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Towards End-to-End Learning

Speech recognition

Traditional model:

Hand-designed Recognized
Audio Compute | MFCCfeatures (“phoneme phonemes (" Final it
features recognizer recognizer P
End-to-end learning:
Audio [ Deep learning Output
| algorithm

figure from https://blog.easysol.net/building-ai-applications/
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Grid search, random search, trial-and-error, graduate student descent,...
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Optimizing “black-box" functions

Most machine learning models have hyperparameters to be tuned:
@ deep neural networks: number of layers, regularization parameters, dropout
parameters, layer size, batch size, learning rate, momentum,...

o kernel methods: kernel lengthscale parameters, regularization parameters,
number and type of random features,...

@ variational methods: prior parameters, variational family, choice of
divergence, type of the variational bound, batch size, learning rate,...

An objective function: a measure of generalization performance for a given set of
hyperparameters obtained using held-out dataset or cross-validation.

Dino Sejdinovic (Oxford) Hyperparameter Transfer ISM Tokyo, 28/03/2019 5 /27



Optimizing “black-box" functions

We are interested in optimizing a 'well behaved’ function f : © — R over some
bounded domain © C RY, i.e. in solving

0, = argmin peo f(6).

However, f is not known explicitly, i.e. it is a black-box function and we can only
ever obtain noisy and expensive evaluations of f.

Goal: Find 6 such that f(0) ~ f(6.) while minimizing the number of evaluations
of f.
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Probabilistic model for the objective f

Assuming that f is well behaved, we build a surrogate probabilistic model for it
(Gaussian Process).
© Compute the posterior predictive distribution of f using all evaluations so far.

@ Optimize a cheap proxy / acquisiton function instead of f which takes into
account predicted values of f at new points as well as the uncertainty in
those predictions: this proxy is typically much cheaper to evaluate than the
actual objective f.

© Evaluate the objective f at the optimum of the proxy and go to 1.

The proxy / acquisiton function should balance exploration against exploitation.
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Surrogate Gaussian Process model

Assume that the noise in the evaluations of the black-box function is i.i.d.

N (0,7%). Having evaluated the objective at locations 6 = {6;},, we denote
the observed values by y = [y1,...,%m]" and the true function values by
f=1[f(61),...,f(0,n)]". Then

f ~ N(0,K),
ylf ~ N(f,7%1).

GP model gives the posterior predictive mean 1 (0) and the posterior predictive
variance o% (0) = k (6, 0) at any new location 4, i.e.

FO) |y ~N(n(0).x(0,0)),
where

w0 = keo(K+7121)" 'y,
k£(0,0) = k(0,0) —koo(K +7°I) 'kgg

e Exploitation: seeking locations with low posterior mean p (6),
o Exploration: seeking locations with high posterior variance « (6, 6).



Acquisition functions

o GP-LCB. “optimism in the phase of uncertainty”’; minimize the lower
(1 — «)-credible bound of the posterior of the unknown function values f(8),
i.e.
arcp (0) = p(0) — 2140 (0),

where 21, = ®71 (1 — ) is the desired quantile of the standard normal
distibution.

@ PI (probability of improvement). 6: the optimal location so far, §: the
observed minimum. Let u (9) = 1{f (9) < 7},

opr (0) = B(O[D] = 2 (1), A(0) = L 4O

o El (expected improvement). Let u (0) = max (0,5 — f (6))

apr (0) = E[u(0)[D] = o () (v(0) (v (0)) + ¢ (+(6))) -
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Illustrating Bayesian Optimization

I [ pred var == pred mean = = = truth o evaluationsl ¢

f(x)

El(x)

figures from A Tutorial on Bayesian Optimization for Machine Learning by Ryan Adams
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Transfer Hyperparameter Learning

@ Multiple hyperparameter learning tasks which share the same model: variability in f
across tasks is due to changing datasets.

@ Is performance measure f really a black-box function of hyperparameters? Highly
structured problem corresponding to training a specific model on a specific dataset.

