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Deep Learning

Observe data D :=
{

(xn, yn) | n = 1, . . . ,N
}
.

Likelihood is given by

p(D|w) =
N∏

n=1

p(yn|f (xn;w)), where e.g. yn|f (xn;w) ∼ N (f (xn;w), σ2),

and f (·;w) is a neural network with parameters w .

Deep learning �nds good optima of log p(D|w).
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Bayesian Deep Learning

Bayesian neural network:
Place a prior distribution p(w) on the network weights. This results in a prior
distribution on random functions, i.e. f (x ;W ), W ∼ p(w). Find posterior
p(w |D).

Why Bayesian Deep Learning?

Posteror predictive: for any new x∗ ∈ X averages over many individual neural
networks � and these are weighted by their agreement with observed data.

p(y∗|D) =

∫
p
(
y∗|w

)
p(w |D) dw

=

∫
p
(
y∗|f (x∗;w)

)
p(w |D) dw

Uncertainty quanti�cation: disagreement between the individual neural
networks outside of the data is captured by the posterior predictive.

But: the posterior p(w |D) is intractable � approximations are required.
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Posterior Approximations

Typical approximations include:

Sampling
I Hamiltonian Monte Carlo [Neal, 2012, Chen et al., 2014]
I Langevin Dynamics [Welling and Teh, 2011]
I ...And their stochastic variants.

Often not su�ciently scalable for most deep learning applications. Challenging
due to multimodality and high dimensionality.

Variational inference
I ...And its stochastic variants e.g. [Graves, 2011]
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Weight-Space Variational Inference

Variational approximation:
Let q(w) = q(w ; ν) be a class of distributions with (variational) parameters ν.
We want q(w ; ν) to approximate the true posterior p(w |D). Learn ν by
maximising the ELBO criterion lower bound on the marginal likelihood:

L(ν) := Eq(w)

[
log p(y |w)

]
− DKL

(
q(w)||p(w)

)
, (1)

which is (often) tractable, e.g. if q(w) and p(w) are normal.

Problems:

The parameter space for w is high-dimensional and the posterior multimodal.

Simple variational families mean very strong, unrealistic assumptions.
−→ Do we still capture enough of the true posterior to justify being
Bayesian? [Foong et al., 2020]
−→ Is uncertainty calibrated? [Ovadia et al., 2019]

What priors on the function space are induced by p(w): how do we encode
some sensible properties of functions via p(w)?
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Generalised Variational Inference in Function Spaces
Gaussian Measures meet Bayesian Deep Learning

Veit D. Wild (Oxford), Robert Hu (Amazon), Dino Sejdinovic (Adelaide)

NeurIPS 2022, arXiv:2205.06342, github.com/MrHu�/GWI
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Function-Space Variational Inference

We care about functions, not weights!

Can we perform inference in the function space directly?
[Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and
Hernández-Lobato, 2021]

L = EQ
[

log p(y |F )
]
− DKL

(
QF ||PF

)
,

where QF ,PF ∈ P(E ) with:

E is a (potentially in�nite dimensional) separable Hilbert space of functions

P(E ) the space of Borel probability measures on E

A new set of challenges:

Prior speci�cation on in�nite dimensional function spaces?
→ Gaussian measures on Hilbert spaces (e.g. Gaussian processes)

The KL-divergence is (in general) intractable in in�nite dimensions and may
be in�nite [Burt et al., 2020].
→ Is there another way?

Wild, Hu, Sejdinovic GVI in Function Spaces 7 / 33



Function-Space Variational Inference

We care about functions, not weights!

Can we perform inference in the function space directly?
[Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and
Hernández-Lobato, 2021]

L = EQ
[

log p(y |F )
]
− DKL

(
QF ||PF

)
,

where QF ,PF ∈ P(E ) with:

E is a (potentially in�nite dimensional) separable Hilbert space of functions

P(E ) the space of Borel probability measures on E

A new set of challenges:

Prior speci�cation on in�nite dimensional function spaces?
→ Gaussian measures on Hilbert spaces (e.g. Gaussian processes)

The KL-divergence is (in general) intractable in in�nite dimensions and may
be in�nite [Burt et al., 2020].
→ Is there another way?

Wild, Hu, Sejdinovic GVI in Function Spaces 7 / 33



Function-Space Variational Inference

We care about functions, not weights!

