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Accurate or Interpretable? Choose One.
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The Need for Explainability

Lapuschkin et al. [2019]: Unmasking Clever Hans Predictors and Assessing What Machines Really Learn
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Explainable AI Zoo

(a) Anchor
[Ribeiro et al., 2018]

(b) Counterfactual
Explanations
[Dhurandhar et al., 2018,
Verma et al., 2020]

(c) Attribution methods
LIME [Ribeiro et al., 2016],
Sensitivity Analysis [Saltelli
et al., 2008], Integrated
Gradients [Qi et al., 2019],
Shapley Values [�trumbelj and
Kononenko, 2014], SHAP
[Lundberg and Lee, 2017]

Figure: Multitude of explanation methods
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Dichotomy of feature attribution

Global Explanations: Understanding features' contribution to the model's overall
behaviour (e.g. to the learnt function f over the whole dataset).

Examples: linear model weights, global sensitivity analysis, kernel lengthscales
in automatic relevance determination Gaussian process.

Local Explanations: Understanding features' contributions to an individual
observation x, i.e. how did features contribute to the value of f (x) for this speci�c
x?

Examples: Integrated Gradients, LIME, SHAP.

Chau, Muandet, Sejdinovic GP-SHAP Sydney, 16/02/2024 5 / 33



Shapley Values: Fair credit allocation for cooperative games

Consider a d-player cooperative game where every player agrees to work
towards a common goal. Denote Ω = {1, .., d}.
Consider the function ν : 2Ω → R that for every subset of players (coalition)
returns a corresponding utility score.

How should one allocate the total utility ν(Ω) to each player in Ω?
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Shapley Values: Axiomatic properties

1 E�ciency
I Individual credits add up to the grand pro�t, i.e.

∑d
i=1

φi (ν) = ν(Ω)

2 Null-Player property
I Free riders get no credit, i.e. if ν(S ∪ i) = ν(S) for all S ⊆ Ω, φi (ν) = 0

3 Symmetry
I Indistinguishable players get the same credit, i.e. if ν(S ∪ i) = ν(S ∪ j) for all

S ⊆ Ω, then φi (ν) = φj(ν)

4 Additivity
I Credits from a sum of games is the sum of credits from each individual game,

i.e. φi (ν1 + ν2) = φi (ν1) + φi (ν2)
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Shapley Values: Fair credit allocation for cooperative games

Player i 's contribution depends on the speci�c coalition. Their marginal
contribution with respect to coalition S ⊆ Ω\{i} is given by

ν(S ∪ i)− ν(S)

Shapley [1953] proved that the following combination of marginal
contributions uniquely satis�es all four axioms,

An alternative interpretation using the order of players:

φi (ν) =
1
d!

∑
σ

(ν(Pσi ∪ i)− ν(Pσi )) .

where the sum ranges over all d! permutations σ of Ω = {1, . . . , d} and Pσi
is the set of players which precede i in σ.
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Shapley values for explainability?

Data: For concreteness, consider a supervised learning setting, with data
D = {xi , yi}ni=1 ⊆ X × Y where X ⊆ Rd .

Fit the model: Learn some f : X → Y via your favourite ML technique:
random forest, kernel ridge regression, deep neural network.... by minimise
expected loss.
Explain the model: How to frame feature attribution as a cooperative
game?

I Players are features: Ω = {1, . . . , d} (features indices)
I The grand pro�t is the prediction itself, i.e. νx,f (Ω) = f (x)
I To de�ne the value function on any coalition of features S ⊂ Ω, average the

predictions over the remaining features:

νx,f (S) := Er(X |XS=xS )[f (X ) | XS = xS ],

where r is some reference distribution and xS is the subvector of x
corresponding to features in S .
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Shapley values for explainability?

φx,i (ν) =
1
d

∑
S⊆Ω\{i}

(
d − 1
|S |

)−1(
νx,f (S ∪ i)− νx,f (S)

)
.

Note the sum over all subsets of the set of features � this is not going to be
possible to compute even for a moderate number of features!
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Additive feature attribution model

The best explanation of a simple model is the model itself.
What to do for a complex model? Build a simpler one: explanation model.
A simple idea: place a locally linear model ux : {0, 1}d 7→ R around the input
x as a function of which features are switched on/o�:

ux(S) := φx,0 +
d∑

i=1

φx,izi

with zi = 1{i ∈ S}. Models like LIME [Ribeiro et al., 2016] take this
perspective. We want ux(S) ≈ νx,f (S).
Lundberg and Lee [2017] makes a connection to Shapley values: they are
solution to the weighted least squares problem

min
ux

∑
S

w(S) (ux(S)− νx,f (S))2 .

