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Kernel Trick and Kernel Mean Trick

o implicit feature map = +— k(-,x) € Hy,
replaces = +— [¢1(x), ..., ¢s(x)] € R®
° <k(,l‘),k(,y>>7_¢k = k’(ﬂl‘,y)

inner products readily available

hyperplane

e nonlinear decision boundaries, nonlinear regression
functions, learning on non-Euclidean/structured
data

[Cortes & Vapnik, 1995; Schdlkopf &
Smola, 2001]
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Kernel Trick and Kernel Mean Trick

o implicit feature map x — k(-,z) € Hy, o e l N\ |
replaces = +— [¢1(x), ..., ¢s(x)] € R® * o See
° <k(,l‘),k(,y)>7_¢k = k’(ﬂl‘,y) . B ° ./

inner products readily available
hyperplane

o . .. . . .
nonlinear decision boundaries, nonlinear regression [Cortes & Vapnik, 1995; Schalkopf &

functions, learning on non-Euclidean/structured

data Smola, 2001]
o RKHS embedding: implicit feature mean ) B0
[Smola et al, 2007; Sriperumbudur et al, 2010; Muandet et al, X””.
2017] (Q) = Eylk(» V)] Y
P pp(P)=Ex.pk(-,X) € Hy, ﬂ“ 1(P)— (@)l
replaces P — [E¢y(X),...,E¢s(X)] € R®
Y <,uk(P)7 'u“k(Q»’Hk — EXNP,YNQK(X, Y) [Gretton et al, 2005; Gretton et al,

inner products easy to estimate 2006; Fukumizu et al, 2007; DS et

e nonparametric two-sample, independence, al, 2013; Muandet et al, 2012;
conditional independence, interaction testing, Szabo et al, 2015]

learning on distributions
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Probabilistic Meta Learning Framework (carmeio <t a1 18]

Context points
(input-output pairs)

o Let T ={T1,...,TL} be the set of L tasks, each divided into context
DL = {(z2°,4"°)} and target data D! = {(2}', y")}

o Context set is to extract the meta information, encoded as the “task
embedding”

@ Target set is to test how well the information was extracted by compute the
loss on the target set.

@ During testing time we only have context set and are asked to predict on any
new x*

[Thrun and Pratt, 1998; Ravi and Larochelle, 2016; Santoro et al., 2016]
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Probabilistic Meta Learning Framework (carmeio <t a1 18]

| Backﬁrogaﬁate the loss =ei Ioilike=

R v*
Y vee W YT

1 .. \JYc Target outputs
*
Context points ces \ .YT
(input-output pairs)

Target inputs

o Let T ={T1,...,T1} be the set of L tasks, each divided into context
D! = {(xé’c, yé’c)} and target data D! = {(xé’t, yi’t)}

o Context set is to extract the meta information, encoded as the “task
embedding”

@ Target set is to test how well the information was extracted by compute the
loss on the target set.

@ During testing time we only have context set and are asked to predict on any
new x*

[Thrun and Pratt, 1998; Ravi and Larochelle, 2016; Santoro et al., 2016]
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Kernel Embeddings for Meta Learning

@ Ho Chung Leon Law, Peilin Zhao, Lucian Chan, Junzhou Huang, and DS.
Hyperparameter Learning via Distributional Transfer. NeurlPS 2019.

@ Jean-Francois Ton, Lucian Chan, Yee Whye Teh, and DS. Noise Contrastive Meta
Learning for Conditional Density Estimation using Kernel Mean Embeddings.
ArXiv e-prints:1906.02236, appearing in NeurlPS Meta Learning Workshop 2019.
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Towards End-to-End Learning

Speech recognition

Traditional model:

Hand-designed Recognized
Audio Compute | MFCCfeatures (“phoneme phonemes (" Final it
features recognizer recognizer P
End-to-end learning:
Audio [ Deep learning Output
| algorithm

figure from https://blog.easysol.net/building-ai-applications/
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Towards End-to-End Learning

Raw Data ——»| Machine Learning Algorithm ——» Output
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Towards End-to-End Learning

Raw Data ——»| Machine Learning Algorithm » Output
Hyperparameter
. tuning

-

.
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Towards End-to-End Learning

Raw Data ——»| Machine Learning Algorithm » Output
Hyperparameter
. tuning

F1D<7

Grid search, random search, trial-and-error, graduate student descent,...
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Optimizing “black-box" functions

We are interested in optimizing a 'well behaved’ function f : © — R over some
bounded domain of hyperparameters © C R, i.e. in solving

0, = argmin peo f(6).

