Explaining the Uncertain Stochastic Shapley Values for Gaussian Process Models

Dino Sejdinovic (Adelaide) joint work with Siu Lun Chau (CISPA Saarbrücken) Krikamol Muandet (CISPA Saarbrücken)

[NeurIPS 2023,](https://proceedings.neurips.cc/paper_files/paper/2023/hash/9f0b1220028dfa2ee82ca0a0e0fc52d1-Abstract-Conference.html) [arXiv:2305.15167](https://arxiv.org/abs/2305.15167)

Business Analytics Seminar, University of Sydney 16 February 2024

一本 重 あい

つへへ

Accurate or Interpretable? Choose One.

image from [holisticai.com/blog/explainable-ai-dimensions](https://www.holisticai.com/blog/explainable-ai-dimensions)

B

 299

 4 ロ > 4 何 > 4 ヨ > 4

The Need for Explainability

[Lapuschkin et al. \[2019\]](#page-45-0): Unmasking Clever Hans Predictors and Assessing What Machines Really Learn

 299

K ロ ⊁ K 伊 ⊁ K 毛

Explainable AI Zoo

 \oplus anchor LIME

(a) Anchor [\[Ribeiro et al., 2018\]](#page-46-0)

b) Counterfactual Explanations [\[Dhurandhar et al., 2018,](#page-44-0) [Verma et al., 2020\]](#page-47-0)

 $f(x) = 24.019$

(c) Attribution methods LIME [\[Ribeiro et al., 2016\]](#page-46-1), Sensitivity Analysis [\[Saltelli](#page-47-1) [et al., 2008\]](#page-47-1), Integrated Gradients [\[Qi et al., 2019\]](#page-46-2), Shapley Values [Štrumbelj and [Kononenko, 2014\]](#page-47-2), SHAP [\[Lundberg and Lee, 2017\]](#page-45-1)

 \rightarrow

K ロ ト K 何 ト K ヨ

Figure: Multitude of explanation methods

 Ω

Dichotomy of feature attribution

Global Explanations: Understanding features' contribution to the model's overall behaviour (e.g. to the learnt function f over the whole dataset).

Examples: linear model weights, global sensitivity analysis, kernel lengthscales in automatic relevance determination Gaussian process.

Local Explanations: Understanding features' contributions to an individual observation x, i.e. how did features contribute to the value of $f(x)$ for this specific x?

Examples: Integrated Gradients, LIME, SHAP.

 Ω

- Consider a d-player cooperative game where every player agrees to work towards a common goal. Denote $\Omega = \{1,..,d\}$.
- Consider the function $\nu: 2^{\Omega} \to \mathbb{R}$ that for every subset of players (coalition) returns a corresponding utility score.

4日 ▶

- Consider a d-player cooperative game where every player agrees to work towards a common goal. Denote $\Omega = \{1,..,d\}$.
- Consider the function $\nu: 2^{\Omega} \to \mathbb{R}$ that for every subset of players (coalition) returns a corresponding utility score.

• How should one allocate the total utility $\nu(\Omega)$ to each player in Ω ?

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \rightarrow

Shapley Values: Axiomatic properties

- **O** Efficiency
	- \blacktriangleright Individual credits add up to the grand profit, i.e. $\sum_{i=1}^d \phi_i(\nu) = \nu(\Omega)$
- **2** Null-Player property
	- Free riders get no credit, i.e. if $\nu(S \cup i) = \nu(S)$ for all $S \subseteq \Omega$, $\phi_i(\nu) = 0$
- ³ Symmetry
	- Indistinguishable players get the same credit, i.e. if $\nu(S \cup i) = \nu(S \cup j)$ for all $S \subseteq \Omega$, then $\phi_i(\nu) = \phi_i(\nu)$
- **4** Additivity
	- \triangleright Credits from a sum of games is the sum of credits from each individual game, i.e. $\phi_i(\nu_1 + \nu_2) = \phi_i(\nu_1) + \phi_i(\nu_2)$

 Ω

K ロ ▶ K 御 ▶ K ヨ

• Player *i's* contribution depends on the specific coalition. Their marginal contribution with respect to coalition $S \subseteq \Omega \backslash \{i\}$ is given by