Can we perform inference in the function space directly?
[Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and
Hernández-Lobato, 2021]

L = EQ
[

log p(y |F )
]
− DKL

(
QF ||PF

)
,

where QF ,PF ∈ P(E ) with:

E is a (potentially in�nite dimensional) separable Hilbert space of functions

P(E ) the space of Borel probability measures on E

A new set of challenges:

Prior speci�cation on in�nite dimensional function spaces?
→ Gaussian measures on Hilbert spaces (e.g. Gaussian processes)

The KL-divergence is (in general) intractable in in�nite dimensions and may
be in�nite [Burt et al., 2020].
→ Is there another way?

Wild, Hu, Sejdinovic GVI in Function Spaces 7 / 33



Function-Space Variational Inference

We care about functions, not weights!

Can we perform inference in the function space directly?
[Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and
Hernández-Lobato, 2021]

L = EQ
[

log p(y |F )
]
− DKL

(
QF ||PF

)
,

where QF ,PF ∈ P(E ) with:

E is a (potentially in�nite dimensional) separable Hilbert space of functions

P(E ) the space of Borel probability measures on E

A new set of challenges:

Prior speci�cation on in�nite dimensional function spaces?
→ Gaussian measures on Hilbert spaces (e.g. Gaussian processes)

The KL-divergence is (in general) intractable in in�nite dimensions and may
be in�nite [Burt et al., 2020].
→ Is there another way?

Wild, Hu, Sejdinovic GVI in Function Spaces 7 / 33



Function-Space Variational Inference

We care about functions, not weights!

Can we perform inference in the function space directly?
[Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and
Hernández-Lobato, 2021]

L = EQ
[

log p(y |F )
]
− DKL

(
QF ||PF

)
,

where QF ,PF ∈ P(E ) with:

E is a (potentially in�nite dimensional) separable Hilbert space of functions

P(E ) the space of Borel probability measures on E

A new set of challenges:

Prior speci�cation on in�nite dimensional function spaces?

→ Gaussian measures on Hilbert spaces (e.g. Gaussian processes)

The KL-divergence is (in general) intractable in in�nite dimensions and may
be in�nite [Burt et al., 2020].
→ Is there another way?

Wild, Hu, Sejdinovic GVI in Function Spaces 7 / 33



Function-Space Variational Inference

We care about functions, not weights!

Can we perform inference in the function space directly?
[Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and
Hernández-Lobato, 2021]

L = EQ
[

log p(y |F )
]
− DKL

(
QF ||PF

)
,

where QF ,PF ∈ P(E ) with:

E is a (potentially in�nite dimensional) separable Hilbert space of functions

P(E ) the space of Borel probability measures on E

A new set of challenges:

Prior speci�cation on in�nite dimensional function spaces?
→ Gaussian measures on Hilbert spaces (e.g. Gaussian processes)

The KL-divergence is (in general) intractable in in�nite dimensions and may
be in�nite [Burt et al., 2020].
→ Is there another way?

Wild, Hu, Sejdinovic GVI in Function Spaces 7 / 33



Function-Space Variational Inference

We care about functions, not weights!

Can we perform inference in the function space directly?
[Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and
Hernández-Lobato, 2021]

L = EQ
[

log p(y |F )
]
− DKL

(
QF ||PF

)
,

where QF ,PF ∈ P(E ) with:

E is a (potentially in�nite dimensional) separable Hilbert space of functions

P(E ) the space of Borel probability measures on E

A new set of challenges:

Prior speci�cation on in�nite dimensional function spaces?
→ Gaussian measures on Hilbert spaces (e.g. Gaussian processes)

The KL-divergence is (in general) intractable in in�nite dimensions and may
be in�nite [Burt et al., 2020].

→ Is there another way?

Wild, Hu, Sejdinovic GVI in Function Spaces 7 / 33



Function-Space Variational Inference

We care about functions, not weights!

