
Kernel Embeddings for Meta Learning

Dino Sejdinovic

Department of Statistics
University of Oxford

NLDL 2020, Tromso
21/01/2020

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 1 / 31

Outline

1 Hyperparameter Learning via Distributional Transfer

2 Meta Learning for Conditional Density Estimation

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 1 / 31

Kernel Trick and Kernel Mean Trick

implicit feature map x 7→ k(·, x) ∈ Hk
replaces x 7→ [φ1(x), . . . , φs(x)] ∈ Rs

〈k(·, x), k(·, y)〉Hk
= k(x, y)

inner products readily available
• nonlinear decision boundaries, nonlinear regression

functions, learning on non-Euclidean/structured
data

[Cortes & Vapnik, 1995; Schölkopf &

Smola, 2001]

RKHS embedding: implicit feature mean
[Smola et al, 2007; Sriperumbudur et al, 2010; Muandet et al,

2017]

P 7→ µk(P) = EX∼P k(·, X) ∈ Hk
replaces P 7→ [Eφ1(X), . . . ,Eφs(X)] ∈ Rs

〈µk(P), µk(Q)〉Hk
= EX∼P,Y∼Qk(X,Y)

inner products easy to estimate
• nonparametric two-sample, independence,

conditional independence, interaction testing,
learning on distributions

[Gretton et al, 2005; Gretton et al,

2006; Fukumizu et al, 2007; DS et

al, 2013; Muandet et al, 2012;

Szabo et al, 2015]

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 2 / 31

Kernel Trick and Kernel Mean Trick

implicit feature map x 7→ k(·, x) ∈ Hk
replaces x 7→ [φ1(x), . . . , φs(x)] ∈ Rs

〈k(·, x), k(·, y)〉Hk
= k(x, y)

inner products readily available
• nonlinear decision boundaries, nonlinear regression

functions, learning on non-Euclidean/structured
data

[Cortes & Vapnik, 1995; Schölkopf &

Smola, 2001]

RKHS embedding: implicit feature mean
[Smola et al, 2007; Sriperumbudur et al, 2010; Muandet et al,

2017]

P 7→ µk(P) = EX∼P k(·, X) ∈ Hk
replaces P 7→ [Eφ1(X), . . . ,Eφs(X)] ∈ Rs

〈µk(P), µk(Q)〉Hk
= EX∼P,Y∼Qk(X,Y)

inner products easy to estimate
• nonparametric two-sample, independence,

conditional independence, interaction testing,
learning on distributions

[Gretton et al, 2005; Gretton et al,

2006; Fukumizu et al, 2007; DS et

al, 2013; Muandet et al, 2012;

Szabo et al, 2015]

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 2 / 31

Probabilistic Meta Learning Framework [Garnelo et al 18]

Let T = {T1, . . . , TL} be the set of L tasks, each divided into context
Dlc = {(xl,ci , y

l,c
i)} and target data Dlt = {(xl,ti , y

l,t
i)}

Context set is to extract the meta information, encoded as the “task
embedding”
Target set is to test how well the information was extracted by compute the
loss on the target set.
During testing time we only have context set and are asked to predict on any
new x∗

[Thrun and Pratt, 1998; Ravi and Larochelle, 2016; Santoro et al., 2016]

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 3 / 31

Probabilistic Meta Learning Framework [Garnelo et al 18]

Let T = {T1, . . . , TL} be the set of L tasks, each divided into context
Dlc = {(xl,ci , y

l,c
i)} and target data Dlt = {(xl,ti , y

l,t
i)}

Context set is to extract the meta information, encoded as the “task
embedding”
Target set is to test how well the information was extracted by compute the
loss on the target set.
During testing time we only have context set and are asked to predict on any
new x∗

[Thrun and Pratt, 1998; Ravi and Larochelle, 2016; Santoro et al., 2016]
Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 3 / 31

Kernel Embeddings for Meta Learning

Ho Chung Leon Law, Peilin Zhao, Lucian Chan, Junzhou Huang, and DS.
Hyperparameter Learning via Distributional Transfer. NeurIPS 2019.