 $\nu(S \cup i) - \nu(S)$

 Ω

 4 ロ \rightarrow 4 \overline{r} \rightarrow \rightarrow \overline{z} \rightarrow

• Player *i's* contribution depends on the specific coalition. Their marginal contribution with respect to coalition $S \subset \Omega \backslash \{i\}$ is given by

$$
\nu(S\cup i)-\nu(S)
$$

• [Shapley \[1953\]](#page-47-3) proved that the following combination of marginal contributions uniquely satisfies all four axioms,

$$
\phi_i(\nu) = \frac{1}{d} \sum_{S \subseteq \Omega \setminus \{i\}} {d-1 \choose |S|}^{-1} \left(\nu(S \cup i) - \nu(S) \right).
$$

 Ω

K ロ ▶ K 何 ▶ K

• Player *i's* contribution depends on the specific coalition. Their marginal contribution with respect to coalition $S \subset \Omega \backslash \{i\}$ is given by

 $\nu(S \cup i) - \nu(S)$

• [Shapley \[1953\]](#page-47-3) proved that the following combination of marginal contributions uniquely satisfies all four axioms,

$$
\phi_i(\nu) = \frac{1}{\text{# of players}} \sum_{\text{conditions excluding } i} \frac{\text{marginal contribution of } i \text{ to a coalition}}{\text{# of coalitions excluding } i \text{ of this size}}.
$$

 Ω

K ロ ▶ K 何 ▶ K

• Player *i's* contribution depends on the specific coalition. Their marginal contribution with respect to coalition $S \subset \Omega \backslash \{i\}$ is given by

 $\nu(S \cup i) - \nu(S)$

• [Shapley \[1953\]](#page-47-3) proved that the following combination of marginal contributions uniquely satisfies all four axioms,

$$
\phi_i(\nu) = \frac{1}{\text{\# of players}} \sum_{\text{coditions excluding } i \text{ if of coalitions excluding } i \text{ of this size}}.
$$

An alternative interpretation using the order of players:

$$
\phi_i(\nu)=\frac{1}{d!}\sum_{\sigma}\left(\nu(P_i^{\sigma}\cup i)-\nu(P_i^{\sigma})\right).
$$

where the sum ranges over all $d!$ permutations σ of $\Omega=\{1,\ldots,d\}$ and P^{σ}_{i} is the set of players which precede *i* in σ .

 Ω

Data: For concreteness, consider a supervised learning setting, with data $\mathcal{D} = \{\mathsf{x}_i, \mathsf{y}_i\}_{i=1}^n \subseteq \mathcal{X} \times \mathcal{Y}$ where $\mathcal{X} \subseteq \mathbb{R}^d$.

K ロ ▶ K 何 ▶ K 手

 Ω

- Data: For concreteness, consider a supervised learning setting, with data $\mathcal{D} = \{\mathsf{x}_i, \mathsf{y}_i\}_{i=1}^n \subseteq \mathcal{X} \times \mathcal{Y}$ where $\mathcal{X} \subseteq \mathbb{R}^d$.
- Fit the model: Learn some $f: \mathcal{X} \rightarrow \mathcal{Y}$ via your favourite ML technique: random forest, kernel ridge regression, deep neural network.... by minimise expected loss.

 Ω

K ロ ▶ K 何 ▶ K

- **Data**: For concreteness, consider a supervised learning setting, with data $\mathcal{D} = \{\mathsf{x}_i, \mathsf{y}_i\}_{i=1}^n \subseteq \mathcal{X} \times \mathcal{Y}$ where $\mathcal{X} \subseteq \mathbb{R}^d$.
- Fit the model: Learn some $f: \mathcal{X} \rightarrow \mathcal{Y}$ via your favourite ML technique: random forest, kernel ridge regression, deep neural network.... by minimise expected loss.
- **Explain the model:** How to frame feature attribution as a cooperative game?