Can we perform inference in the function space directly?
[Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and
Hernández-Lobato, 2021]

L = EQ
[

log p(y |F )
]
− DKL

(
QF ||PF

)
,

where QF ,PF ∈ P(E ) with:

E is a (potentially in�nite dimensional) separable Hilbert space of functions

P(E ) the space of Borel probability measures on E

A new set of challenges:

Prior speci�cation on in�nite dimensional function spaces?
→ Gaussian measures on Hilbert spaces (e.g. Gaussian processes)

The KL-divergence is (in general) intractable in in�nite dimensions and may
be in�nite [Burt et al., 2020].
→ Is there another way?
Wild, Hu, Sejdinovic GVI in Function Spaces 7 / 33



GVI: Probabilistic Lifting + Convexi�cation

Generalised Variational Inference [Knoblauch et al., 2022]:
Posterior approximation uses a generalised criterion

q∗(w) := argmin
q∈Q

{
Eq(w)

[ N∑
n=1

`(yn,w)
]

+ D
(
q(w), p(w)

)}
, (2)

where:

Q is a set of tractable distributions

` is a loss function (not necessarily log-likelihood)

D is a distance between probability measures (not necessarily KL)

Interpretation: Take any (non-convex) loss surface, and perform probabilistic
lifting by averaging over q. Finally, the regularizer plays the role of
convexi�cation, making the objective in q strictly convex.
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This work: GVI in Function Spaces

Idea: Use GVI in an in�nite dimensional function space: we extend results of
Knoblauch et al. [2022] to in�nite dimensional parameter spaces.

We can target
L := −EQ

[
log p(y |F )

]
+ D

(
QF ,PF

)
, (3)

for inference where D is an appropriate distance between probability measures
on the function space.

1 How to de�ne prior PF ?

2 What distance should we use?

3 How to parametrize variational measures QF ?
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1. Prior: Gaussian Measures on Hilbert spaces

Let
(
Ω,A,P

)
be a probability space and

(
H, 〈·, ·〉

)
be a Hilbert space.

A random mapping F : Ω→ H is called Gaussian random element (GRE) i�

〈F , h〉 : Ω→ R

is a scalar Gaussian variable for every h ∈ H.
The mean element of F is de�ned as

m := E[F ] :=

∫
F (ω) dP(ω) ∈ H

and the covariance operator C : H → H of F is de�ned as

C (h) :=

∫
〈F (ω), h〉F (ω) dP(ω)− 〈m, h〉m, h ∈ H.

Write F ∼ N (m,C ) for a GRE with mean element m ∈ H and covariance
operator C . N (m,C ) is called a Gaussian measure on H.
For arbitrary m ∈ H and arbitrary positive, self-adjoint and trace-class C , there
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2. The choice of divergence: Wasserstein-2

Recall the generalised loss:

L := −EQ
[

log p(y |F )
]

+ D
(
QF ,PF

)

(4)

Gaussian Wasserstein Inference:

E = L2(X , ρ,R) :=
{
f : X → R |

∫
|f (x)|2 dρ(x) <∞

}
with ρ input

distribution on X
P := PF ∼ N

(
mP ,CP

)
Q := QF ∼ N

(
mQ ,CQ

)
D(·, ·) = W2(·, ·) with W2 given as Wasserstein-distance

with:

CPg :=

∫
k(·, x ′)g(x ′) dρ(x ′), CQg :=

∫
r(·, x ′)g(x ′) dρ(x ′) (5)

for all g ∈ L2(X , ρ,R) where k and r are trace-class kernels.
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2. The choice of divergence: Wasserstein-2

The Wasserstein distance between Gaussian measures on Hilbert spaces has a
closed-form expression [Gelbrich, 1990]:

W 2
2 (P,Q) = ‖mP −mQ‖22 + tr(CP) + tr(CQ)− 2 · tr

[(
C
1/2
P CQC

1/2
P

)1/2]
, (6)

where tr(·) denotes the trace of an operator and C
1/2
P is the square root of the

positive, self-adjoint operator CP .
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2. The choice of divergence: Wasserstein-2

Estimation of Wasserstein-2 for Gaussian measures:

‖mP −mQ‖22 =

∫ (
mP(x)−mQ(x)

)2
dρ(x)

≈ 1

N

N∑
n=1

(
mP(xn)−mQ(xn)

)2

Further:

tr(CP) =

∫
k(x , x) dρ(x) ≈ 1

N

N∑
n=1

k(xn, xn),

tr(CQ) =

∫
r(x , x) dρ(x) ≈ 1

N

N∑
n=1

r(xn, xn).
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2. The choice of divergence: Wasserstein-2

