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Introduction and Motivation

Two-sample and independence tests

Two-sample test: Given {Z (i)}nzi=1
i .i .d .∼ P , and {W (i)}nwi=1

i .i .d .∼ Q,

H0: P = Q

HA: P 6= Q

Independence test: Given
{(

X (i),Y (i)
)}m

i=1

i .i .d .∼ PXY ,

H0: PXY = PXPY
HA: PXY 6= PXPY

high-dimensions

non-Euclidean / structured domains
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Introduction and Motivation

Motivating question

How do you detect dependence...

... in a Euclidean space?
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Introduction and Motivation

Motivating question

How do you detect dependence...

... in a Euclidean space?

Problem: fails even in �low� dimensions: too few points per bin!

Task: representing and comparing distributions in high dimensions
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Introduction and Motivation

Motivating question

How do you detect dependence...

... in a non-Euclidean / structured domain?

...no doubt there is great pressure on
provincial and municipal governments
in relation to the issue of child care,
but the reality is that there have been
no cuts to child care funding from the
federal government to the provinces.
In fact, we have increased federal
investments for early childhood
development...

?⇐⇒

...il est évident que les ordres de
gouvernements provinciaux et
municipaux subissent de fortes
pressions en ce qui concerne les
services de garde, mais le
gouvernement n'a pas réduit le
�nancement qu'il verse aux provinces
pour les services de garde. Au
contraire, nous avons augmenté le
�nancement fédéral pour le
développement des jeunes enfants...

Are the French text extracts translations of the English ones?
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RKHS/kernel embedding/MMD

RKHS

De�nition (RKHS)

Let H be a Hilbert space of real-valued functions de�ned on Z. A function
k : Z × Z → R is called a reproducing kernel of H if:

1 ∀z ∈ Z, k(·, z) ∈ H, and
2 ∀z ∈ Z, ∀f ∈ H, 〈f , k(·, z)〉H = f (z).

If H has a reproducing kernel, it is said to be a reproducing kernel Hilbert

space (RKHS).

Evaluation functionals are continuous.

Norm convergence implies pointwise convergence.

L2 is not an RKHS as δz /∈ L2
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RKHS/kernel embedding/MMD

Feature map

Extract features: z 7→ (φ1(z), . . . φs(z)) ∈ Rs , and work with kernel
k(z , z ′) =

∑s
i=1 φi (z)φi (z

′) (inner product in the feature space)

Theorem (Moore-Aronszajn)

For every symmetric, positive semi-de�nite function (kernel)

k : Z × Z → R, there is a unique associated RKHS Hk of real-valued

functions on Z with reproducing kernel k.

The map ϕ : Z → Hk , ϕ : z 7→ k(·, z) is called the canonical feature
map or the Aronszajn map of k .
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RKHS/kernel embedding/MMD

Kernel Embeedding

De�nition (Kernel embedding)

Let k be a kernel on Z, and P ∈M1
+(Z) a probability measure. The

kernel embedding of P into the RKHS Hk is µk(P) ∈ Hk such that´
f (z)dP(z) = 〈f , µk(P)〉Hk

for all f ∈ Hk .

Alternatively, can be de�ned by the Bochner integral
µk(P) =

´
k(·, z) dP(z) [�Expected canonical feature�]
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RKHS/kernel embedding/MMD

Existence of Kernel Embedding

Proposition

µk(P) exists for all P ∈M1
+(Z) i� k is a bounded function on Z × Z.

Denote:

Mθ
k(Z) =

{
ν ∈M(Z) :

ˆ
kθ(z , z) d |ν|(z) <∞

}
.

Consequence of the Riesz representation theorem: kernel embedding

µk(ν) is well de�ned ∀ν ∈M1/2
k (Z).
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RKHS/kernel embedding/MMD

Maximum Mean Discrepancy

k : Z × Z → R a kernel on Z, with RKHS Hk ; P,Q two probability
measure on Z:
Maximum Mean Discrepancy (MMD) between P and Q:

γk(P,Q) = ‖µk(P)− µk(Q)‖Hk

= [EZZ ′k(Z ,Z ′) + EWW ′k(W ,W ′)− 2EZW k(Z ,W )]
1/2

A polynomial kernel k(z , z ′) =
(
1 + z>z ′

)p
captures the di�erence in

�rst p moments only

For a certain family of kernels (characteristic): γk(P,Q) = 0 if and

only if P = Q.