Dataset 1 —P‘ ML }_ > Output
fo

BayesOpt ‘ -— ]

Dataset 2 —P‘ ML }_ > Output
fo

f16)

f46)
BayesOpt ‘4—
Dataset n —>‘ ML }——» Output
fo
f+(6)
BayesOpt ‘<—
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Transfer Hyperparameter Learning

@ Multiple hyperparameter learning tasks which share the same model: variability in f
across tasks is due to changing datasets.

@ Is performance measure f really a black-box function of hyperparameters? Highly
structured problem corresponding to training a specific model on a specific dataset.

Dataset 1 —+ ML

Dataset 2 —b‘ ML

BayesOpt ‘

6,Dn
Dataset n —{ ML Outplﬁ )
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Transfer Hyperparameter Learning

o Consider a standard supervised learning setting: f(6, D) is a performance
measure of a trained ML model with hyperparameters 6 and data
D = {x;,y1};_,, x1 € X covariates and y; € Y labels. Assume the same
domains X and Y for all tasks.

@ Assume that we have already solved n source tasks by computing N;
evaluations of the objective, i.e. we have {67, f(8%, D;)}2,, with source
datasets

D ={xj,y/};i,i=1,...,n.

@ The goal is to utilise information from source tasks to help us model
[ (0) = f(0, Diarget) and speed up BayesOpt on an unseen target dataset

_ [_target targety Starget
Dtarget = {Xl » U =1 >

eiarget — argmineegftarget(e)
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Motivating Example

Example from [Poloczek et al, 2016] to motivate warm-starting Bayesian optimization.

@ Model that assigns drivers to passengers (e.g. Uber or Lyft)
@ Have to tune hyperparameters 6, with objective f
@ Live stream of data arriving in time

Problem:
@ Re-train model every 12 hours, on the last 24 hours of data, and deploy asap.
@ Optimal hyperparameters 6 shift as data distribution changes e.g. weekend vs

weekday or holiday vs no holiday
@ Not all previous tasks are equally useful.

(Dy, 11 ),(Dg,f cee e e (DY M (mect,fmrget>

N I N
\/\/ \__/ Time

{01\7 ( e o o o o o o o o {927]"“(0}’}) }:V;l Want eiarget

Similar to target task f'*9¢t
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Dataset representation for hyperparameter learning

Assume D = {x;,y1};_, " Pyy and that f is the empirical risk, i.e.

£(60,0) =+ 37 L (haloxe) ).
(=1

where L is the loss function and hy is the model’s predictor.

For a fixed ML model, there are three sources of variability to the performance
measure f:

@ Hyperparameters 6
@ Joint (empirical) measure Pxy of the dataset
@ Sample size s
Thus we will model f(0, Pxy,s), assuming that f varies smoothly not only as a

function of 6, but also as a function of Pxy and s ([Kiein et al, 2016] considers f
varying in s to speed up BayesOpt on a single large dataset).
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Dataset representation for hyperparameter learning

To model a joint GP in (6, Pxy,s), we construct a product covariance function:

K({alap)l(Yv 51}7 {92,P}2(Y7 82}) = k9(91, 92)7%(1/1(73}0/)71/’(73>2<Y))/fs(817 82)

Common choices might include kg are k, as Matérn-3/2, and k; as the sample
size kernel from [Klein et al, 2016]

Need to learn representation ¥)(Pxy ) useful for hyperparameter learning, i.e. the
one which can yield representations invariant to variations in the training data
irrelevant for hyperparameter choice.
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AutoML: representing datasets using metafeatures

No joint GP model, but warmstart target hyperparameters to the optimal values
from source datasets with closest metafeatures.
[Michie et al, 1994; Pfahringer et al, 2000; Bardenet et al, 2013; Feurer et al, 2014; Hutter et al, 2019]
@ General:
e Skewness, kurtosis of each input dimension: extract the minimum, maximum,
mean and standard deviation across the dimensions.
o Correlation, covariance of each pair of input dimensions: extract the minimum,
maximum, mean and standard deviation across the pairs.
o PCA skewness, kurtosis: run PCA, project onto the first principal component
and compute skewness and kurtosis.
e Intrinsic dimensionality: number of principal components to explain 95% of
variance.
@ Classification specific:

e Label summaries: empirical class distribution and its entropy.
o Classification landmarkers: accuracy on a held out dataset of 1-nn classifier,
linear discriminant analysis, naive Bayes and decision tree classifier.
@ Regression specific:
o Label summaries: Mean, stdev, skewness, kurtosis of the labels {y;};2,.
o Regression landmarkers: accuracy on a held out dataset of 1-nn, linear and
decision tree regression.
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Kernel Mean Embeddings

o implicit feature map x — k(-,z) € Hy, o e l N\ |
replaces = +— [¢1(x), ..., ¢s(x)] € R® * _ See
° <k(,l‘),k(,y)>7_¢k = k’(ﬂl‘,y) o B ° ./

inner products readily available

hyperplane
e nonlinear decision boundaries, nonlinear regression

. ) . [Cortes & Vapnik, 1995; Schdlkopf &
functions, learning on non-Euclidean/structured

data Smola, 2001]
@ RKHS embedding: implicit feature mean ) B0
[Smola et al, 2007; Sriperumbudur et al, 2010; Muandet et al, X”P.
2017] 14(Q) = Ey k(. V)]
P pp(P)=Ex.pk(-,X) € Hy, ﬂ‘ (P @l
replaces P — [E¢y(X),...,E¢s(X)] € R®
o <,Uk(P)7 'u“k(Q»’Hk = EXNP,YNQK(X, Y) [Gretton et al, 2005; Gretton et al,
inner products easy to estimate 2006; Fukumizu et al, 2007; DS et
e nonparametric two-sample, independence, al, 2013; Muandet et al, 2012;
conditional independence, interaction testing, Szabo et al, 2015]

learning on distribution inputs
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Learning kernel embeddings

Need to learn a representation of empirical joint distributions for comparison
across tasks.
@ Start with parametrized feature maps (e.g. neural networks) ¢ (x), ¢y, (y)
and ¢4, ([x,y]) which we will learn (treated as GP kernel parameters).

e Marginal Distribution Px: fip, = 1377 | ¢.(x¢) (e.g. noisier covariates
require less complex models).
e Conditional Distribution Py |x:

Cyix =@, (2,0 + AI)'D,

where @, = [¢,(x1), ..., ¢x(xs)]T' Dy = [y (v1),- -, ¢y(ys)]T and Ais a
parameter that we learn. (e.g. captures smoothess of the regression
functions).

@ Joint Distribution Pxy:

S

R 1< 1
Cxy =+ D balxe) © By (ye) = ~; D,
=1

Alternatively, learn a joint feature map ¢, and compute
~ 1 s
HPxy = 3 Zé:l ¢ry([X€7 yé])
Hyperparameter Transfer



DistBO Algorithm

With a joint GP model on inputs (6, Pxy, s), we can now

@ Fit the GP on all performance evaluations so far:

&= {{(937 ,ngYa Si), fl(ai’)}ivzll}?:h
fitting any GP kernel parameters (e.g. those of feature maps ¢, ¢,) b
maximising the marginal likelihood of the GP.

O Let flor9et(9) = (0, Pi7 Starget). Maximise the acquisition function at
the target a(0; f4979¢t) to select next Oer

© Evaluate ftarget( new) add {( new, E?{/get7 Starget)v ftarget(enew)} to &
and go to 1.
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Adaptive Bayesian Linear Regression: DistBLR

@ Joint GP modelling comes at a high computational cost: O(N?3) time and
O(N?) storage, where N is the total number of observations: N =" | N;

@ GP cost can outweigh the cost of computing f in the first place.

@ Since we are learning dataset representation inside the kernel anyway — can
instead simply adopt Bayesian linear regression (O(N) time and storage)

2B ~ N(XB,0%I) B~ N(0,al)
T = [U([eia \Ill])7 ey U([ell\fla\pl])a ceey
w07, 0]), - o([0, , W) € RN

where o > 0 denotes the prior regularisation. Here v denotes a feature map
of dimension d on concatenated hyperparameters 0, data embedding ¢ (D)
and sample size s.