Jean-Francois Ton, Lucian Chan, Yee Whye Teh, and DS. Noise Contrastive Meta
Learning for Conditional Density Estimation using Kernel Mean Embeddings.
ArXiv e-prints:1906.02236, appearing in NeurIPS Meta Learning Workshop 2019.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 4 / 31

Outline

1 Hyperparameter Learning via Distributional Transfer

2 Meta Learning for Conditional Density Estimation

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 4 / 31

Towards End-to-End Learning

figure from https://blog.easysol.net/building-ai-applications/

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 5 / 31

https://blog.easysol.net/building-ai-applications/

Towards End-to-End Learning

Machine Learning AlgorithmRaw Data Output

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 6 / 31

Towards End-to-End Learning

Machine Learning AlgorithmRaw Data Output

Hyperparameter
 tuning

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 6 / 31

Towards End-to-End Learning

Machine Learning AlgorithmRaw Data Output

Hyperparameter
 tuning

Grid search, random search, trial-and-error, graduate student descent,.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 6 / 31

Optimizing “black-box” functions

We are interested in optimizing a ’well behaved’ function f : Θ→ R over some
bounded domain of hyperparameters Θ ⊂ Rd, i.e. in solving

θ? = argmin θ∈Θf(θ).

However, f is not known explicitly, i.e. it is a black-box function and we can only
ever obtain noisy and expensive evaluations of f .
Goal: Find θ such that f(θ) ≈ f(θ?) while minimizing the number of evaluations
of f .

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 7 / 31

Probabilistic model for the objective f

Assuming that f is well behaved, we build a surrogate probabilistic model for it
(typically a Gaussian Process Details).

1 Compute the posterior predictive distribution of f using all evaluations so far.
2 Optimize a cheap proxy / acquisiton function instead of f which takes into

account predicted values of f at new points as well as the uncertainty in
those predictions: this proxy is typically much cheaper to evaluate than the
actual objective f .

3 Evaluate the objective f at the optimum of the proxy and go to 1.

The proxy / acquisiton function should balance exploration against exploitation.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 8 / 31

Towards End-to-End Learning

Machine Learning AlgorithmRaw Data Output

Hyperparameter
 tuning

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 9 / 31

Towards End-to-End Learning

Machine Learning AlgorithmRaw Data Output

Measure of
performance

f(θ)
θ

Probabilistic
model for f:
Learning
to learn

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 9 / 31

Transfer Hyperparameter Learning
Multiple hyperparameter learning tasks which share the same model: variability in f
across tasks is due to changing datasets.
Is performance measure f really a black-box function of hyperparameters? Highly
structured problem corresponding to training a specific model on a specific dataset.

MLDataset 1 Output

f₁(θ)

θ

BayesOpt

MLDataset 2 Output

f₂(θ)

θ

BayesOpt

MLDataset n Output

fₙ(θ)

θ

BayesOpt

.

.

.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 10 / 31

Transfer Hyperparameter Learning
Multiple hyperparameter learning tasks which share the same model: variability in f
across tasks is due to changing datasets.
Is performance measure f really a black-box function of hyperparameters? Highly
structured problem corresponding to training a specific model on a specific dataset.

MLDataset 1 Output

BayesOpt

MLDataset 2 Output

MLDataset n Output

f(θ,D₁)

f(θ,D₂)

f(θ,Dₙ)

.

.

.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 10 / 31

Motivating Example

Example from [Poloczek et al, 2016] to motivate warm-starting Bayesian optimization:
live stream of data arriving in time:

Re-train model every 12 hours, on the last 24 hours of data, and deploy asap.
Optimal hyperparameters θ shift as data distribution changes e.g. weekend vs
weekday or holiday vs no holiday
Not all previous tasks are equally useful.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 11 / 31

AutoML: representing datasets using metafeatures
Warmstart target hyperparameters to the optimal values from source datasets
with closest metafeatures.
[Michie et al, 1994; Pfahringer et al, 2000; Bardenet et al, 2013; Feurer et al, 2014; Hutter et al, 2019]