Gaussian, Laplacian, inverse multiquadratics...
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RKHS/kernel embedding/MMD

MMD for independence: HSIC

kX a kernel on X , kY a kernel on Y; then k = kX kY is a valid kernel
on X × Y with RKHS HkX ⊗HkY .

Hilbert-Schmidt Independence Criterion between X and Y :

HSIC 2(X ,Y ; kX , kY) = ‖µk(PXY )− µk(PXPY )‖2Hk

= EXYEX ′Y ′kX (X ,X ′)kY(Y ,Y ′)

+EXEX ′kX (X ,X ′)EYEY ′kY(Y ,Y ′)

−2EX ′Y ′ [EXkX (X ,X ′)EY kY(Y ,Y ′)] .

Gretton et al (2005, 2008); Smola et al (2007); Zhang et al (2011); Gretton
et al (2012)
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Estimating MMD / Testing

Outline
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Estimating MMD / Testing

V-statistic

Write ηk := γ2k = EZZ ′k(Z ,Z ′) + EWW ′k(W ,W ′)− 2EZW k(Z ,W ).

Given i.i.d. samples z = {zi}mi=1 ∼ P and w = {wi}mi=1 ∼ Q, the
empirical V-statistic estimate of ηk is given by:

η̂k,V (z,w) = γ2k


 1

m

m∑

i=1

δzi ,
1

m

m∑

j=1

δwj




=
1

m2

m∑

i=1

m∑

j=1

k(zi , zj) +
1

m2

m∑

i=1

m∑

j=1

k(wi ,wj)

− 2

m2

m∑

i=1

m∑

j=1

k(zi ,wj).

A quadratic time estimate.
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Estimating MMD / Testing

Asymptotics of quadratic time MMD

Theorem (Gretton et al, 2009)

Let k be a kernel on Z, and let z = {zi}mi=1 and w = {wi}mi=1 be two i.i.d.

samples from P ∈M1
+(Z) ∩M1

k(Z). Then

m

2
η̂k,V (z,w)  

∞∑

i=1

λiN
2
i ,

where Ni
i .i .d .∼ N (0, 1), i ∈ N, and {λi}∞i=1 are the eigenvalues of the

operator S
k̃P

: L2P(Z)→ L2P(Z), given by:

S
k̃P
g(z) =

ˆ
Z
k̃P(z ,w)g(w) dP(w).
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Estimating MMD / Testing

Linear time estimate of MMD

Alternative expression:

γ2k(P,Q) = EXX ′YY ′hk(X ,X ′,Y ,Y ′) =: EV hk(V ),

where

hk(X ,X ′,Y ,Y ′) = k(X ,X ′) + k(Y ,Y ′)− k(X ,Y ′)− k(X ′,Y ),

and V := [X , X ′, Y , Y ′] ∼ P × P × Q × Q.

A linear time estimate: Given i.i.d. samples {vi}m/2i=1 , with
vi = [x2i−1, x2i , y2i−1, y2i ]

η̂k,L =
2

m

m/2∑

i=1

hk(vi ).

An empirical average of i.i.d. (quadruples of) samples.
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Estimating MMD / Testing

Asymptotics of linear time MMD

By central limit theorem,

√
m

2

(
η̂k,L − ηk

)
 N (0, σ2k)

assuming 0 < E(h2k) <∞ (always true for bounded k)

σ2k = EV h
2
k(V )− [EV (hk(V ))]2 = var(hk(V ))
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Estimating MMD / Testing

Linear time vs quadratic time MMD

Disadvantages of linear time MMD vs quadratic time MMD

Much higher variance for a given m, hence. . .

. . .a much less powerful test for a given m

Advantages of the linear time MMD vs quadratic time MMD

Very simple asymptotic null distribution (a Gaussian, vs an in�nite
weighted sum of χ2)

Both test statistic and threshold computable in O(m), with storage
O(1).

