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Towards End-to-End Learning

figure from https://blog.easysol.net/building-ai-applications/
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Towards End-to-End Learning

  

Machine Learning AlgorithmRaw Data Output

Hyperparameter
        tuning

Grid search, random search, trial-and-error, graduate student descent,.
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Optimizing “black-box” functions

Most machine learning models have hyperparameters to be tuned:

deep neural networks: number of layers, regularization parameters, dropout
parameters, layer size, batch size, learning rate, momentum,...
kernel methods: kernel lengthscale parameters, regularization parameters,
number and type of random features,...
variational methods: prior parameters, variational family, choice of
divergence, type of the variational bound, batch size, learning rate,...

An objective function: a measure of generalization performance for a given set of
hyperparameters obtained using held-out dataset or cross-validation.
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Optimizing “black-box” functions

We are interested in optimizing a ’well behaved’ function f : Θ→ R over some
bounded domain Θ ⊂ Rd, i.e. in solving

θ? = argmin θ∈Θf(θ).

However, f is not known explicitly, i.e. it is a black-box function and we can only
ever obtain noisy and expensive evaluations of f .
Goal: Find θ such that f(θ) ≈ f(θ?) while minimizing the number of evaluations
of f .
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Probabilistic model for the objective f

Assuming that f is well behaved, we build a surrogate probabilistic model for it
(Gaussian Process).

1 Compute the posterior predictive distribution of f using all evaluations so far.
2 Optimize a cheap proxy / acquisiton function instead of f which takes into

account predicted values of f at new points as well as the uncertainty in
those predictions: this proxy is typically much cheaper to evaluate than the
actual objective f .

3 Evaluate the objective f at the optimum of the proxy and go to 1.

The proxy / acquisiton function should balance exploration against exploitation.
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Surrogate Gaussian Process model
Assume that the noise in the evaluations of the black-box function is i.i.d.
N
(
0, τ2

)
. Having evaluated the objective at locations θ = {θi}mi=1, we denote

the observed values by y = [y1, . . . , ym]> and the true function values by
f = [f(θ1), . . . , f(θm)]>. Then

f ∼ N (0,K),

y|f ∼ N (f , τ2I).

GP model gives the posterior predictive mean µ (θ) and the posterior predictive
variance σ2 (θ) = κ (θ, θ) at any new location θ, i.e.

f (θ) |y ∼ N (µ (θ) , κ (θ, θ)) ,

where

µ (θ) = kθθ(K + τ2I)−1y,

κ (θ, θ) = k(θ, θ)− kθθ(K + τ2I)−1kθθ

Exploitation: seeking locations with low posterior mean µ (θ),
Exploration: seeking locations with high posterior variance κ (θ, θ).
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Acquisition functions

GP-LCB. “optimism in the phase of uncertainty”; minimize the lower
(1− α)-credible bound of the posterior of the unknown function values f(θ),
i.e.

αLCB (θ) = µ (θ)− z1−ασ (θ) ,

where z1−α = Φ−1 (1− α) is the desired quantile of the standard normal
distibution.
PI (probability of improvement). θ̃: the optimal location so far, ỹ: the
observed minimum. Let u (θ) = 1 {f (θ) < ỹ},

αPI (θ) = E [u(θ)|D] = Φ (γ(θ)) , γ(θ) =
ỹ − µ (θ)

σ (θ)

EI (expected improvement). Let u (θ) = max (0, ỹ − f (θ))

αEI (θ) = E [u(θ)|D] = σ (θ) (γ (θ) Φ (γ (θ)) + φ (γ(θ))) .

Dino Sejdinovic (Oxford) Hyperparameter Transfer ISM Tokyo, 28/03/2019 9 / 27



Illustrating Bayesian Optimization

figures from A Tutorial on Bayesian Optimization for Machine Learning by Ryan Adams
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Transfer Hyperparameter Learning
Multiple hyperparameter learning tasks which share the same model: variability in f
across tasks is due to changing datasets.
Is performance measure f really a black-box function of hyperparameters? Highly
structured problem corresponding to training a specific model on a specific dataset.
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Transfer Hyperparameter Learning

Consider a standard supervised learning setting: f(θ,D) is a performance
measure of a trained ML model with hyperparameters θ and data
D = {xl, yl}sl=1, xl ∈ X covariates and yl ∈ Y labels. Assume the same
domains X and Y for all tasks.
Assume that we have already solved n source tasks by computing Ni
evaluations of the objective, i.e. we have {θir, f(θir, Di)}Ni

r=1, with source
datasets

Di = {xil, yil}
si
l=1, i = 1, . . . , n.

The goal is to utilise information from source tasks to help us model
f target(θ) = f(θ,Dtarget) and speed up BayesOpt on an unseen target dataset

Dtarget = {xtarget
l , ytarget

l }starget
l=1 ,

i.e.
θtarget
∗ = argminθ∈Θf

target(θ)
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Motivating Example
Example from [Poloczek et al, 2016] to motivate warm-starting Bayesian optimization.

