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Deep Learning

Observe data D :=
{

(xn, yn) | n = 1, . . . ,N
}
.

Likelihood is given by

p(D|w) =
N∏

n=1

p(yn|f (xn;w)), where e.g. yn|f (xn;w) ∼ N (f (xn;w), σ2),

and f (·;w) is a neural network with parameters w .

Deep learning �nds good optima of log p(D|w).
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Bayesian Deep Learning

Bayesian neural network:
Place a prior distribution p(w) on the network weights. This results in a prior
distribution on random functions, i.e. f (x ;W ), W ∼ p(w). Find posterior
p(w |D).

Why Bayesian Deep Learning?

Posteror predictive: for any new x∗ ∈ X averages over many individual neural
networks � and these are weighted by their agreement with observed data.

p(y∗|D) =

∫
p
(
y∗|w

)
p(w |D) dw

=

∫
p
(
y∗|f (x∗;w)

)
p(w |D) dw

Uncertainty quanti�cation: disagreement between the individual neural
networks outside of the data is captured by the posterior predictive.

But: the posterior p(w |D) is intractable � approximations are required.
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Posterior Approximations

Typical approximations include:

Sampling
I Hamiltonian Monte Carlo [Neal, 2012, Chen et al., 2014]
I Langevin Dynamics [Welling and Teh, 2011]
I ...And their stochastic variants.

Often not su�ciently scalable for most deep learning applications. Challenging
due to multimodality and high dimensionality.

Variational inference
I ...And its stochastic variants e.g. [Graves, 2011]
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Weight-Space Variational Inference

Variational approximation:
Let q(w) = q(w ; ν) be a class of distributions with (variational) parameters ν.
We want q(w ; ν) to approximate the true posterior p(w |D). Learn ν by
maximising the ELBO criterion lower bound on the marginal likelihood:

L(ν) := Eq(w)

[
log p(y |w)

]
− DKL

(
q(w)||p(w)

)
, (1)

which is (often) tractable, e.g. if q(w) and p(w) are normal.

Problems:

The parameter space for w is high-dimensional and the posterior multimodal.

Simple variational families mean very strong, unrealistic assumptions.
−→ Do we still capture enough of the true posterior to justify being
Bayesian? [Foong et al., 2020]
−→ Is uncertainty calibrated? [Ovadia et al., 2019]

What priors on the function space are induced by p(w): how do we encode
some sensible properties of functions via p(w)?
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Generalised Variational Inference in Function Spaces
Gaussian Measures meet Bayesian Deep Learning

Veit D. Wild (Oxford), Robert Hu (Amazon), Dino Sejdinovic (Adelaide)

NeurIPS 2022, arXiv:2205.06342, github.com/MrHu�/GWI
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Function-Space Variational Inference

We care about functions, not weights!

Can we perform inference in the function space directly?
[Ma et al., 2019, Sun et al., 2019, Rudner et al., 2020, Ma and
Hernández-Lobato, 2021]

L = EQ
[

log p(y |F )
]
− DKL

(
QF ||PF

)
,

where QF ,PF ∈ P(E ) with:

E is a (potentially in�nite dimensional) separable Hilbert space of functions

P(E ) the space of Borel probability measures on E

A new set of challenges:

Prior speci�cation on in�nite dimensional function spaces?
→ Gaussian measures on Hilbert spaces (e.g. Gaussian processes)

The KL-divergence is (in general) intractable in in�nite dimensions and may
be in�nite [Burt et al., 2020].
→ Is there another way?
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GVI: Probabilistic Lifting + Convexi�cation

Generalised Variational Inference [Knoblauch et al., 2022]:
Posterior approximation uses a generalised criterion

q∗(w) := argmin
q∈Q

{
Eq(w)

[ N∑
n=1

`(yn,w)
]

+ D
(
q(w), p(w)

)}
, (2)

where:

Q is a set of tractable distributions

` is a loss function (not necessarily log-likelihood)

D is a distance between probability measures (not necessarily KL)

Interpretation: Take any (non-convex) loss surface, and perform probabilistic
lifting by averaging over q. Finally, the regularizer plays the role of
convexi�cation, making the objective in q strictly convex.
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This work: GVI in Function Spaces

Idea: Use GVI in an in�nite dimensional function space: we extend results of
Knoblauch et al. [2022] to in�nite dimensional parameter spaces.

We can target
L := −EQ

[
log p(y |F )

]
+ D

(
QF ,PF

)
, (3)

for inference where D is an appropriate distance between probability measures
on the function space.

1 How to de�ne prior PF ?

2 What distance should we use?

3 How to parametrize variational measures QF ?
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1. Prior: Gaussian Measures on Hilbert spaces

Let
(
Ω,A,P

)
be a probability space and

(
H, 〈·, ·〉

)
be a Hilbert space.