However, f is not known explicitly, i.e. it is a black-box function and we can only
ever obtain noisy and expensive evaluations of f.

Goal: Find 6 such that f(0) ~ f(6.) while minimizing the number of evaluations
of f.
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Probabilistic model for the objective f

Assuming that f is well behaved, we build a surrogate probabilistic model for it
(typically a Gaussian Process ).
© Compute the posterior predictive distribution of f using all evaluations so far.

@ Optimize a cheap proxy / acquisiton function instead of f which takes into
account predicted values of f at new points as well as the uncertainty in
those predictions: this proxy is typically much cheaper to evaluate than the
actual objective f.

© Evaluate the objective f at the optimum of the proxy and go to 1.

The proxy / acquisiton function should balance exploration against exploitation.
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Towards End-to-End Learning

Raw Data ——»| Machine Learning Algorithm » Output
Hyperparameter
. tuning

-

.
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Towards End-to-End Learning

Raw Data ——» Machine Learning Algorithm » Output
Measure of
2] performance
f6)
Probabilistic
model for f
Learning -
to learn
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Transfer Hyperparameter Learning

@ Multiple hyperparameter learning tasks which share the same model: variability in f
across tasks is due to changing datasets.

@ Is performance measure f really a black-box function of hyperparameters? Highly
structured problem corresponding to training a specific model on a specific dataset.

Dataset 1 —P‘ ML }_ > Output
fo

BayesOpt ‘ -— ]

Dataset 2 —P‘ ML }_ > Output
fo

f16)

f46)
BayesOpt ‘4—
Dataset n —>‘ ML }——» Output
fo
f+(6)
BayesOpt ‘<—
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Transfer Hyperparameter Learning

@ Multiple hyperparameter learning tasks which share the same model: variability in f
across tasks is due to changing datasets.

@ Is performance measure f really a black-box function of hyperparameters? Highly
structured problem corresponding to training a specific model on a specific dataset.

Dataset 1 —+ ML

Dataset 2 —b‘ ML

BayesOpt ‘

6,Dn
Dataset n —{ ML Outplﬁ )
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Motivating Example

Example from [Poloczek et al, 2016] to motivate warm-starting Bayesian optimization:
live stream of data arriving in time:

@ Re-train model every 12 hours, on the last 24 hours of data, and deploy asap.
o Optimal hyperparameters 6 shift as data distribution changes e.g. weekend vs

weekday or holiday vs no holiday
@ Not all previous tasks are equally useful.

(D17f1)a(D2af2) DR ’(Dmfn> (Dtargeafmrqet)

N N
P SN

{6 f © LN Want gloreet

Similar to target task f'"9¢
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AutoML: representing datasets using metafeatures

Warmstart target hyperparameters to the optimal values from source datasets
with closest metafeatures.
[Michie et al, 1994; Pfahringer et al, 2000; Bardenet et al, 2013; Feurer et al, 2014; Hutter et al, 2019]
@ General:
e Skewness, kurtosis of each input dimension: extract the minimum, maximum,
mean and standard deviation across the dimensions.
o Correlation, covariance of each pair of input dimensions: extract the minimum,
maximum, mean and standard deviation across the pairs.
o PCA skewness, kurtosis: run PCA, project onto the first principal component
and compute skewness and kurtosis.
e Intrinsic dimensionality: number of principal components to explain 95% of
variance.
@ Classification specific:

e Label summaries: empirical class distribution and its entropy.
o Classification landmarkers: accuracy on a held out dataset of 1-nn classifier,
linear discriminant analysis, naive Bayes and decision tree classifier.
@ Regression specific:
o Label summaries: Mean, stdev, skewness, kurtosis of the labels {y;};2,.
o Regression landmarkers: accuracy on a held out dataset of 1-nn, linear and
decision tree regression.
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Dataset (task) representation for hyperparameter learning

Assume D = {x;,yi1};_, "4 pyy and that f is the empirical risk, i.e.