SHAP algorithm: sample as many S as you can a�ord, compute the value
function for those coalitions and simply solve weighted least squares
regression.
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Example: Bike Rental

Example from Molnar. The weather situation and humidity had the largest
negative contributions. The temperature on this day had a positive contribution.
The sum of Shapley values yields the di�erence of actual and average prediction,
i.e. f (x)− EX [f (X )].
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Attribution examples

(a) tabular data (b) image

(c) text

Figure: SHAP on di�erent data types
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Motivation: Feature attribution as explanation
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Motivation: Feature attribution as explanation
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Recap on Gaussian process

Consider function values f = [f (x1), ..., f (xn)]> at a set of inputs X, and
observations y = [y1, ..., yn], with prior and likelihood as,

f ∼ N (0,K), y | f ∼ p(y | f) =
n∏

i=1

p(yi | f (xi ))
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Recap on Gaussian process

GP Regression

Given data D = {(xi , yi )}ni=1 and a GP prior f ∼ GP(0, k), assuming
likelihood:

yi = f (xi ) + εi , εi ∼ N (0, σ2),

then the posterior f | D is also a GP with,

m̃(x) = k(x,X)(KXX + σ2I )−1y

k̃(x, x′) = k(x, x′)− k(x,X)(KXX + σ2I )−1k(X, x′)

Other likelihoods

Variational framework for computational scalability and other likelihood
models (classi�cation, Poisson regression etc) [Titsias, 2009]
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What's useful about GPs?

Probabilistic

Instead of giving a point estimate, a GP model returns a predictive
distribution and quanti�es uncertainty.

Nonparametric

GPs do not assume a �xed parametric form for the underlying function being
modelled.

Prior knowledge

The choice of covariance function can incorporate structural assumptions
about functions being modelled.

Versatile

Can be applied to supervised or unsupervised learning, spatiotemporal
models, probabilistic integration, Bayesian optimization...
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Now let's explain GP?...

Consider a standard SHAP procedure for GP: for a GP f , f (x) is a (Gaussian)
random variable, and hence the value function νx,f : S 7→ E[f (X ) | XS = xS ]
is also random.
We can proceed two ways:

I Sample multiple realisations of f from p(f | D) and apply SHAP to each of
them individually [Marx et al., 2023].

I Model value function and Shapley values themselves as stochastic processes.
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GP explainability through a stochastic game

Build stochastic game out of GP:

Stochastic games : νx,f : 2Ω → L2(R) given by

νx,f (S) := EX [f (X ) | XS = xS ].

Recall: this quantity is random because f is random.

In Chau et al. [2021], we studied ways to model conditional expectations
of GPs - which are themselves GPs by linearity.

Let f ∼ GP(m̃, k̃) with integrable sample paths, i.e.
∫
X |f |dpX <∞ a.s.

The stochastic payo� function νx,f induced by f is a GP (on Rd × 2Ω) with the
following mean and covariance functions:

mν(x,S) := EX [m̃(X ) | XS = xS ],

kν ((x,S), (x′,S ′)) := EX ,X ′

[
k̃(X ,X ′) | XS = xS ,X ′S′ = x′S′

]
.

We can estimate these using standard tricks from RKHS mean embeddings.

TL;DR: the stochastic game is also a GP that can be characterised
nicely.
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Now the (stochastic) game is de�ned. Let's Shapley.

Given value function evaluations vx := [νf (x,S1), . . . νf (x,Sm)]> for m
coalitions, SHAP algorithm gives vector φx(ν) = Avx with
A = (Z>WZ)−1Z>W where Z is the binary matrix representing sampled
coalitions, and W is the corresponding weight matrix.

I WLS solution of additive feature attribution model

If νx,f is a stochastic game, the corresponding stochastic vector of Shapley
values φx(ν) follows a d-dimensional multivariate Gaussian distribution

φx(ν) ∼ N (AE[vx],AV[vx ]A>)

Moreover, this is a (multi-output) Gaussian process in x with tractable
covariance function � we can easily �amortize�: �t Shapley values as smooth
functions of x .
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Short summary

Stochastic game built for GPs are themselves GPs that can be fully
characterised.

Stochastic Shapley values for this stochastic game are also GPs.

Estimation is straightforward utilising RKHS tools (conditional mean
embeddings).
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Bonus: BayesGP-SHAP

Integrating BayesSHAP [Slack et al., 2021] with GP-SHAP to tackle more
uncertainty.

Besides predictive uncertainty from the GP, there is additional epistemic
uncertainty arising due to estimation of Shapley values through the WLS
approach.

Slack et al. [2021] captures this uncertainty by turning the WLS into a
Bayesian WLS.

