1 xi2 xi3 xi4

hi1 hi2 hi3 hi4 hi5 hi6 hi7

ŷi

[ Hinton et al (2012) ]
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Modern “Interpolating” Regime

Left: The classical U-shaped risk curve arising from the bias-variance
trade-off.
Right: The double descent risk curve, which incorporates the U-shaped risk
curve (i.e., the classical regime) together with the observed behavior from
using high capacity function classes (i.e., the modern interpolating regime).
The predictors to the right of the interpolation threshold have zero training
risk.

Belkin et al, Reconciling modern machine learning practice and the bias-variance trade-off
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Statistical Tools for Machine Learning

[Krizhevsky, Sutskever & Hinton, 2012]

[Mu Li et al, 2014]

The field of machine learning has been driven by the exponential growth in
dataset sizes and computational resources, allowing to tackle difficult inference
problems, which are characterized by:

high dimensionality,
multivariate interaction,
complex patterns exhibiting various forms of nonlinearity and nonstationarity,
little prior knowledge.

The use of complex models with massive amounts of parameters, even if they are
unidentifiable and uninterpretable.
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Uncertainty Calibration and Brittleness

[Lapuschkin et al, 2016]

[Goodfellow et al, 2015]

Need for (scalable) statistical tools for model criticism and interpretability.
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Kernel Trick and Kernel Mean Trick

implicit feature map x 7→ k(·, x) ∈ Hk
replaces x 7→ [φ1(x), . . . , φs(x)] ∈ Rs

φ(x)>φ(y) = k(x, y) = 〈k(·, x), k(·, y)〉Hk

inner products readily available
• nonlinear decision boundaries, nonlinear regression

functions, learning on non-Euclidean/structured
data

[Cortes & Vapnik, 1995; Schölkopf &

Smola, 2001]

RKHS embedding: implicit feature mean
[Smola et al, 2007; Sriperumbudur et al, 2010]

P 7→ µk(P ) = EX∼P k(·, X) ∈ Hk
replaces P 7→ [Eφ1(X), . . . ,Eφs(X)] ∈ Rs

〈µk(P ), µk(Q)〉Hk
= EX∼P,Y∼Qk(X,Y )

inner products easy to estimate
• nonparametric two-sample, independence,

conditional independence, interaction testing,
learning on distributions, model criticism and
interpretability

[Gretton et al, 2005; Gretton et al,

2006; Fukumizu et al, 2007;

Muandet et al, 2012; DS et al,

2013; Szabo et al, 2015; Kim et al,

2016]
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Causality in Machine Learning

[example by Bernhard Schölkopf]

Disentangling Correlation from Causation in Machine Learning?
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Causal Discovery from Time Series Data

[J. Runge, S. Flaxman and DS, Detecting causal associations in large nonlinear time series datasets, ArXiv

e-prints:1702.07007, 2017.]
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Learning on Aggregates
Supervised learning: obtaining inputs has a lower cost than obtaining
outputs/labels, hence we build a (predictive) functional relationship or a
conditional probabilistic model of outputs given inputs.
Semisupervised learning: because of the lower cost, there is much more
unlabelled than labelled inputs.
Weakly supervised learning on aggregates: because of the lower cost, inputs
are at a much higher resolution than outputs.

Figure: left: Malaria incidences reported per administrative unit; centre: land surface
temperature at night; centre: topographic wetness index
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Fine-scale modelling of disease
Suppose you have a country with n regions and data on:

number of malaria incidences per region (low resolution)
many covariates per region (high resolution)

Goal: Predict malaria incidences at a higher resolution, given low resolution label
data and high definition covariate data.

Figure: Log incidence rate of malaria

[Law et al, Variational Learning on Aggregate Outputs with Gaussian Processes, in NeurIPS, 2018.]
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Summary

Statistical machine learning is a vast framework for understanding data,
making inferences and predictions based on data in order to guide informed
decisions.
Can be supervised (learning from examples) or unsupervised (extracting
patterns)
Model complexity and generalization ability: trading off bias and variance
Increasing confluence between statistical modelling and machine learning:
interpretability, causality, robustness, fairness,...
Further resources:

• Oxford course materials: Statistical Machine Learning, Advanced Topics in
Statistical Machine Learning

• Machine Learning Summer Schools, videolectures.net.
• Conferences: NeurIPS, ICML, UAI, AISTATS.
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