The last term poses some di�culties:

tr
[(
C
1/2
P CQC

1/2
P

)1/2] ≈ 1√
NNS

NS∑
s=1

√
λs
(
r(XS ,X )k(X ,XS)

)
, (7)

where XS := (xS,1, . . . , xS,NS
), NS ∈ N with:

XS,1, . . . ,XS,NS

ind.∼ ρ̂ (8)

r(XS ,X ) :=
(
r(xS,s , xn)

)
s,n

(9)

k(X ,XS) :=
(
k(xn, xS,s)

)
n,s

(10)

and λs
(
r(XS ,X )k(X ,XS)

)
denotes the s-th eigenvalue of the matrix

r(XS ,X )k(X ,XS) ∈ RNS×NS .
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The �nal objective

The �nal objective (in the case of the regression, i.e. normal likelihood):

L = L + Ŵ 2 (11)

with:

L :=
N

2
log(2πσ2) +

N∑
n=1

(
yn −mQ(xn)

)2
+ r(xn, xn)

2σ2
(12)

Ŵ 2 :=
1

N

N∑
n=1

(
mP(xn)−mQ(xn)

)2
+

1

N

N∑
n=1

k(xn, xn) (13)

+
1

N

N∑
n=1

r(xn, xn)− 2√
NNS

NS∑
s=1

√
λs
(
r(XS ,X )k(X ,XS)

)
, (14)
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Ŵ 2 :=
1

N

N∑
n=1

(
mP(xn)−mQ(xn)

)2
+

1

N

N∑
n=1

k(xn, xn) (13)

+
1

N

N∑
n=1

r(xn, xn)− 2√
NNS

NS∑
s=1

√
λs
(
r(XS ,X )k(X ,XS)

)
, (14)

Wild, Hu, Sejdinovic GVI in Function Spaces 15 / 33



3. How to parametrize the variational family?

Stochastic Variational Gaussian processes (SVGP) [Titsias, 2009]:

mQ(x) := mP(x) +
M∑

m=1

βmk(x , zm) (15)

r(x , x ′) := k(x , x ′)− kZ (x)Tk(Z ,Z )−1kZ (x) + kZ (x)TΣkZ (x), (16)

where β = (β1, . . . , βM) ∈ RM and Σ ∈ RM×M are variational parameters.
Z = (Z1, . . . ,ZM) can be a data subsample or also included as variational
parameters.

Wild, Hu, Sejdinovic GVI in Function Spaces 16 / 33



3. How to parametrize the variational family?

GWI-net mQ : Use a deep neural net as the parametrization of the variational
posterior mean.

GWI-net CQ : Use the covariance parametrization of SVGP.
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In a nutshell

Deep neural network is our model and network weights are the model
parameters.
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In a nutshell

Deep neural network is our model and network weights are the model
parameters.

Our model is de�ned directly on the function space and deep neural network
weights are the variational parameters.
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Toy Examples: GWI-net on 1-D data

Figure: : Training data : Unseen data : Inducing points
We use N = 1000 equidistant points and add white noise with ε ∼ N (0, 0.52).
The plot shows mQ(x)± 1.96

√
V[Y ∗(x)|Y ] where V[Y ∗(x)|Y ] is the posterior

predictive variance given as r(x , x) + σ2.
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UCI Regression