We incorporate their approach into GP-SHAP seamlessly thanks to Gaussian
conjugacy.
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Ablation study on the captured uncertainties

1

0

1
SS
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25% data, 50% coalition used 25% data, 100% coalition used
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bayesSHAP GPSHAP BayesGPSHAP

Figure: Ablation study on di�erent uncertainties captured by GP-SHAP, BayesSHAP, and
BayesGP-SHAP when computing local explanations (SSVs) using the California housing
dataset [Pace and Barry, 1997]. 95% credible intervals around explanations are shown.
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Exploring stochastic local explanations

1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6
stochastic Shapley values

radius error
worst symmetry

texture error
concavity error

fractal dimension error
compactness error

worst concave points
worst texture

worst perimeter
worst fractal dimension

Top 10 explanations from BayesGPSHAP for patient 1

Figure: Besides the usual (mean) contribution, we can quantify the uncertainty around
this explanation, and calibrate our belief from this model.
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Exploring stochastic global explanations

Global explanations are often taken
as averages (over input
distribution) of absolute
(deterministic) Shapley values.
(Absolute mean SSVs)

However, this does not take into
account the explanation
uncertainty.

Instead, we can look into the
distribution of absolute SSVs
(folded Gaussian) for each input
and then average.

Global importance ranking changes!

0.0 0.2 0.4 0.6 0.8 1.0
explanation score

concavity error
perimeter error

mean concave points
compactness error

worst perimeter
texture error

symmetry error
worst texture

worst concave points
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Top 10 global explanations from BayesGPSHAP

Mean of absolute SSVs
Std of absolute SSVs
Absolute mean SSVs
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Exploring stochastic explanations: Explanation correlation

(worst fractal dimension)
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(worst texture)

(worst concave points)
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Correlation between top 10 explanations for patient 1
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Figure: Tractable covariance structure across explanations allows studying dependencies
between feature attributions.
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Summary

Explaining machine learning model through feature attribution can be framed
as a cooperative game.

When the model is probabilistic, the cooperative game and the corresponding
attributions become stochastic as well.

GP-SHAP captures uncertainty in a predictive model with a tractable
covariance structure and can be combined with Shapley value estimation
uncertainty.
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Future work

Explaining uncertainty in other probabilistic models such as Bayesian Neural
Networks.

Can we use the uncertainty in Shapley values for downstream tasks such as
Bayesian optimisation?

(a) Paper (b) Code
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Examples of value functions ν

Interventional Value functions [Janzing et al., 2020]

ν
(I )
x,S(f ) = EpI (XSc ) [f ({xS ,XSc})]

where pI (XSc ) =
∏

j∈Sc p(X (j)) assumes feature independence.

Observational value function [Frye et al., 2021]

ν
(O)
x,S (f ) = Ep(XSc |XS=xS ) [f ({xS ,XSc})]

where p is the observed data distribution.
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Choice of value functions: A long-standing debate

1 Janzing et al. [2020] argued from a causal
perspective that ν(I )

x,S is the correct notion to
capture feature relevance, as it treats features as
direct causes to model predictions.

2 Frye et al. [2021] argued otherwise, saying that
marginal expectations will evaluate value
functions at unseen region of the data manifold,
thus producing unrealistic explanations.
Moreover, it ignores feature correlations.
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Something extra: the Shapley prior over explanations

Predicting explanations using a Shapley GP model

Treat explanation as a vector-valued mapping φ : X → Rd . Starting with a
GP prior over f , we have an induced GP prior over φ, the explanation
function.
The prior f ∼ GP(0, k) and the corresponding stochastic game
νf (x,S) = E[f (X ) | XS = xS ] induce a vector-valued GP prior over the
explanation functions φ ∼ GP(0, κ) where κ : X × X → Rd×d is the
matrix-valued covariance kernel

κ(x, x′) = A(x)>A(x′), A(x) = Ψ(x)A>

where Ψ(x) =
[
E[k(·,X ) | XS1 = xS1 ], . . . ,E[k(·,X ) | XS2d

= xS2d ]
]
.

Can now do vector-valued regression on old explanations and predict new
ones.

These explanations do not need to come from a GP model!
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Something extra: the Shapley prior over explanations

GP-SHAP TreeSHAP DeepSHAP
Sources of explanations
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Figure: Predictive performance of using Shapley prior to predict explanations generated
from di�erent explanation algorithms on the diabetes dataset.

Chau, Muandet, Sejdinovic GP-SHAP Sydney, 16/02/2024 37 / 33



Shapley Values, Preferences and Uncertainty

When using a preferential model, should we be explaining the preferences
among the two items or the utilities of the individual items?
Hu et al. [2022]: R. Hu, S. L. Chau, J. F. Huertas, and DS, Explaining Preferences with Shapley

Values, in NeurIPS, 2022.

E�cient computation of Shapley values for kernel methods + a method to
control particular feature attribution, e.g. fairness constraints.
Chau et al. [2022]: S. L. Chau, R. Hu, J. Gonzalez, and DS, RKHS-SHAP: Shapley Values for

Kernel Methods, in NeurIPS, 2022.

Explain not just point predictions, but also uncertainty in those predictions �
which features are most responsible for the model uncertainty?
Chau et al. [2023]: S. L. Chau, K. Muandet, and DS, Explaining the Uncertain: Stochastic Shapley

Values for Gaussian Process Models, in NeurIPS, 2023.
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