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Machine Learning

“...procedures for analyzing data, techniques for interpreting the
results of such procedures, ways of planning the gathering of data
to make its analysis easier, more precise or more accurate, and all
the machinery and results of (mathematical) statistics which apply
to analyzing data...”
John Tukey, The Future of Data Analysis, 1962.
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[Krizhevsky, Sutskever & Hinton, 2012]

[Mu Li et al, 2014]

The field of machine learning has been driven by the exponential growth in
dataset sizes and computational resources, allowing to tackle difficult inference
problems, which are characterized by:

high dimensionality,
multivariate interaction,
complex patterns exhibiting various forms of nonlinearity and nonstationarity,
little prior knowledge.

The use of complex models with massive amounts of parameters, even if they are
unidentifiable and uninterpretable.
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Uncertainty Calibration and Brittleness

[Lapuschkin et al, 2016]

[Goodfellow et al, 2015]

Need for (scalable) statistical tools for model criticism and interpretability.
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Kernel Trick and Kernel Mean Trick

implicit feature map x 7→ k(·, x) ∈ Hk

replaces x 7→ [φ1(x), . . . , φs(x)] ∈ Rs

φ(x)>φ(y) = k(x, y) = 〈k(·, x), k(·, y)〉Hk

inner products readily available
• nonlinear decision boundaries, nonlinear regression

functions, learning on non-Euclidean/structured
data

[Cortes & Vapnik, 1995; Schölkopf &

Smola, 2001]

RKHS embedding: implicit feature mean
[Smola et al, 2007; Sriperumbudur et al, 2010]

P 7→ µk(P ) = EX∼P k(·, X) ∈ Hk

replaces P 7→ [Eφ1(X), . . . ,Eφs(X)] ∈ Rs

〈µk(P ), µk(Q)〉Hk
= EX∼P,Y∼Qk(X,Y )

inner products easy to estimate
• nonparametric two-sample, independence,

conditional independence, interaction testing,
learning on distributions, model criticism and
interpretability

[Gretton et al, 2005; Gretton et al,

2006; Fukumizu et al, 2007;

Muandet et al, 2012; DS et al,

2013; Szabo et al, 2015; Kim et al,

2016]
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Large-Scale Statistical Tests
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Tradeoffs between statistical and
computational efficiency:

limited data, unlimited time
→

unlimited data, limited time

[K. Chwialkowski, A. Ramdas, DS, and A. Gretton, Fast Two-Sample Testing with Analytic

Representations of Probability Measures, in Advances in Neural Information Processing Systems, 2015.]

[Q. Zhang, S. Filippi, A. Gretton, and DS, Large-Scale Kernel Methods for Independence Testing,

Statistics and Computing, 2017.]
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[example by Bernhard Schölkopf]

Disentangling Correlation from Causation in Machine Learning?
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Causal Discovery from Time Series Data

[J. Runge, S. Flaxman and DS, Detecting causal associations in large nonlinear time series datasets, ArXiv

e-prints:1702.07007, 2017.]
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OxCSML: Machine Learning at the Department of Statistics

5+ faculty, 6+ postdocs, 16+ students...
Novel machine learning techniques from theoretically grounded concepts.
Probabilistic modelling, Bayesian nonparametrics, automated and
approximate inference, kernel methods, causal discovery, learning under
model misspecification, Monte Carlo methods, and deep learning, with
applications to network analysis, recommender systems, text processing,
spatio-temporal modelling, genetics and genomics.
The group in numbers: 42 NIPS papers, 7 NIPS orals, 17 ICML papers, 14
UAI papers, 12 AISTATS papers, 7 JMLR papers...

http://csml.stats.ox.ac.uk

Thank You!
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