Dataset N D GWI FVI VIP-BNN VIP-NP BBB VDO α = 0.5 FBNN EXACT GPSVGP DNN-SVGP
BOSTON 506 13 2.8±0.31 2.27±0.06 2.33±0.04 2.45±0.04 2.45±0.03 2.76±0.04 2.63±0.10 2.45±0.02 2.30±0.10 2.46±0.04
CONCRETE 1030 8 3.24±0.09 2.64±0.06 2.88±0.06 3.02±0.02 3.13±0.02 3.28±0.01 3.23±0.01 3.06±0.03 3.09±0.01 3.05±0.02
ENERGY 768 8 1.81±0.19 0.91±0.12 0.58±0.05 0.56±0.04 0.60±0.03 2.17±0.02 1.13±0.02 0.95±0.09 0.68±0.02 0.54±0.02
KIN8NM 8192 8 -0.86±0.38 -1.2±0.03 -1.15±0.01 -1.12±0.01 -1.05±0.00 -0.81±0.01 -0.83±0.01 -0.92±0.02 N/A±0.00 N/A±0.00
POWER 9568 4 3.35±0.22 2.74±0.02 2.69±0.00 2.92±0.00 2.90±0.00 2.83±0.01 2.88±0.00 2.81±0.00 N/A±0.00 N/A±0.00
PROTEIN 45730 9 2.84±0.04 2.87±0.0 2.85±0.00 2.87±0.00 2.96±0.02 3.00±0.00 2.99±0.00 2.90±0.00 N/A±0.00 N/A±0.00
RED WINE 1588 11 0.97±0.02 0.76±0.08 0.97±0.06 0.97±0.02 1.20±0.04 1.01±0.02 0.97±0.02 1.01±0.02 1.04±0.01 0.26±0.03
YACHT 308 6 2.37±0.55 0.29±0.1 0.59±0.11 -0.02±0.07 0.59±0.13 1.11±0.04 1.22±0.18 0.79±0.11 1.03±0.03 0.10±0.05
NAVAL 11934 16 -7.25±0.08 -6.76±0.1 -7.21±0.06 -5.62±0.04 -4.11±0.00 -2.80±0.00 -2.80±0.00 -2.97±0.14 -7.13±0.02 N/A±0.00
Mean Rank 5.5 2.06 2.22 3.33 4.94 7 6.11 4.83

Table: The table shows the average test NLL on several UCI regression datasets. We
train on random 90% of the data and predict on 10%. This is repeated 10 times and we
report mean and standard deviation. The results for our competitors are taken from Ma
and Hernández-Lobato [2021].
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Classi�cation

FMNIST CIFAR 10
Model Accuracy NLL OOD-AUC Accuracy NLL OOD-AUC
GWI-net 93.25 ±0.09 0.250 ±0.00 0.959 ±0.01 83.82 ±0.00 0.553 ±0.00 0.618 ±0.00
FVI 91.60±0.14 0.254±0.05 0.956±0.06 77.69 ±0.64 0.675±0.03 0.883±0.04
MFVI 91.20±0.10 0.343±0.01 0.782±0.02 76.40±0.52 1.372±0.02 0.589±0.01
MAP 91.39±0.11 0.258±0.00 0.864±0.00 77.41±0.06 0.690±0.00 0.809±0.01
KFAC-LAPLACE 84.42±0.12 0.942±0.01 0.945±0.00 72.49±0.20 1.274±0.01 0.548±0.01
RITTER et al. 91.20±0.07 0.265±0.00 0.947±0.00 77.38±0.06 0.661±0.00 0.796±0.00

Table: We report average accuracy, NLL and OOD-AUC on test data for 10 di�erent
train/test splits.
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Summary

Deep Neural Networks are good prediction models. Let's make them
Bayesian.
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Summary

Deep Neural Networks are good prediction models. Let's make them
Bayesian.

Deep Neural Networks are a good parametrization of the variational posterior
for function space models.

As a practical viewpoint: a di�erent (generalized variational) objective for
training your favourite deep neural net, which has extra parameters to
quantify uncertainty.
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A Rigorous Link between Deep Ensembles and
(Variational) Bayesian Methods

Veit D. Wild (Oxford), Sahra Ghalebikesabi (Oxford),
Dino Sejdinovic (Adelaide), Jeremias Knoblauch (UCL)

NeurIPS 2023, arXiv:2305.15027, github.com/sghalebikesabi/GVI-WGF
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GVI: Probabilistic Lifting + Convexi�cation

Generalised Variational Inference [Knoblauch et al., 2022]:
Posterior approximation uses a generalised criterion

Q∗(θ) := argmin
Q∈Q

{
EQ(θ)

[ N∑
n=1

`(yn, θ)
]

+ D
(
Q(θ),P(θ)

)}
︸ ︷︷ ︸

L(Q)

,

where:

Q is a set of tractable distributions

` is a loss function (not necessarily log-likelihood)

D is a distance between probability measures (not necessarily KL)

Interpretation: Take any (non-convex) loss surface, and perform probabilistic
lifting by averaging over q. Finally, the regularizer plays the role of
convexi�cation, making the objective in q strictly convex.
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Relaxing the variational family assumption?