 Ω

KO > KO > K

- **Data**: For concreteness, consider a supervised learning setting, with data $\mathcal{D} = \{\mathsf{x}_i, \mathsf{y}_i\}_{i=1}^n \subseteq \mathcal{X} \times \mathcal{Y}$ where $\mathcal{X} \subseteq \mathbb{R}^d$.
- Fit the model: Learn some $f: \mathcal{X} \rightarrow \mathcal{Y}$ via your favourite ML technique: random forest, kernel ridge regression, deep neural network.... by minimise expected loss.
- **Explain the model:** How to frame feature attribution as a cooperative game?
	- Players are features: $\Omega = \{1, \ldots, d\}$ (features indices)

 Ω

メロメ オ何 トメ ミト メミト

- **Data**: For concreteness, consider a supervised learning setting, with data $\mathcal{D} = \{\mathsf{x}_i, \mathsf{y}_i\}_{i=1}^n \subseteq \mathcal{X} \times \mathcal{Y}$ where $\mathcal{X} \subseteq \mathbb{R}^d$.
- Fit the model: Learn some $f : \mathcal{X} \to \mathcal{Y}$ via your favourite ML technique: random forest, kernel ridge regression, deep neural network.... by minimise expected loss.
- **Explain the model:** How to frame feature attribution as a cooperative game?
	- Players are features: $\Omega = \{1, \ldots, d\}$ (features indices)
	- \triangleright The grand profit is the prediction itself, i.e. $\nu_{x,f}(\Omega) = f(x)$

 Ω

メロメ オ何 トメ ミト メミト

- **Data**: For concreteness, consider a supervised learning setting, with data $\mathcal{D} = \{\mathsf{x}_i, \mathsf{y}_i\}_{i=1}^n \subseteq \mathcal{X} \times \mathcal{Y}$ where $\mathcal{X} \subseteq \mathbb{R}^d$.
- Fit the model: Learn some $f: \mathcal{X} \rightarrow \mathcal{Y}$ via your favourite ML technique: random forest, kernel ridge regression, deep neural network.... by minimise expected loss.
- **Explain the model:** How to frame feature attribution as a cooperative game?
	- Players are features: $\Omega = \{1, \ldots, d\}$ (features indices)
	- \triangleright The grand profit is the prediction itself, i.e. $\nu_{x,f}(\Omega) = f(x)$
	- \triangleright To define the value function on any coalition of features $S \subset \Omega$, average the predictions over the remaining features:

$$
\nu_{x,f}(S):=\mathbb{E}_{r(X|X_S=x_S)}[f(X)\mid X_S=x_S],
$$

where r is some reference distribution and x_s is the subvector of x corresponding to features in S.

 Ω

メロト メタト メミト メミト

$$
\phi_{x,i}(\nu)=\frac{1}{d}\sum_{S\subseteq\Omega\setminus\{i\}}\binom{d-1}{|S|}^{-1}\bigg(\nu_{x,f}(S\cup i)-\nu_{x,f}(S)\bigg).
$$

 \sim \sim 重

 299

K ロ ト K 伊 ト K 毛

$$
\phi_{x,i}(\nu)=\frac{1}{d}\sum_{S\subseteq\Omega\setminus\{i\}}\binom{d-1}{|S|}^{-1}\bigg(\nu_{x,f}(S\cup i)-\nu_{x,f}(S)\bigg).
$$

Note the sum over all subsets of the set of features $-$ this is not going to be possible to compute even for a moderate number of features!

 Ω

 \leftarrow \Box \rightarrow \rightarrow \overline{m} \rightarrow

Additive feature attribution model

- The best explanation of a simple model is the model itself.
- What to do for a complex model? Build a simpler one: explanation model.
- A simple idea: place a locally linear model $\mathit{u_x}:\{0,1\}^{d} \mapsto \mathbb{R}$ around the input x as a function of which features are switched on/off:

$$
u_{\mathsf{x}}(S):=\phi_{\mathsf{x},0}+\sum_{i=1}^d\phi_{\mathsf{x},i}z_i
$$

with $z_i = 1\{i \in S\}$. Models like LIME [\[Ribeiro et al., 2016\]](#page-46-1) take this perspective. We want $u_x(S) \approx \nu_{x,f}(S)$.

[Lundberg and Lee \[2017\]](#page-45-1) makes a connection to Shapley values: they are solution to the weighted least squares problem

$$
\min_{u_x}\sum_{S}w(S)\left(u_x(S)-\nu_{x,f}(S)\right)^2.
$$

• SHAP algorithm: sample as many S as you can afford, compute the value function for those coalitions and simply solve weighted least squares regression. QQ

Example: Bike Rental

Example from Molnar. The weather situation and humidity had the largest negative contributions. The temperature on this day had a positive contribution. The sum of Shapley values yields the difference of actual and average prediction, i.e. $f(x) - \mathbb{E}_X[f(X)]$.