Given unlimited data, a given Type II error can be attained with less
computation
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Kernel selection in large-scale two-sample tests
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Kernel selection in large-scale two-sample tests

Testing threshold

−4 −2 0 2 4 6 8
0
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0.4

Null distribution, linear time MMD

P
(M

M
D

)

MMD

 (1−α)  quantile 

Under null, ηk = 0, and thus: η̂k,L ≈ N (0, 2
m
σ2k) leads to the threshold for

an asymptotic level α:

tk,α =

√
2
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Kernel selection in large-scale two-sample tests

Type II error
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Type II error: ηk(P,Q) > 0 and η̂k,L falls below the threshold tk,α:

P(η̂k,L < tk,α) ≈ P(ηk +

√
2

m
σkZ <

√
2

m
σkΦ−1(1− α))

= Φ

(
Φ−1(1− α)−

√
m
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ηk
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Kernel selection in large-scale two-sample tests Asymptotic e�ciency criterion
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Kernel selection in large-scale two-sample tests Asymptotic e�ciency criterion

The best kernel: minimizes Type II error

Since Φ monotonic, the kernel which minimizes the asymptotic Type II
error prob. is:

k∗ = argmax
k∈K

ηk
σk
,

where K is the family of kernels under consideration.

We only have estimates of ηk and σk .

Will the optimization using these esimates be consistent?
Over what families of kernels can we perform such optimization?
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Kernel selection in large-scale two-sample tests Asymptotic e�ciency criterion

Learning the best kernel in a family

De�ne the family of kernels as follows: for base kernels {ku}du=1

K :=

{
k : k =

d∑

u=1

βuku,

d∑

u=1

βu = 1, βu ≥ 0, ∀u
}
.

Properties:

all k ∈ K are valid kernels,

if all ku characteristic then every k ∈ K is characteristic
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Kernel selection in large-scale two-sample tests Asymptotic e�ciency criterion

Test statistic

The squared MMD ηk becomes

ηk(P,Q) =
d∑

u=1

βuηu(P,Q),

where we denoted ηu := ηku .
Denote:

β = (β1, β2, . . . , βd )> ∈ Rd ,

h =h(V ) = (h1(V ), h2(V ), . . . , hd (V ))> ∈ Rd ,

hu(v) = ku(x , x ′) + ku(y , y ′)− ku(x , y ′)− ku(x ′, y)

η = EV (h(V )) = (η1, η2, . . . , ηd )> ∈ Rd .

Then

ηk(P,Q) = E(β>h) = β>η.
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Kernel selection in large-scale two-sample tests Asymptotic e�ciency criterion

Linear time estimates of variance

To implement both kernel selection and the hypothesis test, we need an
empirical variance estimate.

σ2u = var(hu).

Case of k =
∑d

u=1 βuku ∈ K:

σ2k := β>Qβ, Q = cov(h).

Linear time estimates:

σ̂2u =
4

m

m/4∑

i=1

(hu(v2i−1)− hu(v2i ))2.

Q̂uu′ =
4

m

m/4∑

i=1

[hu(v2i−1)− hu(v2i )] [hu′(v2i−1)− hu′(v2i )] .
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Kernel selection in large-scale two-sample tests Asymptotic e�ciency criterion

Surrogate criterion

De�ne

η̂k = β>η̂, σ̂k,λ =

√
β>
(
Q̂ + λmI

)
β

Objective:
β̂∗ = argmax

β�0
η̂k σ̂

−1
k,λ

Note: η̂k , σ̂k used in optimization are computed on training data, vs η̌k , σ̌k
computed on data to be tested (makes kernel choice independent of
test data)
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Kernel selection in large-scale two-sample tests Asymptotic e�ciency criterion

Consistency

Theorem

If ku is bounded ∀u ∈ {1, . . . , d} and λm = Θ(m−1/3), then

∣∣∣∣sup
k∈K

η̂k σ̂
−1
k,λ − sup

k∈K
ηkσ

−1
k

∣∣∣∣ = OP

(
m−1/3

)
, and k̂∗

P→ k∗.
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Kernel selection in large-scale two-sample tests Asymptotic e�ciency criterion

Optimization procedure

Assume: η̂ has at least one positive entry

Then there exists β � 0 s.t. β>η̂ > 0 (criterion is non-negative
at optimality).