70,0) = < 37 L(halxe) ),
=1

where L is the loss function and hg is the model’s predictor.
For a fixed ML model, there are three sources of variability to the performance
measure f:

@ Hyperparameters 6

e Joint (empirical) measure Pxy of the dataset

@ Sample size s
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Dataset (task) representation for hyperparameter learning

Assume D = {x;,yi1};_, "4 pyy and that f is the empirical risk, i.e.

70,0) = < 37 L(halxe) ),
=1

where L is the loss function and hg is the model’s predictor.
For a fixed ML model, there are three sources of variability to the performance
measure f:

@ Hyperparameters 6

e Joint (empirical) measure Pxy of the dataset

@ Sample size s
Thus we will model f(0, Pxy,s), assuming that f varies smoothly not only as a
function of 6, but also as a function of Pxy and s ([Kiein et al, 2016] considers f
varying in s to speed up BayesOpt on a single large dataset).

K({ehp)l(Yv 81}’ {9257)§(Y7 52}) = k9<91’ 92)]617("/](73)1()/)7w(P)Q(Y))kS(Slﬁ 52)

Need to learn representation ¢)(Pxy ) useful for hyperparameter learning.
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Learning kernel embeddings

Need to learn a representation of empirical joint distributions for comparison
across tasks.
@ Start with parametrized feature maps (e.g. neural networks) ¢ (x), ¢y, (y)
and ¢4, ([x,y]) which we will learn (treated as GP kernel parameters).

e Marginal Distribution Px: fip, = 1377 | ¢.(x¢) (e.g. noisier covariates
require less complex models).
e Conditional Distribution Py |x:

Cyix =@, (2,0 + AI)'D,

where @, = [¢,(x1), ..., ¢x(xs)]T' Dy = [y (v1),- -, ¢y(ys)]T and Ais a
parameter that we learn. (e.g. captures smoothess of the regression
functions).

@ Joint Distribution Pxy:

S

R 1< 1
Cxy =+ D balxe) © By (ye) = ~; D,
=1

AIternati\ier,SIearn a joint feature map ¢, and compute
HPxy = 3 Zé:l (bry([va yé])
Kernel Embeddings for Meta Learning



DistBO

With a joint GP model on inputs (8, Pxy, s), we can now

@ Fit the GP on all performance evaluations so far:

&= {0, Phy.si), FLOIN Yy,

fitting any GP kernel parameters (e.g. those of feature maps ¢, ¢,) b
maximising the marginal likelihood of the GP.

O Let flor9et(9) = (0, P57 Starget). Maximise the acquisition function at
the target a(6; f1979¢%) to select next Oyeu

9 Evaluate fta'rget( new) add {( newa target’ 5target)> ftarget(gnew)} to 5
and go to 1.

@ In practice, joint GP modelling comes at a higher computational cost, but we
can resort to Bayesian linear regression (BLR) on learned feature maps (with
time and storage linear in the number of evaluations).

@ Conceptually similar to [Perrone et al, 2018] which fits BLR per task sharing
representation of hyperparameters. Our joint model allows one-shot proposal
of hyperparameters without seeing any evaluations on the target task.
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Experiments

We will compare DistBO with the following baselines:
e manualBO: joint GP with (D) as the selection of 13 AutoML
meta-features,

o multiBO: i.e. multiGP [Swersky et al, 2013] and multiBLR [Perrone et al, 2018] which
uses no meta-information, i.e. each task is encoded by its index, but the
representation of hyperparameters is shared across tasks,

o initBO: plain BayesOpt warm-started with the top 3 hyperparameters from
the three most similar source tasks in terms of AutoML meta-features,

@ noneBO: plain BayesOpt,
@ RS: random search.
Implementation in TensorFlow: https://github.com/hcllaw/distBO.

GP/BLR marginal likelihood optimized using ADAM. To obtain source task
evaluations, we use standard BayesOpt.
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https://github.com/hcllaw/distBO

Protein data classification

@ Datasets on 7 proteins extracted from ChEMBL database [Gaulton et al, 2016]. Each
protein corresponds to a task, containing 1037 — 4434 molecules with binary
features x, € R'® computed using chemical fingerprinting. The binary label per
molecule is whether it can bind to the protein target.

@ Two classifiers: Jaccard kernel C-SVM (hyperparameter C'), and random forest
(hyperparameters n_trees, max_depth, min_samples_split, min_samples_leaf).