A random mapping F : Ω→ H is called Gaussian random element (GRE) i�

〈F , h〉 : Ω→ R

is a scalar Gaussian variable for every h ∈ H.
The mean element of F is de�ned as

m := E[F ] :=

∫
F (ω) dP(ω) ∈ H

and the covariance operator C : H → H of F is de�ned as

C (h) :=

∫
〈F (ω), h〉F (ω) dP(ω)− 〈m, h〉m, h ∈ H.

Write F ∼ N (m,C ) for a GRE with mean element m ∈ H and covariance
operator C . N (m,C ) is called a Gaussian measure on H.
For arbitrary m ∈ H and arbitrary positive, self-adjoint and trace-class C , there
exists a GRE such that F ∼ N (m,C ).
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2. The choice of divergence: Wasserstein-2

Recall the generalised loss:

L := −EQ
[

log p(y |F )
]

+ D
(
QF ,PF

)

(4)

Gaussian Wasserstein Inference:

E = L2(X , ρ,R) :=
{
f : X → R |

∫
|f (x)|2 dρ(x) <∞

}
with ρ input

distribution on X
P := PF ∼ N

(
mP ,CP

)
Q := QF ∼ N

(
mQ ,CQ

)
D(·, ·) = W2(·, ·) with W2 given as Wasserstein-distance

with:

CPg :=

∫
k(·, x ′)g(x ′) dρ(x ′), CQg :=

∫
r(·, x ′)g(x ′) dρ(x ′) (5)

for all g ∈ L2(X , ρ,R) where k and r are trace-class kernels.
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2. The choice of divergence: Wasserstein-2

The Wasserstein distance between Gaussian measures on Hilbert spaces has a
closed-form expression [Gelbrich, 1990]:

W 2
2 (P,Q) = ‖mP −mQ‖22 + tr(CP) + tr(CQ)− 2 · tr

[(
C
1/2
P CQC

1/2
P

)1/2]
, (6)

where tr(·) denotes the trace of an operator and C
1/2
P is the square root of the

positive, self-adjoint operator CP .
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2. The choice of divergence: Wasserstein-2

Estimation of Wasserstein-2 for Gaussian measures:

‖mP −mQ‖22 =

∫ (
mP(x)−mQ(x)

)2
dρ(x)

≈ 1

N

N∑
n=1

(
mP(xn)−mQ(xn)

)2

Further:

tr(CP) =

∫
k(x , x) dρ(x) ≈ 1

N

N∑
n=1

k(xn, xn),

tr(CQ) =

∫
r(x , x) dρ(x) ≈ 1

N

N∑
n=1

r(xn, xn).
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2. The choice of divergence: Wasserstein-2

The last term poses some di�culties:

tr
[(
C
1/2
P CQC

1/2
P

)1/2] ≈ 1√
NNS

NS∑
s=1

√
λs
(
r(XS ,X )k(X ,XS)

)
, (7)

where XS := (xS,1, . . . , xS,NS
), NS ∈ N with:

XS,1, . . . ,XS,NS

ind.∼ ρ̂ (8)

r(XS ,X ) :=
(
r(xS,s , xn)

)
s,n

(9)

k(X ,XS) :=
(
k(xn, xS,s)

)
n,s

(10)

and λs
(
r(XS ,X )k(X ,XS)

)
denotes the s-th eigenvalue of the matrix

r(XS ,X )k(X ,XS) ∈ RNS×NS .
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The �nal objective

The �nal objective (in the case of the regression, i.e. normal likelihood):

L = L + Ŵ 2 (11)

with:

L :=
N

2
log(2πσ2) +

N∑
n=1

(
yn −mQ(xn)

)2
+ r(xn, xn)

2σ2
(12)

Ŵ 2 :=
1

N

N∑
n=1

(
mP(xn)−mQ(xn)

)2
+

1

N

N∑
n=1

k(xn, xn) (13)

+
1

N

N∑
n=1

r(xn, xn)− 2√
NNS

NS∑
s=1

√
λs
(
r(XS ,X )k(X ,XS)

)
, (14)
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3. How to parametrize the variational family?

Stochastic Variational Gaussian processes (SVGP) [Titsias, 2009]:

mQ(x) := mP(x) +
M∑

m=1

βmk(x , zm) (15)

r(x , x ′) := k(x , x ′)− kZ (x)Tk(Z ,Z )−1kZ (x) + kZ (x)TΣkZ (x), (16)

where β = (β1, . . . , βM) ∈ RM and Σ ∈ RM×M are variational parameters.
Z = (Z1, . . . ,ZM) can be a data subsample or also included as variational
parameters.