 Ω

 \leftarrow \leftarrow

Attribution examples

Figure: SHAP on different data types

∍

э \sim \sim 299

K ロ ⊁ K 倒 ≯ K

Motivation: Feature attribution as explanation

 Ω

 4 O \rightarrow 4 \overline{m} \rightarrow 4 \overline{m} \rightarrow

Motivation: Feature attribution as explanation

GP gives predictive uncertainty

shouldn't its explanations also?

K ロ ト K 何 ト K ヨ

 \sim

 QQ

Recap on Gaussian process

Consider function values $f = [f(x_1), ..., f(x_n)]^\top$ at a set of inputs X, and observations $y = [y_1, ..., y_n]$, with prior and likelihood as,

 Ω

K ロ ト K 何 ト K

Recap on Gaussian process

GP Regression

Given data $\mathcal{D} = \{(\mathsf{x}_i, \mathsf{y}_i)\}_{i=1}^n$ and a GP prior $f \sim \mathcal{GP}(\mathsf{0}, \mathsf{k})$, assuming likelihood:

$$
y_i = f(x_i) + \epsilon_i, \ \epsilon_i \sim \mathcal{N}(0, \sigma^2),
$$

then the posterior $f | \mathcal{D}$ is also a GP with,

$$
\tilde{m}(x) = k(x, X)(K_{XX} + \sigma^2 I)^{-1}y
$$

$$
\tilde{k}(x, x') = k(x, x') - k(x, X)(K_{XX} + \sigma^2 I)^{-1}k(X, x')
$$

Other likelihoods

Variational framework for computational scalability and other likelihood models (classification, Poisson regression etc) [\[Titsias, 2009\]](#page-47-4)

 Ω

メロメ オ何 トメ ミト メミト

What's useful about GPs?

Probabilistic

• Instead of giving a point estimate, a GP model returns a predictive distribution and quantifies uncertainty.

Nonparametric

 \bullet GPs do not assume a fixed parametric form for the underlying function being modelled.

Prior knowledge

The choice of covariance function can incorporate structural assumptions about functions being modelled.

Versatile

Can be applied to supervised or unsupervised learning, spatiotemporal models, probabilistic integration, Bayesian optimization...

 Ω

メロメ オ何 トメ ミト メミト

- Consider a standard SHAP procedure for GP: for a GP f , $f(x)$ is a (Gaussian) random variable, and hence the value function $\nu_{\mathsf{x},f}:S \mapsto \mathbb{E}[f(X) \mid X_S = \mathsf{x}_S]$ is also random.
- We can proceed two ways:
	- Sample multiple realisations of f from $p(f | D)$ and apply SHAP to each of them individually [\[Marx et al., 2023\]](#page-46-3).
	- \triangleright Model value function and Shapley values themselves as stochastic processes.

 Ω

K ロ ▶ K 何 ▶

Build stochastic game out of GP:

Stochastic games : $\nu_{\mathsf{x},f}:2^\Omega\rightarrow \mathcal{L}_2(\mathbb{R})$ given by

$$
\nu_{x,f}(S):=\mathbb{E}_X[f(X)\mid X_S=x_S].
$$

Recall: this quantity is random because f is random.

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \rightarrow

 Ω

Build stochastic game out of GP:

Stochastic games : $\nu_{\mathsf{x},f}:2^\Omega\rightarrow \mathcal{L}_2(\mathbb{R})$ given by

$$
\nu_{x,f}(S):=\mathbb{E}_X[f(X)\mid X_S=x_S].
$$

Recall: this quantity is random because f is random.

• In [Chau et al. \[2021\]](#page-44-1), we studied ways to model conditional expectations of GPs - which are themselves GPs by linearity.

