Hyperparameter Learning via Distributional Transfer

Dino Sejdinovic

Department of Statistics University of Oxford

Workshop on Functional Inference and Machine Intelligence The Institute of Statistical Mathematics, Tokyo 28/03/2019

Ho Chung Leon Law, Peilin Zhao, Junzhou Huang, and DS, Hyperparameter Learning via Distributional Transfer, ArXiv e-prints:1810.06305, 2018.

Speech recognition

Traditional model:

figure from <https://blog.easysol.net/building-ai-applications/>

Grid search, random search, trial-and-error, graduate student descent,...

Most machine learning models have hyperparameters to be tuned:

- deep neural networks: number of layers, regularization parameters, dropout parameters, layer size, batch size, learning rate, momentum,...
- \bullet kernel methods: kernel lengthscale parameters, regularization parameters, number and type of random features,...
- variational methods: prior parameters, variational family, choice of divergence, type of the variational bound, batch size, learning rate,...

An objective function: a measure of generalization performance for a given set of hyperparameters obtained using held-out dataset or cross-validation.

We are interested in optimizing a 'well behaved' function $f : \Theta \to \mathbb{R}$ over some bounded domain $\Theta \subset \mathbb{R}^d$, i.e. in solving

 $\theta_{\star} = \operatorname{argmin}_{\theta \in \Theta} f(\theta).$

However, f is not known explicitly, i.e. it is a black-box function and we can only ever obtain noisy and expensive evaluations of f .

Goal: Find θ such that $f(\theta) \approx f(\theta_{\star})$ while minimizing the number of evaluations of f .

Assuming that f is well behaved, we build a surrogate probabilistic model for it (Gaussian Process).

- **O** Compute the posterior predictive distribution of f using all evaluations so far.
- \bullet Optimize a cheap proxy / acquisiton function instead of f which takes into account predicted values of f at new points as well as the *uncertainty in* those predictions: this proxy is typically much cheaper to evaluate than the actual objective f.
- \bullet Evaluate the objective f at the optimum of the proxy and go to 1.

The proxy / acquisiton function should balance exploration against exploitation.

Surrogate Gaussian Process model

Assume that the noise in the evaluations of the black-box function is i.i.d. $\mathcal{N}\left(0,\tau^2\right)$. Having evaluated the objective at locations $\boldsymbol{\theta}=\{\theta_i\}_{i=1}^m,$ we denote the observed values by $\mathbf{y}=[y_1,\ldots,y_m]^\top$ and the true function values by $\mathbf{f} = [f(\theta_1), \dots, f(\theta_m)]^\top$. Then

> $f \sim \mathcal{N}(0, \mathbf{K}).$ $\mathbf{y} | \mathbf{f} \sim \mathcal{N}(\mathbf{f}, \tau^2 I).$

GP model gives the *posterior predictive mean* $\mu(\theta)$ and the *posterior predictive variance* $\sigma^2(\theta) = \kappa(\theta, \theta)$ at any new location θ , i.e.

 $f(\theta)|\mathbf{y} \sim \mathcal{N}(\mu(\theta), \kappa(\theta, \theta)).$

where

$$
\mu(\theta) = \mathbf{k}_{\theta\theta} (\mathbf{K} + \tau^2 I)^{-1} \mathbf{y}, \n\kappa(\theta, \theta) = k(\theta, \theta) - \mathbf{k}_{\theta\theta} (\mathbf{K} + \tau^2 I)^{-1} \mathbf{k}_{\theta\theta}
$$

Exploitation: seeking locations with low posterior mean $\mu(\theta)$, **Exploration:** seeking locations with high posterior variance $\kappa(\theta, \theta)$.

Acquisition functions

GP-LCB. "optimism in the phase of uncertainty"; minimize the lower $(1 - \alpha)$ -credible bound of the posterior of the unknown function values $f(\theta)$. i.e.

$$
\alpha_{LCB}(\theta) = \mu(\theta) - z_{1-\alpha}\sigma(\theta),
$$

where $z_{1-\alpha} = \Phi^{-1}\left(1-\alpha\right)$ is the desired quantile of the standard normal distibution.