Then, we can solve an easier problem (a quadratic program):

β̂∗ = argmin{β>
(
Q̂ + λmI

)
β : β>η̂ = 1, β � 0}

What if η̂ has no positive entries? (all training data empirical MMDs on
base kernels are ≤ 0)
Cost: linear in the number of samples, quadratic in the number of kernels.
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Kernel selection in large-scale two-sample tests Experiments
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Kernel selection in large-scale two-sample tests Experiments

Competing approaches

Median heuristic

max-mmd: choose ku ∈ K with the largest η̂u

same as maximizing β>η̂ subject to ‖β‖
1

= 1

`2 statistic: maximize β>η̂ subject to ‖β‖2 = 1

Cross validation on training set

Also compare with:

max-ratio: single kernel ku that maximizes η̂uσ̂
−1
u,λ
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Kernel selection in large-scale two-sample tests Experiments

Experiment 1: Feature selection

Idea: in this experiment, no single best kernel.
Each of the ku are univariate (along a single coordinate)
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Kernel selection in large-scale two-sample tests Experiments

Feature selection: Type II error
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Kernel selection in large-scale two-sample tests Experiments

Feature selection: Type I error
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Kernel selection in large-scale two-sample tests Experiments

Experiment 2: Grid-mixtures

Di�cult problems: lengthscale of the di�erence in distributions not the
same as that of the distributions.

We distinguish grids of Gaussian blobs with di�erent covariances.
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Figure: ` = 3 of blobs per dimension, ratio ε = 3.2 of largest-to-smallest
eigenvalues of blobs in Q.
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Kernel selection in large-scale two-sample tests Experiments

Grid-mixtures: Type II error
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Figure: Parameters: m = 10, 000 (for both training and testing)

D. Sejdinovic (CSML, UCL) Testing with kernels 12 November 2012 32 / 50



Kernel selection in large-scale two-sample tests Experiments

Grid-mixtures: Type I error
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Kernel selection in large-scale two-sample tests Experiments

Conclusions

A criterion to explicitly optimize the (Hodges and Lehmann)
asymptotic relative e�ciency for the kernel two-sample test

Consistency of a regularized empirical criterion, solved by a quadratic
program

Both optimization and testing are performed with cost linear in the
sample size (large-scale/streaming)
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Equivalence to energy distance/distance covariance
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Equivalence to energy distance/distance covariance

E-distance

Energy distance (Székely, 1985; Székely and Rizzo 2004, 2005)

DE (P,Q) = 2EZW ‖Z −W ‖
2
− EZZ ′ ‖Z − Z ′‖

2
− EWW ′ ‖W −W ′‖

2
≥ 0,

where Z ,Z ′
i.i.d.∼ P and W ,W ′

i.i.d.∼ Q.

DE (P,Q) = 0 if and only if P = Q.
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Equivalence to energy distance/distance covariance

Distance covariance (dCov)

Let X be a random vector on X =Rp and Y a random vector on Y = Rq.
The distance covariance V(X ,Y ) is de�ned via the norm of fXY − fX fY in
a weighted L2 space on Rp+q, i.e.,

V2(X ,Y ) =

ˆ
Rp+q

|fX ,Y (t, s)− fX (t)fY (s)|2 w(t, s) dt ds,

for a particular choice of weight function given by:

w(t, s) =
1

cpcq
· 1

‖t‖1+p
2 ‖s‖1+q

2

,

where cd = π
1+d
2 /Γ(1+d

2 ), d ≥ 1.
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Equivalence to energy distance/distance covariance

Distance covariance (dCov)

Distance covariance (Székely, Rizzo and Bakirov 2007; Székely and
Rizzo 2009; Lyons 2011)

V2(X ,Y ) = EXYEX ′Y ′ ‖X − X ′‖
2
‖Y − Y ′‖

2

+EXEX ′ ‖X − X ′‖
2
EYEY ′ ‖Y − Y ′‖

2

− 2EXY [EX ′ ‖X − X ′‖
2
EY ′ ‖Y − Y ′‖

2
] ,

where (X ,Y ) and (X ′,Y ′) are
i.i.d.∼ PXY .

generalizes standard product-moment covariance (also leads to the
notion of distance correlation)