General:
• Skewness, kurtosis of each input dimension: extract the minimum, maximum,

mean and standard deviation across the dimensions.
• Correlation, covariance of each pair of input dimensions: extract the minimum,

maximum, mean and standard deviation across the pairs.
• PCA skewness, kurtosis: run PCA, project onto the first principal component

and compute skewness and kurtosis.
• Intrinsic dimensionality: number of principal components to explain 95% of

variance.
Classification specific:

• Label summaries: empirical class distribution and its entropy.
• Classification landmarkers: accuracy on a held out dataset of 1-nn classifier,

linear discriminant analysis, naive Bayes and decision tree classifier.
Regression specific:

• Label summaries: Mean, stdev, skewness, kurtosis of the labels {yi`}
si
`=1.

• Regression landmarkers: accuracy on a held out dataset of 1-nn, linear and
decision tree regression.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 12 / 31

Dataset (task) representation for hyperparameter learning
Assume D = {xl, yl}sl=1

i.i.d.∼ PXY and that f is the empirical risk, i.e.

f(θ,D) =
1

s

s∑
`=1

L (hθ(x`), y`) ,

where L is the loss function and hθ is the model’s predictor.
For a fixed ML model, there are three sources of variability to the performance
measure f :

Hyperparameters θ
Joint (empirical) measure PXY of the dataset
Sample size s

Thus we will model f(θ,PXY , s), assuming that f varies smoothly not only as a
function of θ, but also as a function of PXY and s ([Klein et al, 2016] considers f
varying in s to speed up BayesOpt on a single large dataset).

K({θ1,P1
XY , s1}, {θ2,P2

XY , s2}) = kθ(θ1, θ2)kp(ψ(P1
XY), ψ(P2

XY))ks(s1, s2)

Need to learn representation ψ(PXY) useful for hyperparameter learning.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 13 / 31

Dataset (task) representation for hyperparameter learning
Assume D = {xl, yl}sl=1

i.i.d.∼ PXY and that f is the empirical risk, i.e.

f(θ,D) =
1

s

s∑
`=1

L (hθ(x`), y`) ,

where L is the loss function and hθ is the model’s predictor.
For a fixed ML model, there are three sources of variability to the performance
measure f :

Hyperparameters θ
Joint (empirical) measure PXY of the dataset
Sample size s

Thus we will model f(θ,PXY , s), assuming that f varies smoothly not only as a
function of θ, but also as a function of PXY and s ([Klein et al, 2016] considers f
varying in s to speed up BayesOpt on a single large dataset).

K({θ1,P1
XY , s1}, {θ2,P2

XY , s2}) = kθ(θ1, θ2)kp(ψ(P1
XY), ψ(P2

XY))ks(s1, s2)

Need to learn representation ψ(PXY) useful for hyperparameter learning.
Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 13 / 31

Learning kernel embeddings
Need to learn a representation of empirical joint distributions for comparison
across tasks.

Start with parametrized feature maps (e.g. neural networks) φx(x), φy(y)
and φxy([x, y]) which we will learn (treated as GP kernel parameters).
Marginal Distribution PX : µ̂PX

= 1
s

∑s
`=1 φx(x`) (e.g. noisier covariates

require less complex models).
Conditional Distribution PY |X :

ĈY |X = Φ>y (ΦxΦ>x + λI)−1Φx

where Φx = [φx(x1), . . . , φx(xs)]
T , Φy = [φy(y1), . . . , φy(ys)]

T and λ is a
parameter that we learn. (e.g. captures smoothess of the regression
functions).
Joint Distribution PXY :

ĈXY =
1

s

s∑
`=1

φx(x`)⊗ φy(y`) =
1

s
Φ>x Φy

Alternatively, learn a joint feature map φxy and compute
µ̂PXY

= 1
s

∑s
`=1 φxy([x`, y`]).

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 14 / 31

DistBO
With a joint GP model on inputs (θ,PXY , s), we can now

1 Fit the GP on all performance evaluations so far:

E = {{(θir,PiXY , si), f i(θir)}
Ni
r=1}ni=1,

fitting any GP kernel parameters (e.g. those of feature maps φx, φy) by
maximising the marginal likelihood of the GP.