@ Designate each protein as the target task, while using remaining 6 as source tasks.
Results reported obtained by averaging over target tasks (20 runs per task).

f‘/;,—’—=
085

i

classification rate (%
classification rate (%)

083 —— distGP L — distGP
—— manualGP & —— manualGP

082 — multiGP o0 — multiGP

| initGP initGP
o081 | —— noneGP s —— noneGP

RS RS
080
0 3 6 9 122 15 18 2 0 3 6 9 12 15 18 2
Iteration lteration

Figure: Left: Jaccard kernel C-SVM. Right: Random forest
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Switching feature relevance

L R o @ handcrafted meta-features do
o [F 0 — =2 not capture any information
— ’_=i about the optimal
e i=
06 7% hyperparameters
Q
£ — dsep | 307 @ three-variable interaction: the
o — manualeP e difference between tasks is
— multiGP & 08 P . .
nitclp invisible by considering
02 . . . .
— noneGP 05 marginal distributions of
o RS covariates and their pairwise
04
0 10 20 30 40 50 0 10 20 0 40 50 i 1
teration i relationships.

Dataset i with x), € RS and g € R:

[xz] R ON(0,27), j=1,....6

J

i
<]
i+2
3

ye = log |1+ I i + N(0,0.5%).
je{1,2,i+2}

I

sign (i) x{J2) |t

1,4, j denote task, sample and dimension, respectively; sample size is s; = 5000.
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Conclusion

@ Method to borrow strength between multiple hyperparameter learning tasks
by making use of the similarity between training datasets.

@ Allows few-shot hyperparameter learning especially if similar prior tasks are
present.

o Towards opening the black box function of hyperparameter learning: consider
model performance as a function of all its sources of variability.
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Outline

© Meta Learning for Conditional Density Estimation
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Meta Learning Setup

~
= ‘*
Y1) oo Xr
Target outputs
© \
Context points @ ‘es @
(input-output pairs)
Target inputs J
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Beyond Functional Relationships

0.4

0.2 0.2 05 0.3
N e -\ X O 2

@ In supervised learning, we often focus on functional relationships, e.g.
conditional expectations E[y|x] in regression.

@ More expressive representation may be needed due to e.g. multimodality or
heteroscedasticity: y cannot be meaningfully represented using a single
function f(x) of the features z, such as E[y|z].

@ Goal: conditional density estimation p(y|x) based on paired samples
{(zi, ) iy

@ Use a flexible nonparametric model of the full conditional density in the
meta learning setting.
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Conditional Mean Embeddings (CME)

@ “Augment” the representation of y by using a feature map ¢,(y) and consider
CME E[6, (y)|a]

e We require an expressive feature map ¢, so that CME E[¢, (y)|x] captures
the relevant information about the relationship between y and .

@ However, CMEs do not give a way to estimate conditional densities.

@ Idea: use the conditional mean embedding operator as a task embedding of a
given conditional density estimation task — turn estimation into classification
using noise contrastive approach [Gutmann and Hyvirinen, 2010].

Cyix = Py(Kuw + M) TLOT, iy x—p = E[p, (y)]2] = Cy | x¢u (2).
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Proposed Method

H Vi veo 2 YT

e o

Y 1 ( h
. - @ @
—
. e
.
\_ Target inputs J
\_v_-‘
Context
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Density model
Consider the density model given by

exp(sp(@,y))
= = b
po(y|r) Texp(so(x,y))dy’ exp(se(w,y) + ba(x))
for some scoring function sg : X x ) — R and by(x) models the normalizing
constant.

Use scoring function:

so(2',y') = fy|x=w (y) = <€Y|X¢z(x/)a¢y(y/)>’f-ly'

We expect this value to be high when 1/ is drawn from the true conditional
distribution Y| X = 2’ and low in cases where y’ falls in a region where the true
conditional density p(y|z') is low:

py x=2(y') =Elky(y, Y)|X = 2'] = /ky(y’,y)p(ylfﬂ’)dy.

NCE: [Gutmann and Hyvérinen, 2010] train a classifier discriminating between true and
artificial (fake) samples.
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Proposed Method

Xe * &
'
e o — ﬂ
L]

Hy
-0~ —E—

) s ¢ @ y '
: !
L] Oy Py
Hx . .
— &

Context I
O
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Proposed Method

Backpropagate the loss (eg logistic loss)

—

Xe .