• PI (probability of improvement). $\tilde{\theta}$: the optimal location so far, \tilde{y} : the observed minimum. Let $u(\theta) = \mathbf{1} \{f(\theta) < \tilde{y}\},\$

$$
\alpha_{PI}(\theta) = \mathbb{E}\left[u(\theta)|\mathcal{D}\right] = \Phi\left(\gamma(\theta)\right), \quad \gamma(\theta) = \frac{\tilde{y} - \mu(\theta)}{\sigma(\theta)}
$$

• El (expected improvement). Let $u(\theta) = \max(0, \tilde{y} - f(\theta))$

 $\alpha_{E,I}(\theta) = \mathbb{E} [u(\theta)|\mathcal{D}] = \sigma(\theta) (\gamma(\theta) \Phi (\gamma(\theta))) + \phi(\gamma(\theta))).$

Illustrating Bayesian Optimization

Illustrating Bayesian Optimization

Illustrating Bayesian Optimization

Illustrating Bayesian Optimization

Transfer Hyperparameter Learning

- \bullet Multiple hyperparameter learning tasks which share the same model: variability in f across tasks is due to changing datasets.
- \bullet Is performance measure f really a black-box function of hyperparameters? Highly structured problem corresponding to training a specific model on a specific dataset.

Transfer Hyperparameter Learning

- \bullet Multiple hyperparameter learning tasks which share the same model: variability in f across tasks is due to changing datasets.
- \bullet Is performance measure f really a black-box function of hyperparameters? Highly structured problem corresponding to training a specific model on a specific dataset.

Transfer Hyperparameter Learning

- Consider a standard supervised learning setting: $f(\theta, D)$ is a performance measure of a trained ML model with hyperparameters θ and data $D = \{\mathbf{x}_l, y_l\}_{l=1}^s$, $\mathbf{x}_l \in \mathcal{X}$ covariates and $y_l \in \mathcal{Y}$ labels. Assume the same domains X and Y for all tasks.
- Assume that we have already solved n source tasks by computing N_i evaluations of the objective, i.e. we have $\{\theta^i_r, f(\theta^i_r, D_i)\}_{r=1}^{N_i}$, with source datasets

$$
D_i = {\mathbf{x}_l^i, y_l^i}_{l=1}^{s_i}, i = 1, \dots, n.
$$

• The goal is to utilise information from source tasks to help us model $f^{\texttt{target}}(\theta) = f(\theta, D_{\texttt{target}})$ and speed up BayesOpt on an unseen \texttt{target} dataset

$$
D_{\text{target}} = \{\mathbf{x}^{\text{target}}_l, y^{\text{target}}_l\}_{l=1}^{s_{\text{target}}},
$$

i.e.

$$
\theta_\ast^\text{target} = \text{argmin}_{\theta \in \Theta} f^\text{target}(\theta)
$$

Motivating Example

Example from [Poloczek et al, 2016] to motivate warm-starting Bayesian optimization.

- Model that assigns drivers to passengers (e.g. Uber or Lyft)
- Have to tune hyperparameters θ , with objective f
- Live stream of data arriving in time

Problem:

- \bullet Re-train model every 12 hours, on the last 24 hours of data, and deploy asap.
- \bullet Optimal hyperparameters θ shift as data distribution changes e.g. weekend vs weekday or holiday vs no holiday
- Not all previous tasks are equally useful.

Dataset representation for hyperparameter learning

Assume $D = {\mathbf{x}_l, y_l}_{l=1}^s \stackrel{i.i.d.}{\sim} P_{XY}$ and that f is the empirical risk, i.e.

$$
f(\theta, D) = \frac{1}{s} \sum_{\ell=1}^{s} L(h_{\theta}(\mathbf{x}_{\ell}), y_{\ell}),
$$

where L is the loss function and h_{θ} is the model's predictor.

For a fixed ML model, there are three sources of variability to the performance measure f:

- Hyperparameters θ
- Joint (empirical) measure \mathcal{P}_{XY} of the dataset
- \bullet Sample size s

Thus we will model $f(\theta, \mathcal{P}_{XY}, s)$, assuming that f varies smoothly not only as a function of θ , but also as a function of \mathcal{P}_{XY} and s ([Klein et al, 2016] considers f varying in s to speed up BayesOpt on a single large dataset).

