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Introduction

too many dimensions, too little time

dimensionality reduction / visualization

the meaning of coordinates / reparametrization? (is the intrinsic
meaning of coordinates justi�ed in your data?)

what metric to use? e.g., distance between two DNA sequences? what
is the signi�cance of a measured distance?

sometimes, only to re�ect the intuitive notion of similarity: nearby data
points are similar, far apart data points are di�erent
we do not trust large distances (genomic sequences di�ering by
100/150 entries?)
we trust small distances only a little bit (strength of similarity as
encoded by the distance may not be signi�cant)
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Introduction

what is then the meaning of very re�ned notions we obtain from such
�rough� distance notion, say curvature?

asking qualitative (unsupervised) questions about data?

properties robust to changes in metrics?
the study of idealized versions of such properties: topology
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Introduction

geometry studies metrics. topology studies what remains after one
stretches and deforms without tearing it

replace the quantitative values fo distance functions with the notion of
in�nite nearness (i.e., metric understood in a coarse way only): what
remains is �connectivity information� of your data

connected components / clusters: zeroth order topological information
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Homotopy

connectivity: x , y ∈ X , say x ∼ y i� ∃ continuous map f : [0, 1]→ X ,
such that f (0) = x , f (1) = y

also, equivalence classes of maps: f ∼ g i� ∃ continuous map
F : [0, 1]2 → X , such that F (t, 0) = f (t), F (t, 1) = g(t)

In general, f , g : Y → X , and F : Y × [0, 1]→ X . f and g are said to
be homotopic

X and Y are homotopy equivalent if there are f : X → Y and
g : Y → X , s.t. f ◦ g is homotopic to idY and g ◦ f is homotopic to
idX

Every homeomorphism is a homotopy equivalence, but the converse is
not true

click me
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Homotopy groups

n-th order topological information: homotopy classes of equivalence of
continuous maps f from the n-dimensional sphere Sn to X s.t.
f (s) = x

b

x

Classes of equivalence form a group structure πn(X ); for n = 1,
fundamental group, e.g., π1(Rn) = {0}, π1(Rn\{0}) = π1(S1) = Z.
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Homotopy groups
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Homology

higher-dimensional homotopy groups extremely di�cult to compute,
even πn(S i ) for n > i is a di�cult problem / Hopf �bration

a friendlier alternative: homology groups, with an extended
equivalence relation

e.g., two loops are equivalent if there is a surface with boundary equal
to the di�erence of two loops
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Simplices and chains

A 0-simplex is a point [i ]

A 1-simplex is an edge [ij ]

An n-simplex is a hyperedge σ = [i0 . . . in]. A face of σ is an
(n − 1)-dimensional simplex [i0 . . . ij−1ij+1 . . . in] =

[
i\j
]

An n-chain c is a formal sum of n-simplices, e.g.,
[12] + [23] + [34] ∈ C1 (may occur with a multiplicity or with an
opposite orientation - winding numbers):

c =
∑
k

αkσk , αk ∈ A, σk ∈ Sn

A is an abelian group (such as Z,Fp); Sn is a �nite set of n-simplices

The set of all n-chains is denoted Cn; (Cn,+) forms a free abelian
group: c + c ′ =

∑(
αk + α′k

)
σk (abelian group with a �basis�)
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Boundary map

Simplicial complex is a collection C of simplices with a special
structure:

σ ∈ C ⇒ any face of σ ∈ C

Boundary of an n-simplex is de�ned to be the sum of its faces:

∂n [i0 . . . in] =
n−1∑
j=0

(−1A)j
[
i\j
]

Boundary of a general chain:

∂n
∑
k

αkσk =̇
∑
k

αk∂nσk

Boundary map ∂n : Cn → Cn−1 is a group homomorphism
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Boundary map

Example:

∂1 ([12] + [23] + [34]) = [2]− [1] + [3]− [2] + [4]− [3]

= [4]− [1].
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Fundamental Lemma of Homology

The boundary of the boundary of a simplex is empty:

∂n∂n+1 [i0 . . . in+1] = ∂n

n+1∑
j=0

(−1)j
[
i\j
]

=
∑
j<l

[
(−1)j+l−1 − (−1)l+j

] [
i\l ,j
]

= 0

Therefore, the boundary of the boundary of a chain is also empty, i.e.,
∂n∂n+1Cn+1 ≡ 0 ⇒im∂n+1 ⊂ ker ∂n
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Cycles and boundaries

An n-cycle is a chain with no boundary, e.g., [12] + [23] + [34] + [41].
The set of cycles: Zn = ker ∂n is a subgroup of Cn

im∂n+1 ⊂ ker ∂n means that all boundaries of higher order chains are
cycles

Some cycles (not all) are boundaries of higher order chains, e.g.,
[23] + [31] + [12] = ∂2 [123]. The set of n-boundaries: Bn = im∂n+1

is a subgroup of Zn
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Cycles and boundaries

n-th Homology group: Hn = Zn/Bn = ker ∂n/im∂n+1, i.e., it is a
factor group of equivalence classes, given by:

z ∼= z ′ i� z ′ − z ∈ Bn

two cycles are equivalent (homologous) if they di�er by a boundary,
say z1 = [12] + [23] + [34] + [41], z2 = [12] + [23] + [34] + [45] + [51],
then:

z2 − z1 = [45] + [51] + [14]

= ∂2[145]

rank of Hn (roughly) counts the number of n-dimensional holes in the
space
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Chains, cycles and boundaries
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Homology groups

In general Hn = Hn(X ,A) is a free abelian group which depends on
the underlying topological space and the choice of the underlying
abelian group A of winding numbers in the de�nition of the chain

Functoriality: tranforming topological problems into algebraic
problems. If f : X → Y is continuous then there is an induced
homomorphism Hn(f ,A) : Hn(X ,A)→ Hn(Y,A), with

Hn(idX ,A) = idHn(X ,A)
Hn(f ,A) ◦ Hn(g ,A) = Hn(f ◦ g ,A)

If f and g are homotopic then Hn(f ,A) = Hn(g ,A), i.e., if
topological spaces X and Y are homotopy equivalent then

Hn(g ,A) ◦ Hn(f ,A) = Hn(g ◦ f ,A) = Hn(idX ,A) = idHn(X ,A), i.e.,
their homology groups Hn(X ,A) and Hn(Y,A) are isomorphic
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Homology vector spaces

If underlying group of winding numbers is a �eld A = F , then
Hn(X ,F ) is a vector space over F

βn(X ,F ) = dimHn(X ,F ) is called the n-th Betti number of X w.r.t.
F

If two spaces are homotopy equivalent, then all their Betti numbers
are equal
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Homology vector spaces

Given the sets of n-simplices Sn, we form

the chain �nite-dimensional vector spaces Cn

boundary homomorphisms (linear maps) ∂n : Cn → Cn−1, which can be
expressed as a sequence of matrices Dn, with

(Dn)τσ =

{
(−1)j τ is a face ofσ

0 otherwise
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Homology vector spaces

βn(X ,F ) = dimHn(X ,F )

= dim ker ∂n − dim im∂n+1

= dimCn(X ,F )− dim im∂n − dim im∂n+1

= dimCn(X ,F )− rankDn − rankDn+1
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rank-nullity in graph theory

D1 = incidence matrix,
S0-vertices, S1-edges

#connected
components=#nodes-rank(D1)

#loops=#edges-rank(D1)
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Betti numbers

β0 = 1, β1 = 1, βk = 0, for k ≥ 2
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Betti numbers

β0 = 1, β1 = 2, β2 = 1, βk = 0 for k ≥ 3
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The story so far

If someone gave us the topological space X which consists of sets of
points, edges, triangles, ..., n-simplices, we can compute its Betti
numbers over, say, F2 using linear algebra (simplicial homology)

Only got 0-simplices - we have to build the higher order structure into
data, i.e. form the simplicial complex
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�ech complex