Model that assigns drivers to passengers (e.g. Uber or Lyft)
Have to tune hyperparameters θ, with objective f
Live stream of data arriving in time

Problem:

Re-train model every 12 hours, on the last 24 hours of data, and deploy asap.
Optimal hyperparameters θ shift as data distribution changes e.g. weekend vs
weekday or holiday vs no holiday
Not all previous tasks are equally useful.
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Dataset representation for hyperparameter learning

Assume D = {xl, yl}sl=1
i.i.d.∼ PXY and that f is the empirical risk, i.e.

f(θ,D) =
1

s

s∑
`=1

L (hθ(x`), y`) ,

where L is the loss function and hθ is the model’s predictor.
For a fixed ML model, there are three sources of variability to the performance
measure f :

Hyperparameters θ
Joint (empirical) measure PXY of the dataset
Sample size s

Thus we will model f(θ,PXY , s), assuming that f varies smoothly not only as a
function of θ, but also as a function of PXY and s ([Klein et al, 2016] considers f
varying in s to speed up BayesOpt on a single large dataset).
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Dataset representation for hyperparameter learning

To model a joint GP in (θ,PXY , s), we construct a product covariance function:

K({θ1,P1
XY , s1}, {θ2,P2

XY , s2}) = kθ(θ1, θ2)kp(ψ(P1
XY ), ψ(P2

XY ))ks(s1, s2)

Common choices might include kθ are kp as Matérn-3/2, and ks as the sample
size kernel from [Klein et al, 2016]

Need to learn representation ψ(PXY ) useful for hyperparameter learning, i.e. the
one which can yield representations invariant to variations in the training data
irrelevant for hyperparameter choice.
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AutoML: representing datasets using metafeatures
No joint GP model, but warmstart target hyperparameters to the optimal values
from source datasets with closest metafeatures.
[Michie et al, 1994; Pfahringer et al, 2000; Bardenet et al, 2013; Feurer et al, 2014; Hutter et al, 2019]

General:
• Skewness, kurtosis of each input dimension: extract the minimum, maximum,

mean and standard deviation across the dimensions.
• Correlation, covariance of each pair of input dimensions: extract the minimum,

maximum, mean and standard deviation across the pairs.
• PCA skewness, kurtosis: run PCA, project onto the first principal component

and compute skewness and kurtosis.
• Intrinsic dimensionality: number of principal components to explain 95% of

variance.
Classification specific:

• Label summaries: empirical class distribution and its entropy.
• Classification landmarkers: accuracy on a held out dataset of 1-nn classifier,

linear discriminant analysis, naive Bayes and decision tree classifier.
Regression specific:

• Label summaries: Mean, stdev, skewness, kurtosis of the labels {yi`}
si
`=1.

• Regression landmarkers: accuracy on a held out dataset of 1-nn, linear and
decision tree regression.
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Kernel Mean Embeddings

implicit feature map x 7→ k(·, x) ∈ Hk
replaces x 7→ [φ1(x), . . . , φs(x)] ∈ Rs

〈k(·, x), k(·, y)〉Hk
= k(x, y)

inner products readily available
• nonlinear decision boundaries, nonlinear regression

functions, learning on non-Euclidean/structured
data

[Cortes & Vapnik, 1995; Schölkopf &

Smola, 2001]

RKHS embedding: implicit feature mean
[Smola et al, 2007; Sriperumbudur et al, 2010; Muandet et al,

2017]

P 7→ µk(P ) = EX∼P k(·, X) ∈ Hk
replaces P 7→ [Eφ1(X), . . . ,Eφs(X)] ∈ Rs

〈µk(P ), µk(Q)〉Hk
= EX∼P,Y∼Qk(X,Y )

inner products easy to estimate
• nonparametric two-sample, independence,

conditional independence, interaction testing,
learning on distribution inputs

[Gretton et al, 2005; Gretton et al,

2006; Fukumizu et al, 2007; DS et

al, 2013; Muandet et al, 2012;

Szabo et al, 2015]
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Learning kernel embeddings
Need to learn a representation of empirical joint distributions for comparison
across tasks.

Start with parametrized feature maps (e.g. neural networks) φx(x), φy(y)
and φxy([x, y]) which we will learn (treated as GP kernel parameters).
Marginal Distribution PX : µ̂PX

= 1
s

∑s
`=1 φx(x`) (e.g. noisier covariates

require less complex models).
Conditional Distribution PY |X :

ĈY |X = Φ>y (ΦxΦ>x + λI)−1Φx

where Φx = [φx(x1), . . . , φx(xs)]
T , Φy = [φy(y1), . . . , φy(ys)]

T and λ is a
parameter that we learn. (e.g. captures smoothess of the regression
functions).
Joint Distribution PXY :

ĈXY =
1

s

s∑
`=1

φx(x`)⊗ φy(y`) =
1

s
Φ>x Φy

Alternatively, learn a joint feature map φxy and compute
µ̂PXY

= 1
s

∑s
`=1 φxy([x`, y`]).
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DistBO Algorithm

With a joint GP model on inputs (θ,PXY , s), we can now

1 Fit the GP on all performance evaluations so far:

E = {{(θir,PiXY , si), f i(θir)}
Ni
r=1}ni=1,

fitting any GP kernel parameters (e.g. those of feature maps φx, φy) by
maximising the marginal likelihood of the GP.