Wild, Hu, Sejdinovic GVI in Function Spaces 16 / 31



3. How to parametrize the variational family?

GWI-net mQ : Use a deep neural net as the parametrization of the variational
posterior mean.

GWI-net CQ : Use the covariance parametrization of SVGP.
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In a nutshell

Deep neural network is our model and network weights are the model
parameters.
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In a nutshell

Deep neural network is our model and network weights are the model
parameters.

Our model is de�ned directly on the function space and deep neural network
weights are the variational parameters.
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Toy Examples: GWI-net on 1-D data

Figure: : Training data : Unseen data : Inducing points
We use N = 1000 equidistant points and add white noise with ε ∼ N (0, 0.52).
The plot shows mQ(x)± 1.96

√
V[Y ∗(x)|Y ] where V[Y ∗(x)|Y ] is the posterior

predictive variance given as r(x , x) + σ2.
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UCI Regression

Dataset N D GWI FVI VIP-BNN VIP-NP BBB VDO α = 0.5 FBNN EXACT GPSVGP DNN-SVGP
BOSTON 506 13 2.8±0.31 2.27±0.06 2.33±0.04 2.45±0.04 2.45±0.03 2.76±0.04 2.63±0.10 2.45±0.02 2.30±0.10 2.46±0.04
CONCRETE 1030 8 3.24±0.09 2.64±0.06 2.88±0.06 3.02±0.02 3.13±0.02 3.28±0.01 3.23±0.01 3.06±0.03 3.09±0.01 3.05±0.02
ENERGY 768 8 1.81±0.19 0.91±0.12 0.58±0.05 0.56±0.04 0.60±0.03 2.17±0.02 1.13±0.02 0.95±0.09 0.68±0.02 0.54±0.02
KIN8NM 8192 8 -0.86±0.38 -1.2±0.03 -1.15±0.01 -1.12±0.01 -1.05±0.00 -0.81±0.01 -0.83±0.01 -0.92±0.02 N/A±0.00 N/A±0.00
POWER 9568 4 3.35±0.22 2.74±0.02 2.69±0.00 2.92±0.00 2.90±0.00 2.83±0.01 2.88±0.00 2.81±0.00 N/A±0.00 N/A±0.00
PROTEIN 45730 9 2.84±0.04 2.87±0.0 2.85±0.00 2.87±0.00 2.96±0.02 3.00±0.00 2.99±0.00 2.90±0.00 N/A±0.00 N/A±0.00
RED WINE 1588 11 0.97±0.02 0.76±0.08 0.97±0.06 0.97±0.02 1.20±0.04 1.01±0.02 0.97±0.02 1.01±0.02 1.04±0.01 0.26±0.03
YACHT 308 6 2.37±0.55 0.29±0.1 0.59±0.11 -0.02±0.07 0.59±0.13 1.11±0.04 1.22±0.18 0.79±0.11 1.03±0.03 0.10±0.05
NAVAL 11934 16 -7.25±0.08 -6.76±0.1 -7.21±0.06 -5.62±0.04 -4.11±0.00 -2.80±0.00 -2.80±0.00 -2.97±0.14 -7.13±0.02 N/A±0.00
Mean Rank 5.5 2.06 2.22 3.33 4.94 7 6.11 4.83

Table: The table shows the average test NLL on several UCI regression datasets. We
train on random 90% of the data and predict on 10%. This is repeated 10 times and we
report mean and standard deviation. The results for our competitors are taken from Ma
and Hernández-Lobato [2021].
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Classi�cation

FMNIST CIFAR 10
Model Accuracy NLL OOD-AUC Accuracy NLL OOD-AUC
GWI-net 93.25 ±0.09 0.250 ±0.00 0.959 ±0.01 83.82 ±0.00 0.553 ±0.00 0.618 ±0.00
FVI 91.60±0.14 0.254±0.05 0.956±0.06 77.69 ±0.64 0.675±0.03 0.883±0.04
MFVI 91.20±0.10 0.343±0.01 0.782±0.02 76.40±0.52 1.372±0.02 0.589±0.01
MAP 91.39±0.11 0.258±0.00 0.864±0.00 77.41±0.06 0.690±0.00 0.809±0.01
KFAC-LAPLACE 84.42±0.12 0.942±0.01 0.945±0.00 72.49±0.20 1.274±0.01 0.548±0.01
RITTER et al. 91.20±0.07 0.265±0.00 0.947±0.00 77.38±0.06 0.661±0.00 0.796±0.00

Table: We report average accuracy, NLL and OOD-AUC on test data for 10 di�erent
train/test splits.
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Summary

Deep Neural Networks are good prediction models. Let's make them
Bayesian.
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Summary

Deep Neural Networks are good prediction models. Let's make them
Bayesian.