Context
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MetaCDE

@ Three neural networks ¢, (z), ¢, (y), bo(x) (all parameters collated into ) —
these will be shared across tasks.

o Let 7 ={T1,...,T1} be the set of L conditional density estimation tasks
—each divided into context DL = {(z°, 1)} and target data

i
Lt Lt
Dp={(z;" ")}
o For every target input xit we generate x fake responses yif from ps(y).

@ Learn 0 by training a True/Fake classifier on the True/Fake labels by
minimizing the logistic loss across target data for all tasks jointly (SGD).
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Dihedral angles in molecules

Figure: Left to right: MetaCDE (ours), DDE, LSCDE, KCEF, e-KDE. The red dots are
the context/training points and the green dots are points from the true density.

@ Interested in understanding possible conformations of molecular structures, i.e.
energetically allowed regions of dihedral angles in bonds. The data extracted from
crystallography database COD [Grazulis et al, 2011].

@ The multimodality of the dataset arises from the molecular symmetries such as
reflection and rotational symmetry.
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Results

Synthetic Chemistry NYC Taxi

MetaCDE (Ours) | Loglike | 197.84 + 22.4  -305.49 + 46.9 -1685.52+ 608.35

MetaNN (Ours) Loglike | 132.776+130.87 -317.914+51.3 -2276.55 + 608.9
p-value | 4.781e-06 1e-03 3.89e-10

Neural Process Loglike | -81.11+18.5 -426.75+ 47.3 -3050.2 4+ 822.8
p-value | <2.2e-16 <2.2e-16 3.89e-10

DDE Loglike | 162.98 + 69.0 -399.68 + 41.3  -2236.07 + 565.9
p-value | 8.14e-07 1.65e-15 3.8%-10

KCEF Loglike | -388.30 4+ 703.1 -724.40 + 891.6 -1695.89+435.4
p-value | <2.2e-16 9.72e-14 0.025

LSCDE Loglike | 44.95 + 74.3 -407.32 + 80.1 -2748.01 £ 549.2
p-value | <2.2e-16 2.57e-14 3.89e-10

e-KDE Loglike | 116.31 &+ 236.9  -485.10 + 303.4 -2337.90 £+ 501.1
p-value | 2.38e-07 2.94e-14 4.13e-10

Table: Average held out log-likelihood on 100 different tasks. Also reporting the p-values
for the one sided signed Wilcoxon test wrt to MetaCDE.
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Conclusions

o Learn a data representation informative for the conditional density estimation
tasks, by borrowing strength across tasks.

@ The approach builds on the probabilistic approaches to meta learning, i.e.
neural processes: MetaCDE also learns a task embedding based on the
context set, but this embedding takes a specific form of the conditonal
embedding operator and it is the feature maps that are learned.

@ Combining the feature map networks using kernel mean embedding formalism
gives better performance than learning the task embedding directly.
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Summary

@ Statistical modelling can be brought to bear in tandem with deep learning.

@ Increasing confluence between statistics and ML: making use of the well
engineered ML infrastructure, with bespoke statistical models for the problem
at hand.

o Flexibility of the RKHS framework as a common ground between machine
learning and statistical inference.
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Surrogate Gaussian Process model

Assume that the noise in the evaluations of the black-box function is i.i.d.
N (0,7%). Having evaluated the objective at locations 6 = {6;},, we denote
the observed values by y = [y1,...,%m]" and the true function values by

f=1[f(61),....f(0)]". Then
f ~ N(0,K),
ylf ~ N(f,7%1).

GP model gives the posterior predictive mean 1 (0) and the posterior predictive
variance o% (0) = k (6, 0) at any new location 4, i.e.

FO) |y ~N(n(0),5(0,0)),

where
p(0) = keo(K+721)" 'y,
k(0,0) = k(0,0) —koo(K +7°1) 'kop
Now can construct acquisition functions which balance

e Exploitation: seeking locations with low posterior mean p (6),
o Exploration: seeking locations with high posterior variance « (6, 6).
Kernel Embeddings for Meta Learning 21/01/2020
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Illustrating Bayesian Optimization

I [ pred var == pred mean = = = truth o evaluationsl ¢

f(x)

El(x)

figures from A Tutorial on Bayesian Optimization for Machine Learning by Ryan Adams
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Nlustrating Bayesian Optimization

f(x)