V2(X ,Y ) = 0 if and only if X and Y are independent
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Equivalence to energy distance/distance covariance

Characteristic function interpretation of MMD/HSIC

Let k(z , z ′) = κ(z − z ′) be a translation invariant RKHS kernel on Z,
where κ : Z → R is a bounded continuous function. Using Bochner's
theorem, κ is a Fourier transform of a non-negative �nite measure Λ:

κ(∆) =

ˆ
e−∆>udΛ(u),

It follows (Gretton et al, 2009) that:

γ2k(P,Q) =

ˆ
Rd

|fZ (u)− fW (u)|2 dΛ(u).
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Equivalence to energy distance/distance covariance

Kernel approach = Energy approach?
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Equivalence to energy distance/distance covariance

Characteristic function interpretation

γ2k(PXY ,PXPY ) =

ˆ
Rp+q

|fX ,Y (t, s)− fX (t)fY (s)|2 dΛ(t, s)

V2(X ,Y ) =
1

cpcq

ˆ
Rp+q

|fX ,Y (t, s)− fX (t)fY (s)|2

‖t‖1+p
2 ‖s‖1+q

2

dt ds

just set dΛ(t, s) = w(t, s)dtds?

w(t, s) is not integrable, i.e.,κ(∆) =
´

e−∆>(t s)

‖t‖1+p‖s‖1+q dtds does not

converge, so there exist no translation invariant positive de�nite
kernel that leads to distance covariance (Székely and Rizzo 2009,
discussion by Gretton et al).
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Equivalence to energy distance/distance covariance Beyond Euclidean metrics
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Equivalence to energy distance/distance covariance Beyond Euclidean metrics

Negative-type semimetric

De�nition (Negative-type semimetric)

Let Z be a non-empty set and let ρ : Z × Z → [0,∞) be a function such
that ∀z , z ′ ∈ Z,

ρ(z , z ′) = 0 if and only if z = z ′, and ρ(z , z ′) = ρ(z ′, z).

Then (Z, ρ) is said to be a semimetric space and ρ is called a semimetric
on Z. If, in addition, ∀n ≥ 2, z1, . . . , zn ∈ Z, and α1, . . . , αn ∈ R, with∑n

i=1 αi = 0,
n∑

i=1

n∑

j=1

αiαjρ(zi , zj) ≤ 0

ρ is said to have negative type.

negative type ⇒ DE ,ρ(P,Q) ≥ 0 (Lyons 2011)

All Euclidean (and Hilbert) spaces are of negative type.
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De�nition (Negative-type semimetric)

Let Z be a non-empty set and let ρ : Z × Z → [0,∞) be a function such
that ∀z , z ′ ∈ Z,

ρ(z , z ′) = 0 if and only if z = z ′, and ρ(z , z ′) = ρ(z ′, z).

Then (Z, ρ) is said to be a semimetric space and ρ is called a semimetric
on Z. If, in addition, ∀n ≥ 2, z1, . . . , zn ∈ Z, and α1, . . . , αn ∈ R, with∑n
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Equivalence to energy distance/distance covariance Beyond Euclidean metrics

Distance-induced kernels

Distance-induced kernel: Let ρ be a semimetric on Z and z0 ∈ Z.
Denote

k(z , z ′) =
1

2

[
ρ(z , z0) + ρ(z ′, z0)− ρ(z , z ′)

]

translation variant!

Proposition

k is a valid (psd) kernel if and only if ρ is of negative type. Conversely, if

k is a psd kernel, then:

ρ(z , z ′) = k(z , z) + k(z ′, z ′)− 2k(z , z ′)

is a negative-type semimetric (generated by k).
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Equivalence to energy distance/distance covariance Beyond Euclidean metrics

Main results

Theorem

Let (Z, ρ) be a semimetric space of negative type and let k be any kernel

that generates ρ. Then,

DE ,ρ(P,Q) = 2γ2k(P,Q), ∀P,Q ∈M1
k(Z).