2 Let f target(θ) = f(θ,PtargetXY , starget). Maximise the acquisition function at
the target α(θ; f target) to select next θnew

3 Evaluate f target(θnew), add {(θnew,PtargetXY , starget), f
target(θnew)} to E

and go to 1.

In practice, joint GP modelling comes at a higher computational cost, but we
can resort to Bayesian linear regression (BLR) on learned feature maps (with
time and storage linear in the number of evaluations). Details

Conceptually similar to [Perrone et al, 2018] which fits BLR per task sharing
representation of hyperparameters. Our joint model allows one-shot proposal
of hyperparameters without seeing any evaluations on the target task.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 15 / 31

Experiments

We will compare DistBO with the following baselines:

manualBO: joint GP with ψ(D) as the selection of 13 AutoML
meta-features,
multiBO: i.e. multiGP [Swersky et al, 2013] and multiBLR [Perrone et al, 2018] which
uses no meta-information, i.e. each task is encoded by its index, but the
representation of hyperparameters is shared across tasks,
initBO: plain BayesOpt warm-started with the top 3 hyperparameters from
the three most similar source tasks in terms of AutoML meta-features,
noneBO: plain BayesOpt,
RS: random search.

Implementation in TensorFlow: https://github.com/hcllaw/distBO.
GP/BLR marginal likelihood optimized using ADAM. To obtain source task
evaluations, we use standard BayesOpt.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 16 / 31

https://github.com/hcllaw/distBO

Protein data classification
Datasets on 7 proteins extracted from ChEMBL database [Gaulton et al, 2016]. Each
protein corresponds to a task, containing 1037− 4434 molecules with binary
features xi

` ∈ R166 computed using chemical fingerprinting. The binary label per
molecule is whether it can bind to the protein target.
Two classifiers: Jaccard kernel C-SVM (hyperparameter C), and random forest
(hyperparameters n_trees, max_depth, min_samples_split, min_samples_leaf).
Designate each protein as the target task, while using remaining 6 as source tasks.
Results reported obtained by averaging over target tasks (20 runs per task).

Figure: Left: Jaccard kernel C-SVM. Right: Random forest
Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 17 / 31

Switching feature relevance

handcrafted meta-features do
not capture any information
about the optimal
hyperparameters

three-variable interaction: the
difference between tasks is
invisible by considering
marginal distributions of
covariates and their pairwise
relationships.

Dataset i with xi
` ∈ R6 and yi` ∈ R:[
xi
`

]
j

i.i.d.∼ N (0, 22), j = 1, . . . , 6,[
xi
`

]
i+2

= sign([xi
`]1[x

i
`]2)

∣∣∣[xi
`]i+2

∣∣∣ ,
yi` = log

1 +

 ∏
j∈{1,2,i+2}

[xi
`]j

3+N (0, 0.52).

i, `, j denote task, sample and dimension, respectively; sample size is si = 5000.
Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 18 / 31

Conclusion

Method to borrow strength between multiple hyperparameter learning tasks
by making use of the similarity between training datasets.
Allows few-shot hyperparameter learning especially if similar prior tasks are
present.
Towards opening the black box function of hyperparameter learning: consider
model performance as a function of all its sources of variability.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 19 / 31

Outline

1 Hyperparameter Learning via Distributional Transfer

2 Meta Learning for Conditional Density Estimation

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 19 / 31

Meta Learning Setup

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 20 / 31

Beyond Functional Relationships

In supervised learning, we often focus on functional relationships, e.g.
conditional expectations E[y|x] in regression.
More expressive representation may be needed due to e.g. multimodality or
heteroscedasticity: y cannot be meaningfully represented using a single
function f(x) of the features x, such as E[y|x].
Goal: conditional density estimation p(y|x) based on paired samples
{(xi, yi)}ni=1.
Use a flexible nonparametric model of the full conditional density in the
meta learning setting.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 21 / 31

Conditional Mean Embeddings (CME)
“Augment” the representation of y by using a feature map φy(y) and consider
CME E[φy(y)|x]
We require an expressive feature map φy so that CME E[φy(y)|x] captures
the relevant information about the relationship between y and x.
However, CMEs do not give a way to estimate conditional densities.
Idea: use the conditional mean embedding operator as a task embedding of a
given conditional density estimation task – turn estimation into classification
using noise contrastive approach [Gutmann and Hyvärinen, 2010]. Details

ĈY |X = Φy(Kxx + λI)−1ΦTx , µ̂Y |X=x = Ê[φy(y)|x] = ĈY |Xφx(x).