2 Let f target(θ) = f(θ,PtargetXY , starget). Maximise the acquisition function at
the target α(θ; f target) to select next θnew

3 Evaluate f target(θnew), add {(θnew,PtargetXY , starget), f
target(θnew)} to E

and go to 1.
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Adaptive Bayesian Linear Regression: DistBLR

Joint GP modelling comes at a high computational cost: O(N3) time and
O(N2) storage, where N is the total number of observations: N =

∑n
i=1Ni

GP cost can outweigh the cost of computing f in the first place.
Since we are learning dataset representation inside the kernel anyway – can
instead simply adopt Bayesian linear regression (O(N) time and storage)

z|β ∼ N (Υβ, σ2I) β ∼ N (0, αI)

Υ = [υ([θ1
1,Ψ1]), . . . , υ([θ1

N1
,Ψ1]), . . . ,

υ([θn1 ,Ψn]), . . . , υ([θnNn
,Ψn])]> ∈ RN×d

where α > 0 denotes the prior regularisation. Here υ denotes a feature map
of dimension d on concatenated hyperparameters θ, data embedding ψ(D)
and sample size s.

Conceptually similar setting to [Perrone et al, 2018] who fit a single BLR per task.
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Experiments

We will compare DistBO with the following baselines:

manualBO: joint GP with ψ(D) as the selection of 13 AutoML
meta-features,
multiBO: i.e. multiGP [Swersky et al, 2013] and multiBLR [Perrone et al, 2018] which
uses no meta-information, i.e. each task is encoded by its index, but the
representation of hyperparameters is shared across tasks,
initBO: plain BayesOpt warm-started with the top 3 hyperparameters from
the three most similar source tasks in terms of AutoML meta-features,
noneBO: plain BayesOpt,
RS: random search.

Implementation in TensorFlow, with GP/BLR marginal likelihood optimized using
ADAM. To obtain source task evaluations, we use standard BayesOpt.
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Toy Example

feature representation learned
to place high similarity on the
three source datasets sharing
the same γi and hence having
similar values of µi, while
placing low similarity on the
other source datasets

manualBO also few-shots the
optimum as it encodes the
mean feature

initBO and multiBO converge
more slowly without any
meta-information

Di is obtained for some fixed γi as µi ∼ N (γi, 1), {xi`}
si
`=1|µ

i i.i.d.∼ N (µi, 1) and the
objective to maximize is

f(θ;Di) = exp

(
−
(θ − 1

si

∑si
`=1 x

i
`)

2

2

)
,

where θ plays the role of a “hyperparameter”.
15 source tasks, 3 with γi = 0 and 12 with γi = 4. Target has γi = 0.
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Switching feature relevance

handcrafted meta-features do
not capture any information
about the optimal
hyperparameters

three-variable interaction: the
difference between tasks is
invisible by considering
marginal distributions of
covariates and their pairwise
relationships.

Dataset i with xi
` ∈ R6 and yi` ∈ R:[
xi
`

]
j

i.i.d.∼ N (0, 22), j = 1, . . . , 6,[
xi
`

]
i+2

= sign([xi
`]1[x

i
`]2)

∣∣∣[xi
`]i+2

∣∣∣ ,
yi` = log

1 +

 ∏
j∈{1,2,i+2}

[xi
`]j

3+N (0, 0.52).

i, `, j denote task, sample and dimension, respectively; sample size is si = 5000.
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Parkinson’s telemonitoring
The Parkinson’s telemonitoring dataset: voice measurements using a
telemonitoring device for 42 patients with Parkinson’s disease. The label is
the clinician’s symptom score for each recording.
Following [Blanchard et al, 2017], we treat each patient as a separate regression
task, using R2 as the performance measure.
We designate each patient as the target and all others as sources, averaging
results. Full GP is prohibitive, so use BLR.

Varying results across different patients, but on
average all transfer methods are able to leverage
the source task information and for many
patients few-shot the optimum.

Task similarity can be exploited in the context
of hyperparameter learning.
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Conclusion

Method to borrow strength between multiple hyperparameter learning tasks
by making use of the similarity between training datasets.
Allows few-shot hyperparameter learning especially if similar prior tasks are
present.
Towards opening the black box function of hyperparameter learning: consider
model performance as a function of all its sources of variability.
Future work: straightforward to consider the setting where we solve multiple
tasks jointly, due to the presence of the joint GP model. Acquisition function?
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