Let $f \sim \mathcal{GP}(\tilde{m}, \tilde{k})$ with integrable sample paths, i.e. $\int_{\mathcal{X}} |f| d p_{X} < \infty$ a.s. The stochastic payoff function $\nu_{\mathsf{x},f}$ induced by f is a GP (on $\mathbb{R}^d \times 2^{\Omega})$ with the following mean and covariance functions:

$$
m_{\nu}(x, S) := \mathbb{E}_{X}[\tilde{m}(X) | X_{S} = x_{S}],
$$

$$
k_{\nu}((x, S), (x', S')) := \mathbb{E}_{X, X'}[\tilde{k}(X, X') | X_{S} = x_{S}, X'_{S'} = x'_{S'}].
$$

We can estimate these using standard tricks from RKHS mean embeddings.

 Ω

 $A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B$

Build stochastic game out of GP:

Stochastic games : $\nu_{\mathsf{x},f}:2^\Omega\rightarrow \mathcal{L}_2(\mathbb{R})$ given by

$$
\nu_{x,f}(S):=\mathbb{E}_X[f(X)\mid X_S=x_S].
$$

Recall: this quantity is random because f is random.

• In [Chau et al. \[2021\]](#page-44-1), we studied ways to model conditional expectations of GPs - which are themselves GPs by linearity.

Let $f \sim \mathcal{GP}(\tilde{m}, \tilde{k})$ with integrable sample paths, i.e. $\int_{\mathcal{X}} |f| d p_{X} < \infty$ a.s. The stochastic payoff function $\nu_{\mathsf{x},f}$ induced by f is a GP (on $\mathbb{R}^d \times 2^{\Omega})$ with the following mean and covariance functions:

$$
m_{\nu}(x, S) := \mathbb{E}_{X}[\tilde{m}(X) | X_{S} = x_{S}],
$$

$$
k_{\nu}((x, S), (x', S')) := \mathbb{E}_{X, X'}[\tilde{k}(X, X') | X_{S} = x_{S}, X'_{S'} = x'_{S'}].
$$

We can estimate these using standard tricks from RKHS mean embeddings.

 Ω

 $A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B$

Build stochastic game out of GP:

Stochastic games : $\nu_{\mathsf{x},f}:2^\Omega\rightarrow \mathcal{L}_2(\mathbb{R})$ given by

$$
\nu_{x,f}(S):=\mathbb{E}_X[f(X)\mid X_S=x_S].
$$

Recall: this quantity is random because f is random.

• In [Chau et al. \[2021\]](#page-44-1), we studied ways to model conditional expectations of GPs - which are themselves GPs by linearity.

Let $f \sim \mathcal{GP}(\tilde{m}, \tilde{k})$ with integrable sample paths, i.e. $\int_{\mathcal{X}} |f| d p_{X} < \infty$ a.s. The stochastic payoff function $\nu_{\mathsf{x},f}$ induced by f is a GP (on $\mathbb{R}^d \times 2^{\Omega})$ with the following mean and covariance functions:

$$
m_{\nu}(x, S) := \mathbb{E}_{X}[\tilde{m}(X) | X_{S} = x_{S}],
$$

$$
k_{\nu}((x, S), (x', S')) := \mathbb{E}_{X, X'}[\tilde{k}(X, X') | X_{S} = x_{S}, X'_{S'} = x'_{S'}].
$$

We can estimate these using standard tricks from RKHS mean embeddings.

TL;DR: the stochastic game is also a GP that can be characterised nicely. 2990

Now the (stochastic) game is defined. Let's Shapley.

- Given value function evaluations $v_x := [\nu_f(x, S_1), \dots \nu_f(x, S_m)]^{\top}$ for m coalitions, SHAP algorithm gives vector $\phi_x(\nu) = Av_x$ with $\mathsf{A} = (\mathsf{Z}^\top \mathsf{W} \mathsf{Z})^{-1} \mathsf{Z}^\top \mathsf{W}$ where Z is the binary matrix representing sampled coalitions, and W is the corresponding weight matrix.
	- \triangleright WLS solution of additive feature attribution model

 Ω

 4 ロ } 4 \overline{d} } 4 \overline{z} } 4 \overline{z} }

Now the (stochastic) game is defined. Let's Shapley.