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 22 / 31

Proposed Method

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 23 / 31

Density model
Consider the density model given by

pθ(y|x) =
exp(sθ(x, y))´

exp(sθ(x, y′))dy′
= exp(sθ(x, y) + bθ(x))

for some scoring function sθ : X × Y → R and bθ(x) models the normalizing
constant.
Use scoring function:

sθ(x
′, y′) = µ̂Y |X=x′(y′) = 〈ĈY |Xφx(x′), φy(y′)〉HY

.

We expect this value to be high when y′ is drawn from the true conditional
distribution Y |X = x′ and low in cases where y′ falls in a region where the true
conditional density p(y|x′) is low:

µY |X=x′(y′) = E [ky(y′, Y)|X = x′] =

ˆ
ky(y′, y)p(y|x′)dy.

NCE: [Gutmann and Hyvärinen, 2010] train a classifier discriminating between true and
artificial (fake) samples.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 24 / 31

Proposed Method

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 25 / 31

Proposed Method

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 25 / 31

MetaCDE

Three neural networks φx(x), φy(y), bθ(x) (all parameters collated into θ) –
these will be shared across tasks.
Let T = {T1, . . . , TL} be the set of L conditional density estimation tasks
–each divided into context Dlc = {(xl,ci , y

l,c
i)} and target data

Dlt = {(xl,ti , y
l,t
i)}

For every target input xl,ti , we generate κ fake responses yl,fi,j from pf (y).
Learn θ by training a True/Fake classifier on the True/Fake labels by
minimizing the logistic loss across target data for all tasks jointly (SGD).

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 26 / 31

Dihedral angles in molecules

Figure: Left to right: MetaCDE (ours), DDE, LSCDE, KCEF, ε-KDE. The red dots are
the context/training points and the green dots are points from the true density.

Interested in understanding possible conformations of molecular structures, i.e.
energetically allowed regions of dihedral angles in bonds. The data extracted from
crystallography database COD [Gražulis et al, 2011].

The multimodality of the dataset arises from the molecular symmetries such as
reflection and rotational symmetry.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 27 / 31

Results

Synthetic Chemistry NYC Taxi
MetaCDE (Ours) Loglike 197.84 ± 22.4 -305.49 ± 46.9 -1685.52± 608.35
MetaNN (Ours) Loglike 132.776±130.87 -317.91±51.3 -2276.55 ± 608.9

p-value 4.781e-06 1e-03 3.89e-10
Neural Process Loglike -81.11±18.5 -426.75± 47.3 -3050.2 ± 822.8

p-value <2.2e-16 <2.2e-16 3.89e-10
DDE Loglike 162.98 ± 69.0 -399.68 ± 41.3 -2236.07 ± 565.9

p-value 8.14e-07 1.65e-15 3.89e-10
KCEF Loglike -388.30 ± 703.1 -724.40 ± 891.6 -1695.89±435.4

p-value <2.2e-16 9.72e-14 0.025
LSCDE Loglike 44.95 ± 74.3 -407.32 ± 80.1 -2748.01 ± 549.2

p-value <2.2e-16 2.57e-14 3.89e-10
ε-KDE Loglike 116.31 ± 236.9 -485.10 ± 303.4 -2337.90 ± 501.1

p-value 2.38e-07 2.94e-14 4.13e-10

Table: Average held out log-likelihood on 100 different tasks. Also reporting the p-values
for the one sided signed Wilcoxon test wrt to MetaCDE.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 28 / 31