Theorem

Let (X , ρX ) and (Y, ρY) be semimetric spaces of negative type, and let kX
and kY be any two kernels on X and Y that generate ρX and ρY ,
respectively. Then, if (X ,Y ) ∼ PXY , with marginals PX ∈M2

kX
(X ),

PY ∈M2
kY

(Y),

V2ρX ,ρY (X ,Y ) = 4HSIC 2(X ,Y ; kX , kY).
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Equivalence to energy distance/distance covariance Beyond Euclidean metrics

Main results (2)

In testing, one simply replaces population expressions with their
empirical versions (energy distance DE ,ρ(P̂, Q̂) and MMD γk(P̂, Q̂)
between empirical distributions)

Thus, kernel-based and energy-based statistics are equivalent under
the above moment-assumptions
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Equivalence to energy distance/distance covariance Beyond Euclidean metrics

Two ways to induce a metric onM1
+(Z)

(Z, ρ1/2)

z 7→ k(·, z)

Hk

{δz : z ∈ Z}

{k(·, z) : z ∈ Z}

(M1
+(Z), γk)

µk

(
M1

+(Z)
)

P

Q

µk(P )

µk(Q)

Aronszajn map z 7→ k(·, z) is an isometric embedding of (Z, ρ1/2) into
Hk .
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Outline
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Equivalence to energy distance/distance covariance Spectral testing for e-distance

Spectral test

(Gretton et al, 2009)

m

2
η̂k,V (z,w)  

∞∑

i=1

λiN
2
i .

Compute the Gram matrix K on the aggregated samples,
Kij = k(ui , uj), u = [z w]

Compute the spectrum of its centred version K̃ = HKH (surrogate for
S
k̃P

)

cost: O(m3) instead of O(m4) for the permutation test.
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Equivalence to energy distance/distance covariance Spectral testing for e-distance

Quadratic form test

(Szekely et al, 2007) also express distance-statistics as a quadratic form
Q of centered Gaussian random variables (no method to estimate
coe�cients is given)

Test based on P
{
Q ≥

(
Φ−1(1− α/2)2

)}
≤ α, valid for

0 < α ≤ 0.215, valid for all quadratic forms Q, with EQ = 1

When applied to the dCov statistic, the upper bound of α is achieved
if X and Y are independent Bernoulli - over-conservative in general
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Two-sample testing results
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Conclusions

Distance-based statistics of Szekely et al are a special case of the
RKHS framework.

Conversely, RKHS-based statistics have a clear interpretation in terms
of implicitly imposing a (semi)metric onto the original space.

New way to estimate the null distribution of distance-statistics
through the link with kernels.

For problem settings de�ned most naturally in terms of some given
distances, and where these distances are of negative type, RKHS
machinery can be brought to bear (ISOMAP ↔ Kernel PCA).
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Test procedure

The testing procedure is as follows:

1 Split the data into training and testing

2 On the training data:

1 Compute η̂u for all ku ∈ K
2 If at least one η̂u > 0, compute Q̂, and solve the QP to get β̂∗, else

choose a single ku that maximizes η̂u/σ̂u,λ

3 On the test data:

1 Compute η̌
k̂∗

using k̂∗ =
∑d

u=1
β̂∗uku

2 Compute test threshold ťα,k̂∗ using σ̌
k̂∗

4 Reject null if η̌
k̂∗
> ťα,k̂∗
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MMD as integral probability metric

An alternative interpretation of MMD is as an integral probability
metric (Müller, 1997), i.e.,

γk(P,Q) = sup
f ∈Hk ,‖f ‖Hk

≤1
[EZ∼P f (Z )− EW∼Q f (W )] .

Supremum acheived at the �witness function�
f = (µk(P)− µk(Q)) / ‖µk(P)− µk(Q)‖Hk

.
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HSIC as integral probability metric

X

Y

Dependence witness and sample

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

HSIC 2(X ,Y ; kX , kY) =
‖µk(PXY )− µk(PXPY )‖2Hk

witness lies in Hk , the RKHS of

functions on X × Y

D. Sejdinovic (CSML, UCL) Testing with kernels 12 November 2012 50 / 50


	Introduction and Motivation
	RKHS/kernel embedding/MMD
	Estimating MMD / Testing
	Kernel selection in large-scale two-sample tests
	Asymptotic efficiency criterion
	Experiments

	Equivalence to energy distance/distance covariance
	Beyond Euclidean metrics
	Spectral testing for e-distance