- Given value function evaluations $v_x := [\nu_f(x, S_1), \ldots \nu_f(x, S_m)]^\top$ for m coalitions, SHAP algorithm gives vector $\phi_x(\nu) = Av_x$ with $\mathsf{A} = (\mathsf{Z}^\top \mathsf{W} \mathsf{Z})^{-1} \mathsf{Z}^\top \mathsf{W}$ where Z is the binary matrix representing sampled coalitions, and W is the corresponding weight matrix.
	- \triangleright WLS solution of additive feature attribution model
- If $\nu_{\mathsf{x},f}$ is a stochastic game, the corresponding stochastic vector of Shapley values $\phi_{\mathsf{x}}(\nu)$ follows a d-dimensional multivariate Gaussian distribution

 $\phi_{\mathsf{x}}(\nu) \sim \mathcal{N}(\mathsf{A}\mathbb{E}[\mathsf{v}_{\mathsf{x}}],\mathsf{A}\mathbb{V}[\mathsf{v}_{\mathsf{x}}]\mathsf{A}^\top)$

 Ω

イロト イ押ト イヨト イヨト

Now the (stochastic) game is defined. Let's Shapley.

- Given value function evaluations $v_x := [\nu_f(x, S_1), \dots \nu_f(x, S_m)]^{\top}$ for m coalitions, SHAP algorithm gives vector $\phi_x(\nu) = Av_x$ with $\mathsf{A} = (\mathsf{Z}^\top \mathsf{W} \mathsf{Z})^{-1} \mathsf{Z}^\top \mathsf{W}$ where Z is the binary matrix representing sampled coalitions, and W is the corresponding weight matrix.
	- \triangleright WLS solution of additive feature attribution model
- If $\nu_{\mathsf{x},f}$ is a stochastic game, the corresponding stochastic vector of Shapley values $\phi_x(\nu)$ follows a d-dimensional multivariate Gaussian distribution

$$
\phi_x(\nu) \sim \mathcal{N}(\mathsf{A}\mathbb{E}[v_x], \mathsf{A}\mathbb{V}[v_x]\mathsf{A}^\top)
$$

 \bullet Moreover, this is a (multi-output) Gaussian process in x with tractable covariance function $-$ we can easily "amortize": fit Shapley values as smooth functions of x.

 Ω

イロト イ押 トイヨ トイヨ トー

Short summary

- **•** Stochastic game built for GPs are themselves GPs that can be fully characterised.
- **•** Stochastic Shapley values for this stochastic game are also GPs.
- Estimation is straightforward utilising RKHS tools (conditional mean embeddings).

 Ω

 \leftarrow \Box \rightarrow \rightarrow \overline{m} \rightarrow

Integrating BayesSHAP [\[Slack et al., 2021\]](#page-47-5) with GP-SHAP to tackle more uncertainty.

- **•** Besides predictive uncertainty from the GP, there is additional epistemic uncertainty arising due to estimation of Shapley values through the WLS approach.
- [Slack et al. \[2021\]](#page-47-5) captures this uncertainty by turning the WLS into a Bayesian WLS.
- We incorporate their approach into GP-SHAP seamlessly thanks to Gaussian conjugacy.

 Ω

All The South The S

 \leftarrow \Box \rightarrow \rightarrow \overline{m} \rightarrow

Ablation study on the captured uncertainties

Figure: Ablation study on different uncertainties captured by GP-SHAP, BayesSHAP, and BayesGP-SHAP when computing local explanations (SSVs) using the California housing dataset [\[Pace and Barry, 1997\]](#page-46-4). 95% credible intervals around explanations are shown.

 Ω

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \rightarrow

Exploring stochastic local explanations

Figure: Besides the usual (mean) contribution, we can quantify the uncertainty around this explanation, and calibrate our belief from this model.

 \leftarrow \Box \rightarrow \rightarrow \overline{m} \rightarrow

 QQ

Exploring stochastic global explanations

- Global explanations are often taken as averages (over input distribution) of absolute (deterministic) Shapley values. (Absolute mean SSVs)
- **•** However, this does not take into account the explanation uncertainty.
- **•** Instead, we can look into the distribution of absolute SSVs (folded Gaussian) for each input and then average.
- **•** Global importance ranking changes!

 \leftarrow \Box \rightarrow \rightarrow $\overline{\land}$ \rightarrow

 Ω

Exploring stochastic explanations: Explanation correlation

Figure: Tractable covariance structure across explanations allows studying dependencies between feature attributions.