Conceptually similar setting to [Perrone et al, 2018] who fit a single BLR per task.
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Experiments

We will compare DistBO with the following baselines:
e manualBO: joint GP with (D) as the selection of 13 AutoML
meta-features,

o multiBO: i.e. multiGP [Swersky et al, 2013] and multiBLR [Perrone et al, 2018] which
uses no meta-information, i.e. each task is encoded by its index, but the
representation of hyperparameters is shared across tasks,

@ initBO: plain BayesOpt warm-started with the top 3 hyperparameters from
the three most similar source tasks in terms of AutoML meta-features,

@ noneBO: plain BayesOpt,

@ RS: random search.

Implementation in TensorFlow, with GP/BLR marginal likelihood optimized using
ADAM. To obtain source task evaluations, we use standard BayesOpt.
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Toy Example

x Target mean
X Source mean
UMK IKXX

V=4

XX XX
7'=0

i i

D; is obtained for some fixed v as p’ ~ N(7%,1), {xb}si,|u’ "X M(p', 1) and the
objective to maximize is

_ 1 NS 0032
f(9§Di) = exp (W) ,

where 0 plays the role of a “hyperparameter”.
15 source tasks, 3 with 7; = 0 and 12 with ~; = 4. Target has v; = 0.
Hyperparameter Transfer



Toy Example

@ feature representation learned
to place high similarity on the
08 /,N three source datasets sharing

or \/\/\/\J\/\ the same ~* and hence having

2 - ’ similar values of p*, while
2 . L.
% 56 84 —— 056 placing low similarity on the
5
S e distGP z 8(2,; other source datasets
= —— manualGP g0 )
1S
04 e raiiGP 1 & o3 @ manualBO also few-shots the
initGP " optimum as it encodes the
02 nonzGP mean feature
RS o
0 2 4 6 8 10 12 u 0 2 4 6 8 10 12 W @ initBO and multiBO converge
Iteration Iteration

more slowly without any
meta-information
D; is obtained for some fixed 4" as u' ~ N(7%,1), {xi}i,|u’ “EM (1, 1) and the
objective to maximize is
0—L>50, x))?
6: D) = exp - T
where 0 plays the role of a “hyperparameter”.

15 source tasks, 3 with 7; = 0 and 12 with ~; = 4. Target has v; = 0.
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Switching feature relevance

L R o @ handcrafted meta-features do
o [F 0 — =2 not capture any information
— ’_=i about the optimal
e i=
06 7% hyperparameters
Q
£ — dsep | 307 @ three-variable interaction: the
o — manualeP e difference between tasks is
— multiGP & 08 P . .
nitclp invisible by considering
02 . . . .
— noneGP 05 marginal distributions of
o RS covariates and their pairwise
04
0 10 20 30 40 50 0 10 20 0 40 50 i 1
teration i relationships.

Dataset i with x), € RS and g € R:

[xz] R ON(0,27), j=1,....6

J

i
<]
i+2
3

ye = log |1+ I i + N(0,0.5%).
je{1,2,i+2}

I

sign (i) x{J2) |t

1,4, j denote task, sample and dimension, respectively; sample size is s; = 5000.
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Parkinson's telemonitoring

@ The Parkinson’s telemonitoring dataset: voice measurements using a
telemonitoring device for 42 patients with Parkinson’s disease. The label is
the clinician's symptom score for each recording.

@ Following [Blanchard et al, 2017], we treat each patient as a separate regression
task, using R? as the performance measure.

@ We designate each patient as the target and all others as sources, averaging
results. Full GP is prohibitive, so use BLR.

08

06
@ Varying results across different patients, but on

o average all transfer methods are able to leverage

% BUR the source task information and for many
— dAIsl . .
— manualBLR patients few-shot the optimum.
0.2
T MuIELR @ Task similarity can be exploited in the context
00 'n'tBL;_R of hyperparameter learning.
— hone
RS

2 4 6 8 10 12 14 16
lteration
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Conclusion

@ Method to borrow strength between multiple hyperparameter learning tasks
by making use of the similarity between training datasets.

@ Allows few-shot hyperparameter learning especially if similar prior tasks are
present.

@ Towards opening the black box function of hyperparameter learning: consider
model performance as a function of all its sources of variability.

o Future work: straightforward to consider the setting where we solve multiple
tasks jointly, due to the presence of the joint GP model. Acquisition function?
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