Conclusions

Learn a data representation informative for the conditional density estimation
tasks, by borrowing strength across tasks.
The approach builds on the probabilistic approaches to meta learning, i.e.
neural processes: MetaCDE also learns a task embedding based on the
context set, but this embedding takes a specific form of the conditonal
embedding operator and it is the feature maps that are learned.
Combining the feature map networks using kernel mean embedding formalism
gives better performance than learning the task embedding directly.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 29 / 31

Summary

Statistical modelling can be brought to bear in tandem with deep learning.
Increasing confluence between statistics and ML: making use of the well
engineered ML infrastructure, with bespoke statistical models for the problem
at hand.
Flexibility of the RKHS framework as a common ground between machine
learning and statistical inference.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 30 / 31

References

Ho Chung Leon Law, Peilin Zhao, Lucian Chan, Junzhou Huang, and DS.
Hyperparameter Learning via Distributional Transfer. NeurIPS 2019.

Jean-Francois Ton, Lucian Chan, Yee Whye Teh, and DS. Noise Contrastive Meta
Learning for Conditional Density Estimation using Kernel Mean Embeddings.
ArXiv e-prints:1906.02236, appearing in NeurIPS Meta Learning Workshop 2019.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 31 / 31

Surrogate Gaussian Process model
Assume that the noise in the evaluations of the black-box function is i.i.d.
N
(
0, τ2

)
. Having evaluated the objective at locations θ = {θi}mi=1, we denote

the observed values by y = [y1, . . . , ym]> and the true function values by
f = [f(θ1), . . . , f(θm)]>. Then

f ∼ N (0,K),

y|f ∼ N (f , τ2I).

GP model gives the posterior predictive mean µ (θ) and the posterior predictive
variance σ2 (θ) = κ (θ, θ) at any new location θ, i.e.

f (θ) |y ∼ N (µ (θ) , κ (θ, θ)) ,

where

µ (θ) = kθθ(K + τ2I)−1y,

κ (θ, θ) = k(θ, θ)− kθθ(K + τ2I)−1kθθ

Now can construct acquisition functions Details which balance

Exploitation: seeking locations with low posterior mean µ (θ),
Exploration: seeking locations with high posterior variance κ (θ, θ).

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 1 / 8

Illustrating Bayesian Optimization

figures from A Tutorial on Bayesian Optimization for Machine Learning by Ryan Adams

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 2 / 8

https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf

Illustrating Bayesian Optimization

figures from A Tutorial on Bayesian Optimization for Machine Learning by Ryan Adams

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 2 / 8

https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf

Illustrating Bayesian Optimization

figures from A Tutorial on Bayesian Optimization for Machine Learning by Ryan Adams

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 2 / 8

https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf

Illustrating Bayesian Optimization

figures from A Tutorial on Bayesian Optimization for Machine Learning by Ryan Adams

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 2 / 8

https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf

Illustrating Bayesian Optimization

figures from A Tutorial on Bayesian Optimization for Machine Learning by Ryan Adams

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 2 / 8

https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf

Illustrating Bayesian Optimization

figures from A Tutorial on Bayesian Optimization for Machine Learning by Ryan Adams

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 2 / 8

https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf

Illustrating Bayesian Optimization

figures from A Tutorial on Bayesian Optimization for Machine Learning by Ryan Adams

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 2 / 8

https://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Ryan_adams_140814_bayesopt_ncap.pdf

Acquisition functions

GP-LCB. “optimism in the phase of uncertainty”; minimize the lower
(1− α)-credible bound of the posterior of the unknown function values f(θ),
i.e.

αLCB (θ) = µ (θ)− z1−ασ (θ) ,

where z1−α = Φ−1 (1− α) is the desired quantile of the standard normal
distibution.
PI (probability of improvement). θ̃: the optimal location so far, ỹ: the
observed minimum. Let u (θ) = 1 {f (θ) < ỹ},

αPI (θ) = E [u(θ)|D] = Φ (γ(θ)) , γ(θ) =
ỹ − µ (θ)

σ (θ)

EI (expected improvement). Let u (θ) = max (0, ỹ − f (θ))

αEI (θ) = E [u(θ)|D] = σ (θ) (γ (θ) Φ (γ (θ)) + φ (γ(θ))) .