�ech complex (nerve) Č(ε) of data {Yi}Ni=1 contains:

0-simplices [i ]
1-simplices [ij ] whenever ‖Yi − Yj‖ ≤ ε
n-simplices [i0 . . . in] whenever

⋂n

j=0
Uij 6= Ø,

Uij =
{
y ∈ Y :

∥∥y − Yij

∥∥ ≤ ε}

The nerve theorem: In a general topological space X , the nerve
N(U) is associated to an open covering U = {Ui}i∈I . N(U) is
homotopy equivalent to X whenever every Ui is contractible
(homotopy equivalent to a point).
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�ech complex

Dino Sejdinovic (Gatsby Unit MLJC) Topology and Data October 24, 2012 25 / 43



Vietoris-Rips complex

VR complex VR(ε) contains:

0-simplices [i ]
1-simplices [ij ] whenever ‖Yi − Yj‖ ≤ ε
n-simplices [i0 . . . in] whenever all its faces are in VR(ε).

Č(ε) ⊆ VR(2ε) ⊆ Č(2ε)
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Č(ε) vs VR(ε)

Vietoris-Rips is the maximal simplicial complex that can be built on
top of the 1-simplicial skeleton (�ag complex)
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Witness complexes

Choose a set of landmark points L ⊂ {Yi}Ni=1 - this is the set of
0-simplices

Strong witness complex:

[l0 . . . ln] ∈W s(ε) i� ∃Y (a strong witness): d(Y , lj) ≤ d(Y ,L) + ε,
∀j = 0, . . . , n

Weak witness complex:

[l0 . . . ln] ∈W w (ε) i� ∃Y (a weak witness):
d(Y , lj) ≤ d(Y ,L\{l0 . . . ln}) + ε, ∀j = 0, . . . , n
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How to choose ε?
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Persistence

C(ε) ⊂ C(ε′) whenever ε ≤ ε′

Using inclusion ι : C(ε)→ C(ε′), we get a homomorphism
Hn(ι,F ) : Hn(C(ε),F )→ Hn(C(ε′),F ) (and can study the image of
the homology of a smaller complex in the homology of a larger
complex)

two small cycles in the smaller complex vanish in the larger complex,
the small cycle in the larger complex is not in the image of Hn(ι,F ),
only the largest cycle persists

incremental computation of Betti numbers
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Persistent homology barcode
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Natural image statistics

3x3 patches from a database of black and white images - each
datapoint is a vector in R9

remove the low contrast (nearly constant) patches

mean-center - �turning the brightness knob�

normalize the contrast - �turning the contrast knob�

the points sit on a 7D ellipsoid in R8, but not uniformly

exploring the high-density regions, using the k-codensity proxy
δk(x) = ‖x − νk(x)‖

Carlsson et al, On the local behaviour of spaces of natural images, International Journal

of Computer Vision 2008

Dino Sejdinovic (Gatsby Unit MLJC) Topology and Data October 24, 2012 33 / 43



Natural image statistics

3x3 patches from a database of black and white images - each
datapoint is a vector in R9

remove the low contrast (nearly constant) patches

mean-center - �turning the brightness knob�

normalize the contrast - �turning the contrast knob�

the points sit on a 7D ellipsoid in R8, but not uniformly

exploring the high-density regions, using the k-codensity proxy
δk(x) = ‖x − νk(x)‖

Carlsson et al, On the local behaviour of spaces of natural images, International Journal

of Computer Vision 2008

Dino Sejdinovic (Gatsby Unit MLJC) Topology and Data October 24, 2012 33 / 43



Natural image statistics

3x3 patches from a database of black and white images - each
datapoint is a vector in R9

remove the low contrast (nearly constant) patches

mean-center - �turning the brightness knob�

normalize the contrast - �turning the contrast knob�

the points sit on a 7D ellipsoid in R8, but not uniformly

exploring the high-density regions, using the k-codensity proxy
δk(x) = ‖x − νk(x)‖