To model a joint GP in $(\theta, \mathcal{P}_{XY}, s)$, we construct a product covariance function:

 $K(\{\theta_1, \mathcal{P}_{XY}^1, s_1\}, \{\theta_2, \mathcal{P}_{XY}^2, s_2\}) = k_{\theta}(\theta_1, \theta_2)k_p(\psi(\mathcal{P}_{XY}^1), \psi(\mathcal{P}_{XY}^2))k_s(s_1, s_2)$

Common choices might include k_{θ} are k_p as Matérn-3/2, and k_s as the sample size kernel from [Klein et al, 2016]

Need to learn representation $\psi(\mathcal{P}_{XY})$ useful for hyperparameter learning, i.e. the one which can yield representations invariant to variations in the training data irrelevant for hyperparameter choice.

AutoML: representing datasets using metafeatures

No joint GP model, but warmstart target hyperparameters to the optimal values from source datasets with closest metafeatures.

[Michie et al, 1994; Pfahringer et al, 2000; Bardenet et al, 2013; Feurer et al, 2014; Hutter et al, 2019]

- General:
	- Skewness, kurtosis of each input dimension: extract the minimum, maximum, mean and standard deviation across the dimensions.
	- Correlation, covariance of each pair of input dimensions: extract the minimum, maximum, mean and standard deviation across the pairs.
	- PCA skewness, kurtosis: run PCA, project onto the first principal component and compute skewness and kurtosis.
	- Intrinsic dimensionality: number of principal components to explain 95% of variance.
- **•** Classification specific:
	- Label summaries: empirical class distribution and its entropy.
	- Classification landmarkers: accuracy on a held out dataset of 1-nn classifier, linear discriminant analysis, naive Bayes and decision tree classifier.
- Regression specific:
	- \bullet Label summaries: Mean, stdev, skewness, kurtosis of the labels $\{y_\ell^i\}_{\ell=1}^{s_i}.$
	- Regression landmarkers: accuracy on a held out dataset of 1-nn, linear and decision tree regression.

Kernel Mean Embeddings

- implicit feature map $x \mapsto k(\cdot, x) \in \mathcal{H}_k$ replaces $x \mapsto [\phi_1(x), \ldots, \phi_s(x)] \in \mathbb{R}^s$
- $\langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}_k} = k(x, y)$ inner products readily available
	- nonlinear decision boundaries, nonlinear regression functions, learning on non-Euclidean/structured data

• RKHS embedding: implicit feature mean

[Smola et al, 2007; Sriperumbudur et al, 2010; Muandet et al, 2017]

- $P \mapsto \mu_k(P) = \mathbb{E}_{X \sim P} k(\cdot, X) \in \mathcal{H}_k$ replaces $P \mapsto [\mathbb{E} \phi_1(X), \dots, \mathbb{E} \phi_s(X)] \in \mathbb{R}^s$
- $\langle \mu_k(P), \mu_k(Q) \rangle_{\mathcal{H}_k} = \mathbb{E}_{X \sim P, Y \sim Q} k(X, Y)$ inner products easy to estimate
	- nonparametric two-sample, independence, conditional independence, interaction testing, learning on distribution inputs

[Cortes & Vapnik, 1995; Schölkopf & Smola, 2001]

[Gretton et al, 2005; Gretton et al, 2006; Fukumizu et al, 2007; DS et al, 2013; Muandet et al, 2012; Szabo et al, 2015]

Learning kernel embeddings

Need to learn a representation of empirical joint distributions for comparison across tasks.