 Ω

K ロ ▶ K 何 ▶ K 手

- Explaining machine learning model through feature attribution can be framed as a cooperative game.
- When the model is probabilistic, the cooperative game and the corresponding attributions become stochastic as well.
- GP-SHAP captures uncertainty in a predictive model with a tractable covariance structure and can be combined with Shapley value estimation uncertainty.

 Ω

 \leftarrow \leftarrow

Future work

- Explaining uncertainty in other probabilistic models such as Bayesian Neural Networks.
- Can we use the uncertainty in Shapley values for downstream tasks such as Bayesian optimisation?

 Ω

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \rightarrow

References I

- Siu Lun Chau, Shahine Bouabid, and Dino Sejdinovic. Deconditional Downscaling with Gaussian Processes. Advances in Neural Information Processing Systems (NeurlPS), 34:17813–17825, 2021.
- Siu Lun Chau, Robert Hu, Javier Gonzalez, and Dino Sejdinovic. RKHS-SHAP: Shapley values for kernel methods. Advances in Neural Information Processing Systems (NeurlPS), 35:13050-13063, 2022.
- Siu Lun Chau, Krikamol Muandet, and Dino Sejdinovic. Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process Models. In Advances in Neural Information Processing Systems (NeurIPS), 2023.
- Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Paishun Ting, Karthikeyan Shanmugam, and Payel Das. Explanations based on the missing: Towards contrastive explanations with pertinent negatives. In Advances in Neural Information Processing Systems (NeurIPS), 2018.
- Christopher Frye, Damien de Mijolla, Tom Begley, Laurence Cowton, Megan Stanley, and Ilya Feige. Shapley explainability on the data manifold. In International Conference on Learning Representations (ICLR), 2021.

- 3

 Ω

References II

- Robert Hu, Siu Lun Chau, Jaime Ferrando Huertas, and Dino Sejdinovic. Explaining preferences with shapley values. Advances in Neural Information Processing Systems (NeurlPS), 35:27664-27677, 2022.
- Dominik Janzing, Lenon Minorics, and Patrick Blöbaum. Feature relevance quantication in explainable AI: A causal problem. In International Conference on Artificial Intelligence and Statistics (AISTATS), pages 2907–2916. PMLR, 2020.
- Sebastian Lapuschkin, Stephan Wäldchen, Alexander Binder, Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Unmasking clever hans predictors and assessing what machines really learn. Nature Communications, 10:1096, 2019.
- Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems (NeurIPS), pages 47654774, 2017.

 Ω

 $A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B \rightarrow A \cap B$

References III

- Charles Marx, Youngsuk Park, Hilaf Hasson, Yuyang Wang, Stefano Ermon, and Luke Huan. But Are You Sure? An Uncertainty-Aware Perspective on Explainable AI. In International Conference on Articial Intelligence and Statistics ($AISTATS$), pages 7375–7391. PMLR, 2023.
- R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters, 33(3):291-297, 1997.
- Zhongang Qi, Saeed Khorram, and Fuxin Li. Visualizing deep networks by optimizing with integrated gradients. In CVPR Workshops, volume 2, 2019.
- Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why Should I Trust You?: Explaining the Predictions of Any Classifier. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1135-1144, 2016.
- Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-agnostic explanations. In Proceedings of the AAAI conference on Artificial Intelligence, volume 32, 2018.

 QQ

 $A \cap B \rightarrow A \cap B$

References IV

- Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cariboni, Debora Gatelli, Michaela Saisana, and Stefano Tarantola. Global sensitivity analysis: the primer. John Wiley & Sons, 2008.
- Lloyd S Shapley. A value for n-person games. Contributions to the Theory of Games, 2(28): 307-317, 1953.
- Dylan Slack, Anna Hilgard, Sameer Singh, and Himabindu Lakkaraju. Reliable post hoc explanations: Modeling uncertainty in explainability. Advances in Neural Information Processing Systems (NeurlPS), 34:9391-9404, 2021.
- Erik Štrumbelj and Igor Kononenko. Explaining prediction models and individual predictions with feature contributions. Knowledge and information systems, 41 (3):647-665, 2014.
- Michalis Titsias. Variational learning of inducing variables in sparse Gaussian processes. In International Conference on Artificial Intelligence and Statistics $(AISTATS)$, pages 567–574. PMLR, 2009.
- Sahil Verma, John Dickerson, and Keegan Hines. Counterfactual explanations for machine learning: A review. arXiv preprint arXiv:2010.10596, 2020.