Carlsson et al, On the local behaviour of spaces of natural images, International Journal

of Computer Vision 2008

Dino Sejdinovic (Gatsby Unit MLJC) Topology and Data October 24, 2012 33 / 43



Natural image statistics

3x3 patches from a database of black and white images - each
datapoint is a vector in R9

remove the low contrast (nearly constant) patches

mean-center - �turning the brightness knob�

normalize the contrast - �turning the contrast knob�

the points sit on a 7D ellipsoid in R8, but not uniformly

exploring the high-density regions, using the k-codensity proxy
δk(x) = ‖x − νk(x)‖

Carlsson et al, On the local behaviour of spaces of natural images, International Journal

of Computer Vision 2008

Dino Sejdinovic (Gatsby Unit MLJC) Topology and Data October 24, 2012 33 / 43



Natural image statistics

3x3 patches from a database of black and white images - each
datapoint is a vector in R9

remove the low contrast (nearly constant) patches

mean-center - �turning the brightness knob�

normalize the contrast - �turning the contrast knob�

the points sit on a 7D ellipsoid in R8, but not uniformly

exploring the high-density regions, using the k-codensity proxy
δk(x) = ‖x − νk(x)‖

Carlsson et al, On the local behaviour of spaces of natural images, International Journal

of Computer Vision 2008

Dino Sejdinovic (Gatsby Unit MLJC) Topology and Data October 24, 2012 33 / 43



Natural image statistics

3x3 patches from a database of black and white images - each
datapoint is a vector in R9

remove the low contrast (nearly constant) patches

mean-center - �turning the brightness knob�

normalize the contrast - �turning the contrast knob�

the points sit on a 7D ellipsoid in R8, but not uniformly

exploring the high-density regions, using the k-codensity proxy
δk(x) = ‖x − νk(x)‖

Carlsson et al, On the local behaviour of spaces of natural images, International Journal

of Computer Vision 2008

Dino Sejdinovic (Gatsby Unit MLJC) Topology and Data October 24, 2012 33 / 43



Natural image statistics

k = 300, top 25% �densest points� - the underlying space appears to
form a circle
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Three-circle model

k = 15, top 25% �densest points� leads to β1 = 5
green and red circles do not touch, each touches the blue circle
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Three-circle model

primary circle: smooth transitions - angle varies along the circle
secondary circles: vertical and horizontal transitions - contrast
arrangement varies along the circle
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Three-circle model
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Klein bottle!

A mathematician named Klein

Thought the Möbius band was

divine.

Said he: "If you glue

The edges of two,

You'll get a weird bottle like

mine."
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V1 data

recordings from 10x10 electrode arrays from the V1 in Macaque
monkeys (20-30 minutes):

spontaneuous / no stimulus presented
evoked / video sequences presented

each data segment consists of 200 50ms bins - for each neuron a �ring
count within such bin is recorded

�ve neurons with highest �ring rate: data point cloud X is 200 points
in R5

For each data segment, construct a witness complex, and obtain its
Betti signature (β0, β1, β2)

Singh et al, Topological Structure of Population Activity in Primary Visual Cortex,

Journal of Vision 2008
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V1 data - the observed signatures

the most frequently occurring signatures are 110 (circle) and 101
(sphere)
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V1 data - the observed signatures

the data sets under two regimes are topologically di�erent

signi�cance validation of observed Betti numbers:

simulate �rings from a Poisson model
frequency of obtaining persistent segments of β1, β2 is < .005

topology distinguishes both data sets from the Poisson model and
from each other; the nature of the �circular� topological phenomenon?

not likely due to periodicity of body's natural rhytms - no peaks in the
amplitude spectrum observed
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Code

Toolbox: JPlex (http://comptop.stanford.edu/)

Java version of Plex, work with Matlab
Rips, Witness complex, Persistence Homology, barcodes

Other Choices: Plex 2.5/Matlab (not maintained any more), Dionysus
(Dimitry Morozov)
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