- **•** Start with parametrized feature maps (e.g. neural networks) $\phi_x(\mathbf{x})$, $\phi_y(y)$ and $\phi_{xy}([\mathbf{x}, y])$ which we will learn (treated as GP kernel parameters).
- Marginal Distribution \mathcal{P}_X : $\hat{\mu}_{P_X} = \frac{1}{s} \sum_{\ell=1}^s \phi_x(\mathbf{x}_{\ell})$ (e.g. noisier covariates require less complex models).
- Conditional Distribution $\mathcal{P}_{Y|X}$:

$$
\hat{\mathcal{C}}_{Y|X} = \Phi_y^\top (\Phi_x \Phi_x^\top + \lambda I)^{-1} \Phi_x
$$

where $\Phi_x=[\phi_x(\mathbf{x}_1),\ldots,\phi_x(\mathbf{x}_s)]^T$, $\Phi_y=[\phi_y(y_1),\ldots,\phi_y(y_s)]^T$ and λ is a parameter that we learn. (e.g. captures smoothess of the regression functions).

 \bullet Joint Distribution \mathcal{P}_{XY} :

$$
\hat{\mathcal{C}}_{XY} = \frac{1}{s}\sum_{\ell=1}^s \phi_x(\mathbf{x}_{\ell}) \otimes \phi_y(y_{\ell}) = \frac{1}{s}\Phi_x^{\top}\Phi_y
$$

Alternatively, learn a joint feature map ϕ_{xy} and compute $\hat{\mu}_{P_{XY}} = \frac{1}{s} \sum_{\ell=1}^s \phi_{xy}([\mathbf{x}_{\ell}, y_{\ell}]).$

With a joint GP model on inputs $(\theta, \mathcal{P}_{XY}, s)$, we can now

1 Fit the GP on all performance evaluations so far:

 $\mathcal{E} = \{ \{ (\theta_r^i, \mathcal{P}_{XY}^i, s_i), f^i(\theta_r^i) \}_{r=1}^{N_i} \}_{i=1}^n,$

fitting any GP kernel parameters (e.g. those of feature maps ϕ_x, ϕ_y) by maximising the marginal likelihood of the GP.

- \bullet Let $f^{target}(\theta) = f(\theta, \mathcal{P}^{target}_{XY}, s_{target})$. Maximise the acquisition function at the target $\alpha(\theta;f^{target})$ to select next θ_{new}
- \bullet Evaluate $f^{target}(\theta_{new})$, add $\{(\theta_{new},\mathcal{P}^{target}_{XY},s_{target}),f^{target}(\theta_{new})\}$ to $\mathcal E$ and go to 1.

Adaptive Bayesian Linear Regression: DistBLR

- Joint GP modelling comes at a high computational cost: $O(N^3)$ time and $O(N^2)$ storage, where N is the total number of observations: $N = \sum_{i=1}^n N_i$
- GP cost can outweigh the cost of computing f in the first place.
- \bullet Since we are learning dataset representation inside the kernel anyway can instead simply adopt Bayesian linear regression $(O(N))$ time and storage)

 $z|\beta \sim \mathcal{N}(\Upsilon \beta, \sigma^2 I) \qquad \beta \sim \mathcal{N}(0, \alpha I)$ $\Upsilon = [v([\theta_1^1, \Psi_1]), \dots, v([\theta_{N_1}^1, \Psi_1]), \dots,$ $v([\theta_1^n, \Psi_n]), \ldots, v([\theta_{N_n}^n, \Psi_n])]^\top \in \mathbb{R}^{N \times d}$

where $\alpha > 0$ denotes the prior regularisation. Here v denotes a feature map of dimension d on concatenated hyperparameters θ , data embedding $\psi(D)$ and sample size s.

Conceptually similar setting to [Perrone et al, 2018] who fit a single BLR per task.

We will compare **DistBO** with the following baselines:

- **manualBO**: joint GP with $\psi(D)$ as the selection of 13 AutoML meta-features,
- **multiBO:** i.e. multiGP [Swersky et al, 2013] and multiBLR [Perrone et al, 2018] which uses no meta-information, i.e. each task is encoded by its index, but the representation of hyperparameters is shared across tasks,
- \bullet initBO: plain BayesOpt warm-started with the top 3 hyperparameters from the three most similar source tasks in terms of AutoML meta-features,
- noneBO: plain BayesOpt,
- RS: random search.

Implementation in TensorFlow, with GP/BLR marginal likelihood optimized using ADAM. To obtain source task evaluations, we use standard BayesOpt.