~ -

4 =

El(x)

figures from A Tutorial on Bayesian Optimization for Machine Learning by Ryan Adams
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Nlustrating Bayesian Optimization
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EI(x)

figures from A Tutorial on Bayesian Optimization for Machine Learning by Ryan Adams
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Nlustrating Bayesian Optimization
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figures from A Tutorial on Bayesian Optimization for Machine Learning by Ryan Adams
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Nlustrating Bayesian Optimization
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Acquisition functions

o GP-LCB. “optimism in the phase of uncertainty”’; minimize the lower
(1 — «)-credible bound of the posterior of the unknown function values f(8),
i.e.
arcp (0) = p(0) — 2140 (0),

where 21, = ®71 (1 — ) is the desired quantile of the standard normal
distibution.

@ PI (probability of improvement). 6: the optimal location so far, §: the
observed minimum. Let u (9) = 1{f (9) < 7},

opr (0) = B(O[D] = 2 (1), A(0) = L 4O

o El (expected improvement). Let u (0) = max (0,5 — f (6))

apr (0) = E[u(0)[D] = o () (v(0) (v (0)) + ¢ (+(6))) -
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Adaptive Bayesian Linear Regression: DistBLR

@ Joint GP modelling comes at a high computational cost: O(N?3) time and
O(N?) storage, where N is the total number of observations: N =" | N;

@ GP cost can outweigh the cost of computing f in the first place.

@ Since we are learning dataset representation inside the kernel anyway — can
instead simply adopt Bayesian linear regression (O(N) time and storage)

2B ~ N(XB,0%I) B~ N(0,al)
T = [U([eia \Ill])7 ey U([ell\fla\pl])a ceey
w07, 0]), - o([0, , W) € RN

where o > 0 denotes the prior regularisation. Here v denotes a feature map
of dimension d on concatenated hyperparameters 0, data embedding ¢ (D)
and sample size s.

Conceptually similar setting to [Perrone et al, 2018] who fit a single BLR per task.
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Noise Contrastive Estimation

Noise contrastive estimation [Gutmann and Hyvirinen, 2010] is an approach to the model
parameter estimation based on classifiers discriminating between true and artificial
(fake) samples. In our case, y;|x; ~ pg(y|x), and those from {yl{j}f:l ~pr(y),
for a given ps(y). Giving weights proportional to (1, k), probability that the
sample came from the true model is:

po(ylz)
po(ylx) + rps(y)

Py(Truely,x) =

Assuming that the learned classifier is Bayes optimal:

kpy(y) Py (Truely, z)
1 — Py(Truely,z)

po(ylz) =
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Density model

Consider the density model given by

exp(sg(z,y))
)= = exp(sg(z,y) + bo(x
Polyle) = o g = eXpls0l.) + bo ()
for some scoring function sg : X x ) — R and by(x) models the normalizing
constant. Hence

exp(sg(x,y) + bo(z))
exp(sg(z,y) + bo(x)) + kps(y)
=0 (sg(z,y) + bg(z) — log(kps(y))) -

Py(Truely, z) =

where o(t) = 1/(1 + e7t) is the logistic function.
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Defining sg

@ Map z; and y; using feature maps (neural networks) ¢, : X — Hx and
¢y 1 Y — Hy with all parameters collated into 8

o Estimate the conditional mean embedding operator
Cy|X = (Dy(sz + )\I)_lq)g

o Given €y|X, we can estimate the conditional mean embedding for any new z’
using N
ﬂY\X:a;' = CY|X¢$($/)

@ We can then evaluate the conditional mean embedding at any new y’ using

iy x=ar () = (v x =2 0y (¥ )2y = (Crx0u(@’), 6y (y)) 2y

Scoring function:
so(2',y') = fiy | x=o (Y)
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Defining sg

@ Scoring function:
59($I7y/) = ﬂY\X:x'(y/)

@ We expect this value to be high when ¢ is drawn from the true conditional
distribution Y| X = 2’ and low in cases where y’ falls in a region where the
true conditional density p(y|z’) is low:

MY\X:m’ (y/) =K [ky(y/7Y)|X = x/] = /ky(ylvy)p(y‘xl)dyv

where ky(y,y') == (¢y(y), &y (¥ )2, -
@ Recall that

Py(Truely, ) = o (so(x,y) + bo(x) — log(rps(y))) -
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