Deep Neural Networks are a good parametrization of the variational posterior
for function space models.
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A Rigorous Link between Deep Ensembles and
(Variational) Bayesian Methods

Veit D. Wild (Oxford), Sahra Ghalebikesabi (Oxford),
Dino Sejdinovic (Adelaide), Jeremias Knoblauch (UCL)

NeurIPS 2023, arXiv:2305.15027, github.com/sghalebikesabi/GVI-WGF
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GVI: Probabilistic Lifting + Convexi�cation

Generalised Variational Inference [Knoblauch et al., 2022]:
Posterior approximation uses a generalised criterion

Q∗(θ) := argmin
Q∈Q

{
EQ(θ)

[ N∑
n=1

`(yn, θ)
]

+ D
(
Q(θ),P(θ)

)}
︸ ︷︷ ︸

L(Q)

,

where:

Q is a set of tractable distributions

` is a loss function (not necessarily log-likelihood)

D is a distance between probability measures (not necessarily KL)

Interpretation: Take any (non-convex) loss surface, and perform probabilistic
lifting by averaging over q. Finally, the regularizer plays the role of
convexi�cation, making the objective in q strictly convex.
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Relaxing the variational family assumption?

Idea: formulate a gradient �ow in the space of probability measures [Ambrosio
et al., 2005] on the (generalized) variational objective L(Q).

Parameter space

Initialise: θ0 ∈ RJ

Gradient step:

θk+1 =

arg min
θ∈RJ

{
`(θ) +

1

2η
‖θ − θk‖22

}
.

Probability space

Initialise: Q0 ∈ P2(RJ)

Gradient step:

Qk+1 =

arg min
Q∈P2(RJ )

{
L(Q) +

1

2η
W2(Q,Qk)2

}
with 2-Wasserstein metric

W2(P,Q)2 = inf

{∫
||θ − θ′||22 dπ(θ, θ′) : π ∈ C(P,Q)

}
.
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A general form of objective

L(Q) :=

∫
V (θ) dQ(θ) +

λ1
2

∫∫
κ(θ, θ′) dQ(θ)dQ(θ′) + λ2

∫
log q(θ)q(θ) dθ,

The overall energy of a collection of particles sampled from Q is decomposed into
three parts:

the external potential V (θ) which acts on each particle individually

the interaction energy de�ned via kernel κ(θ, θ′) describing pairwise
interactions between particles,

the overall entropy of the system.

This is precisely the GVI objective with regularizer that is a mixture of KL and
MMD:

D(Q,P) = λ1MMD2(Q,P) + λ2KL(Q,P)
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Implementing the Wasserstein Gradient Flow

Interacting particles scheme:

Step 1: Sample NE ∈ N particles θ1(0), . . . , θNE
(0) independently from

Q0 ∈ P2(RJ).

Step 2: Evolve the particle θn by following the stochastic di�erential
equation (SDE)

dθn(t) = −
(
∇V

(
θn(t)

)
+
λ1
NE

NE∑
j=1

(∇1κ)
(
θn(t), θj(t)

))
dt +

√
2λ2dBn(t),

for n = 1, . . . ,NE , and {Bn(t)}t>0 independent Brownian motions.

Cases:

No regularizer, i.e. λ1 = λ2 = 0: deep ensemble [Lakshminarayanan et al.,
2017], No convergence to the global optimum.

Only KL regularizer, i.e. λ1 = 0: deep Langevin ensemble (essentially
Lakshminarayanan et al. [2017]+Welling and Teh [2011]), Converges to the
global optimum.

KL+MMD regularizer: deep repulsive Langevin ensemble (new), Converges
to the global optimum
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Losses

For regression, y ∈ R,

p(D|F ) =
N∏

n=1

p(yn|F (xn)) =
N∏

n=1

N (yn |F (xn), σ2), (17)

where σ2 > 0.
For classi�cation, y ∈ {−1,+1},

p(D|F ) =
N∏

n=1

p(yn|F (xn)) =
N∏

n=1

σ(ynF (Xn)), (18)

where σ(t) = 1/(1 + e−t)
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Computational complexity

L is tractable for any mP ,mQ , k and r

One evaluation of L requires:
I N evaluations of mQ and mP

I NS · N evaluations of r and k
I O(N + N2

SN + N3

S )operations for the eigenvalue problem

One evaluation of L in batch-mode requires:
I NB evaluations of mQ and mP

I NS · NB evaluations of r and k
I O(NB + N2

SNB + N3

S ) operations for the eigenvalue problem

−→ typically NS ,NB << N, e.g. NS = NB = 100
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