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 3 / 8

Adaptive Bayesian Linear Regression: DistBLR

Joint GP modelling comes at a high computational cost: O(N3) time and
O(N2) storage, where N is the total number of observations: N =

∑n
i=1Ni

GP cost can outweigh the cost of computing f in the first place.
Since we are learning dataset representation inside the kernel anyway – can
instead simply adopt Bayesian linear regression (O(N) time and storage)

z|β ∼ N (Υβ, σ2I) β ∼ N (0, αI)

Υ = [υ([θ1
1,Ψ1]), . . . , υ([θ1

N1
,Ψ1]), . . . ,

υ([θn1 ,Ψn]), . . . , υ([θnNn
,Ψn])]> ∈ RN×d

where α > 0 denotes the prior regularisation. Here υ denotes a feature map
of dimension d on concatenated hyperparameters θ, data embedding ψ(D)
and sample size s.

Conceptually similar setting to [Perrone et al, 2018] who fit a single BLR per task.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 4 / 8

Noise Contrastive Estimation

Noise contrastive estimation [Gutmann and Hyvärinen, 2010] is an approach to the model
parameter estimation based on classifiers discriminating between true and artificial
(fake) samples. In our case, yi|xi ∼ pθ(y|x), and those from {yfi,j}κj=1 ∼ pf (y),
for a given pf (y). Giving weights proportional to (1, κ), probability that the
sample came from the true model is:

Pθ(True|y, x) =
pθ(y|x)

pθ(y|x) + κpf (y)
.

Assuming that the learned classifier is Bayes optimal:

pθ(y|x) =
κpf (y)Pθ(True|y, x)

1− Pθ(True|y, x)
.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 5 / 8

Density model

Consider the density model given by

pθ(y|x) =
exp(sθ(x, y))´

exp(sθ(x, y′))dy′
= exp(sθ(x, y) + bθ(x))

for some scoring function sθ : X × Y → R and bθ(x) models the normalizing
constant. Hence

Pθ(True|y, x) =
exp(sθ(x, y) + bθ(x))

exp(sθ(x, y) + bθ(x)) + κpf (y)

= σ (sθ(x, y) + bθ(x)− log(κpf (y))) .

where σ(t) = 1/(1 + e−t) is the logistic function.

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 6 / 8

Defining sθ

Map xi and yi using feature maps (neural networks) φx : X → HX and
φy : Y → HY with all parameters collated into θ
Estimate the conditional mean embedding operator
ĈY |X = Φy(Kxx + λI)−1ΦTx

Given ĈY |X , we can estimate the conditional mean embedding for any new x′

using
µ̂Y |X=x′ = ĈY |Xφx(x′)

We can then evaluate the conditional mean embedding at any new y′ using

µ̂Y |X=x′(y′) = 〈µ̂Y |X=x′ , φy(y′)〉HY
= 〈ĈY |Xφx(x′), φy(y′)〉HY

Scoring function:
sθ(x

′, y′) = µ̂Y |X=x′(y′)

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 7 / 8

Defining sθ

Scoring function:
sθ(x

′, y′) = µ̂Y |X=x′(y′)

We expect this value to be high when y′ is drawn from the true conditional
distribution Y |X = x′ and low in cases where y′ falls in a region where the
true conditional density p(y|x′) is low:

µY |X=x′(y′) = E [ky(y′, Y)|X = x′] =

ˆ
ky(y′, y)p(y|x′)dy,

where ky(y, y′) := 〈φy(y), φy(y′)〉Hy
.

Recall that

Pθ(True|y, x) = σ (sθ(x, y) + bθ(x)− log(κpf (y))) .

Dino Sejdinovic (Oxford) Kernel Embeddings for Meta Learning 21/01/2020 8 / 8

	Hyperparameter Learning via Distributional Transfer
	Meta Learning for Conditional Density Estimation
	Appendix