 Ω

 $A \cap B \rightarrow A \cap B$

Examples of value functions ν

• Interventional Value functions [\[Janzing et al., 2020\]](#page-45-2)

$$
\nu_{x,S}^{(1)}(f) = \mathbb{E}_{p_I(X_{S^c})}\left[f\left(\{x_S, X_{S^c}\}\right)\right]
$$

where $p_{I}(X_{\mathcal{S}^c})=\prod_{j\in\mathcal{S}^c}p(X^{(j)})$ assumes feature independence. **• Observational value function** [\[Frye et al., 2021\]](#page-44-2)

$$
\nu_{x,S}^{(O)}(f) = \mathbb{E}_{p(X_{S^c}|X_S = x_S)}\left[f\left(\{x_S, X_{S^c}\}\right)\right]
$$

where p is the observed data distribution.

 Ω

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \rightarrow

Choice of value functions: A long-standing debate

- **1** [Janzing et al. \[2020\]](#page-45-2) argued from a causal perspective that $\nu_{\mathbf{x},\mathbf{S}}^{(I)}$ x, S is the correct notion to capture feature relevance, as it treats features as direct causes to model predictions.
- ² [Frye et al. \[2021\]](#page-44-2) argued otherwise, saying that marginal expectations will evaluate value functions at unseen region of the data manifold, thus producing unrealistic explanations. Moreover, it ignores feature correlations.

 Ω

 \leftarrow \Box \rightarrow \rightarrow \overline{m} \rightarrow

Something extra: the Shapley prior over explanations

Predicting explanations using a Shapley GP model

Treat explanation as a vector-valued mapping $\phi:\mathcal{X}\rightarrow\mathbb{R}^d$. Starting with a GP prior over f, we have an induced GP prior over ϕ , the explanation function.

The prior $f \sim \mathcal{GP}(0, k)$ and the corresponding stochastic game $\nu_f(x, S) = \mathbb{E}[f(X) | X_S = x_S]$ induce a vector-valued GP prior over the explanation functions $\phi \sim \mathcal{GP}(0, \kappa)$ where $\kappa: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}^{d \times d}$ is the matrix-valued covariance kernel

$$
\kappa(\mathsf{x},\mathsf{x}') = \mathcal{A}(\mathsf{x})^{\top}\mathcal{A}(\mathsf{x}'), \quad \mathcal{A}(\mathsf{x}) = \Psi(\mathsf{x})\mathsf{A}^{\top}
$$

where $\Psi(x) = \left[\mathbb{E}[k(\cdot, X) | X_{S_1} = x_{S_1}], \ldots, \mathbb{E}[k(\cdot, X) | X_{S_{2^d}} = x_{S_{2^d}}]\right]$.

- Can now do vector-valued regression on old explanations and predict new ones.
- These explanations do not need to come from a GP model!

 Ω

イロメ 不優 ト 不思 ト 不思 メー 語

Something extra: the Shapley prior over explanations

Figure: Predictive performance of using Shapley prior to predict explanations generated from different explanation algorithms on the diabetes dataset.

 \leftarrow \Box

 QQ

Shapley Values, Preferences and Uncertainty

When using a preferential model, should we be explaining the preferences among the two items or the utilities of the individual items? [Hu et al. \[2022\]](#page-45-3): R. Hu, S. L. Chau, J. F. Huertas, and DS, Explaining Preferences with Shapley Values, in NeurIPS, 2022.

 \bullet Efficient computation of Shapley values for kernel methods $+$ a method to control particular feature attribution, e.g. fairness constraints. [Chau et al. \[2022\]](#page-44-3): S. L. Chau, R. Hu, J. Gonzalez, and DS, RKHS-SHAP: Shapley Values for Kernel Methods, in NeurIPS, 2022.

• Explain not just point predictions, but also uncertainty in those predictions – which features are most responsible for the model uncertainty? [Chau et al. \[2023\]](#page-44-4): S. L. Chau, K. Muandet, and DS, Explaining the Uncertain: Stochastic Shapley Values for Gaussian Process Models, in NeurIPS, 2023. $A \sqcap A \rightarrow A \sqcap A \rightarrow A \sqsupseteq A \rightarrow A \sqsupseteq A$ Ω