Idea: formulate a gradient �ow in the space of probability measures [Ambrosio
et al., 2005] on the (generalized) variational objective L(Q).

Parameter space

Initialise: θ0 ∈ RJ

Gradient step:

θk+1 =

arg min
θ∈RJ

{
`(θ) +

1

2η
‖θ − θk‖22

}
.

Probability space

Initialise: Q0 ∈ P2(RJ)

Gradient step:

Qk+1 =

arg min
Q∈P2(RJ )

{
L(Q) +

1

2η
W2(Q,Qk)2

}
with 2-Wasserstein metric

W2(P,Q)2 = inf

{∫
||θ − θ′||22 dπ(θ, θ′) : π ∈ C(P,Q)

}
.
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A general form of objective

L(Q) :=

∫
V (θ) dQ(θ) +

λ1
2

∫∫
κ(θ, θ′) dQ(θ)dQ(θ′) + λ2

∫
log q(θ)q(θ) dθ,

The overall energy of a collection of particles sampled from Q is decomposed into
three parts:

the external potential V (θ) which acts on each particle individually

the interaction energy de�ned via kernel κ(θ, θ′) describing pairwise
interactions between particles,

the overall entropy of the system.

This is precisely the GVI objective with regularizer that is a mixture of KL and
MMD:

D(Q,P) = λ1MMD2(Q,P) + λ2KL(Q,P)
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Implementing the Wasserstein Gradient Flow

Interacting particles scheme:

Step 1: Sample NE ∈ N particles θ1(0), . . . , θNE
(0) independently from

Q0 ∈ P2(RJ).

Step 2: Evolve the particle θn by following the stochastic di�erential
equation (SDE)

dθn(t) = −
(
∇V

(
θn(t)

)
+
λ1
NE

NE∑
j=1

(∇1κ)
(
θn(t), θj(t)

))
dt +

√
2λ2dBn(t),

for n = 1, . . . ,NE , and {Bn(t)}t>0 independent Brownian motions.

Cases:

No regularizer, i.e. λ1 = λ2 = 0: deep ensemble [Lakshminarayanan et al.,
2017], No convergence to the global optimum.

Only KL regularizer, i.e. λ1 = 0: deep Langevin ensemble (essentially
Lakshminarayanan et al. [2017]+Welling and Teh [2011]), Converges to the
global optimum.

KL+MMD regularizer: deep repulsive Langevin ensemble (new), Converges
to the global optimum
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Number of particles NE when many local minima are present

A uniform prior P and initialisation Q0 and the loss `(θ) := −| sin(θ)|,
θ ∈ [−1000π, 1000π], which has 2000 local minima.

2000 0 20000

2

4

6

C
ou

nt

DE
DLE
DRLE

Figure: We generate NE = 20 samples from the three ensemble methods. The x-axis
shows the location of the particles after training. Since the same initialisation θn(0) is
chosen for all methods, we observe that particles fall into the same local modes. Further,
16/20 particles are alone in their respective local modes and the location of the particles
varies very little between the di�erent methods.
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Summary

Gradient �ows for GVI allow to unify a collection of existing algorithms under
a common conceptual roof and plant the seeds for new deep ensemble
algorithms.

Performance di�erence between simple deep ensembles and more intricate
schemes may not be numerically discernible for loss landscapes with many
local minima.
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Losses

For regression, y ∈ R,

p(D|F ) =
N∏

n=1

p(yn|F (xn)) =
N∏

n=1

N (yn |F (xn), σ2), (17)

where σ2 > 0.
For classi�cation, y ∈ {−1,+1},

p(D|F ) =
N∏

n=1

p(yn|F (xn)) =
N∏

n=1

σ(ynF (Xn)), (18)

where σ(t) = 1/(1 + e−t)
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Computational complexity

L is tractable for any mP ,mQ , k and r

One evaluation of L requires:
I N evaluations of mQ and mP

I NS · N evaluations of r and k
I O(N + N2

SN + N3

S )operations for the eigenvalue problem

One evaluation of L in batch-mode requires:
I NB evaluations of mQ and mP

I NS · NB evaluations of r and k
I O(NB + N2

SNB + N3

S ) operations for the eigenvalue problem

−→ typically NS ,NB << N, e.g. NS = NB = 100
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