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-
Two-sample and independence tests

o Two-sample test: Given {Z()}7= " p, and (W "4 Q,
] Ho: P = Q
4] HA: P 75 Q
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-
Two-sample and independence tests

o Two-sample test: Given {Z()}7= " p, and (W "4 Q,
° Ho: P = Q
4] HA: P 75 Q

e Independence test: Given {(X(i), Y(i))}7;1 " Py

° H()Z PXY = Pxpy
o HAZ ny#PxPy
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|
Energy distance and distance covariance

e Energy distance:

De(P,Q) =2Ezw [|Z =Wy —Ezz |1Z = Z'|l, = Eww [W — W',

where Z, 7’ 4 p and W, W' iid.
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|
Energy distance and distance covariance

e Energy distance:

De(P,Q) = 2Bzw |Z = W, =Ezz/ |2 = Z'l, = Eww: [ W = W']l,
where Z, 7’ “id pand W, W’ iid- o

e Distance covariance (weighted L»-distance between characteristic
functions):

VAX,Y) = ExyExy [X=X'[,|Y =Y,
+ExEx: [|[X = X[, EvEy || Y — Y|,
—2Exy [Ex/ [|X = X[, Ev/ [[Y = Y'[|,],

where (X, Y) and (X', Y’) are i Py

@ Székely and Rizzo (2004, 2005); Székely, Rizzo and Bakirov (2007); Székely
and Rizzo (2009), Lyons (2011)
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N
MMD & HSIC

@ k: Zx Z— R akernel on Z, with RKHS H,; P a probability
measure on Z; mean embedding of P is up = [ k(-, z)dP(z)
e Maximum Mean Discrepancy between P and Q:

WP, Q) = lruP) — p(Q@)l4,

[Ezz k(Z,Z') +Eww k(W, W') = 2Ezwk(Z, W)]l/2
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N
MMD & HSIC

@ k: Zx Z— R akernel on Z, with RKHS H,; P a probability
measure on Z; mean embedding of P is up = [ k(-, z)dP(z)
e Maximum Mean Discrepancy between P and Q:

WP, Q) = lruP) — p(Q@)l4,

[Ezz k(Z,Z') +Eww k(W, W') = 2Ezwk(Z, W)]l/2

@ ky a kernel on X, ky a kernel on ), and k = kxky
o Hilbert-Schmidt Independence Criterion between X and Y:

HSIC(X, Y kx, ky) = [lpk(Pxy) — 1k(Px Py)lly,
@ Gretton et al (2005, 2008); Smola et al (2007); Zhang et al (2011); Gretton
et al (2012)
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-
Beyond Euclidean metrics

@ Lyons (2011) generalized energy distance and distance covariance to
metric spaces of negative type (Z,p), s.t

Za,-OiZZaogpz,,zj 0.

i=1 j=1

Sejdinovic et al (CSML, UCL) Distances and Kernels ICML 2012, Edinburgh, UK 5/7



-
Beyond Euclidean metrics

@ Lyons (2011) generalized energy distance and distance covariance to
metric spaces of negative type (Z,p), s.t

Za,-OiZZanpz,,zj 0.
i=1 j=1

e lfpisa (semi)metric of negative type, then
k(z,2') = 3 [p(z,20) + p(z, 20) — p(z,2")] is a valid kernel (distance
kernel)
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-
Beyond Euclidean metrics

@ Lyons (2011) generalized energy distance and distance covariance to
metric spaces of negative type (Z,p), s.t

Za,-OiZZanpz,,zj 0.
i=1 j=1

e lfpisa (semi)metric of negative type, then
k(z,2') = 3 [p(z,20) + p(z, 20) — p(z,2")] is a valid kernel (distance
kernel)

o If k is a kernel, then p(z,2') = ||k(-, z) — k(~,z’)H§{k is a semimetric
of negative type (generated by k)
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Main results

Theorem

Let (Z,p) be a semimetric space of negative type and let k be any kernel
that generates p. Then,

DE,p(P7 Q) = 27]%(’D’ Q)
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N —
Main results

Theorem

Let (Z,p) be a semimetric space of negative type and let k be any kernel
that generates p. Then,

DEvp(’D’ Q) = 27]%(P7 Q)

Theorem
Let (X, px) and (Y, py) be semimetric spaces of negative type, and let ky
and ky be any two kernels on X and ) that generate px and py,
respectively. Then,

V2 (X, Y) =4HSIC3(X,Y; kx, ky).

PX,PY

Sejdinovic et al (CSML, UCL) Distances and Kernels ICML 2012, Edinburgh, UK 6/7



N —
Conclusions

@ Distance-based statistics of Szekely et al are a special case of the
RKHS framework.

@ Conversely, RKHS-based statistics have a clear interpretation in terms
of implicitly imposing a (semi)metric onto the original space.

@ For problem settings defined most naturally in terms of some given
distances, and where these distances are of negative type, RKHS
machinery can be brought to bear.
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