 D_i is obtained for some fixed γ^i as $\mu^i\sim\mathcal{N}(\gamma^i,1),\quad \{x^i_\ell\}_{\ell=1}^{s_i}|\mu^{i}\overset{i.i.d.}{\sim}\mathcal{N}(\mu^i,1)$ and the objective to maximize is

$$
f(\theta; D_i) = \exp\left(-\frac{(\theta - \frac{1}{s_i}\sum_{\ell=1}^{s_i} x_{\ell}^i)^2}{2}\right),
$$

where θ plays the role of a "hyperparameter". 15 source tasks, 3 with $\gamma_i = 0$ and 12 with $\gamma_i = 4$. Target has $\gamma_i = 0$.

Toy Example

- **•** feature representation learned to place high similarity on the three source datasets sharing the same γ^i and hence having similar values of μ^i , while placing low similarity on the other source datasets
- manualBO also few-shots the optimum as it encodes the mean feature
- initBO and multiBO converge more slowly without any meta-information

 D_i is obtained for some fixed γ^i as $\mu^i\sim\mathcal{N}(\gamma^i,1),\quad \{x^i_\ell\}_{\ell=1}^{s_i}|\mu^{i}\overset{i.i.d.}{\sim}\mathcal{N}(\mu^i,1)$ and the objective to maximize is

$$
f(\theta; D_i) = \exp\left(-\frac{(\theta - \frac{1}{s_i}\sum_{\ell=1}^{s_i} x_{\ell}^i)^2}{2}\right),
$$

where θ plays the role of a "hyperparameter". 15 source tasks, 3 with $\gamma_i = 0$ and 12 with $\gamma_i = 4$. Target has $\gamma_i = 0$.

Switching feature relevance

Dataset i with $\mathbf{x}_{\ell}^{i} \in \mathbb{R}^{6}$ and $y_{\ell}^{i} \in \mathbb{R}$:

- handcrafted meta-features do not capture any information about the optimal hyperparameters
- three-variable interaction: the difference between tasks is invisible by considering marginal distributions of covariates and their pairwise relationships.

$$
\begin{aligned}\n\left[\mathbf{x}_{\ell}^{i}\right]_{j} & \stackrel{i.i.d.}{\sim} \mathcal{N}(0,2^{2}), \quad j=1,\ldots,6, \\
\left[\mathbf{x}_{\ell}^{i}\right]_{i+2} & = & \mathsf{sign}([\mathbf{x}_{\ell}^{i}]_{1}[\mathbf{x}_{\ell}^{i}]_{2}) \left|[\mathbf{x}_{\ell}^{i}]_{i+2}\right|, \\
y_{\ell}^{i} & = & \log\left(1+\left(\prod_{j\in\{1,2,i+2\}}[\mathbf{x}_{\ell}^{i}]_{j}\right)^{3}\right) + \mathcal{N}(0,0.5^{2}).\n\end{aligned}
$$

 i, ℓ, j denote task, sample and dimension, respectively; sample size is $s_i = 5000$.

Parkinson's telemonitoring

- The Parkinson's telemonitoring dataset: voice measurements using a telemonitoring device for 42 patients with Parkinson's disease. The label is the clinician's symptom score for each recording.
- \bullet Following [Blanchard et al, 2017], we treat each patient as a separate regression task, using R^2 as the performance measure.
- We designate each patient as the target and all others as sources, averaging results. Full GP is prohibitive, so use BLR.

- Varying results across different patients, but on average all transfer methods are able to leverage the source task information and for many patients few-shot the optimum.
- **•** Task similarity can be exploited in the context of hyperparameter learning.
- Method to borrow strength between multiple hyperparameter learning tasks by making use of the similarity between training datasets.
- Allows few-shot hyperparameter learning especially if similar prior tasks are present.
- Towards opening the black box function of hyperparameter learning: consider model performance as a function of all its sources of variability.
- Future work: straightforward to consider the setting where we solve multiple tasks jointly, due to the presence of the joint GP model. Acquisition function?

Ho Chung Leon Law, Peilin Zhao, Junzhou Huang, and DS, Hyperparameter Learning via Distributional Transfer, ArXiv e-prints:1810.06305, 2018.

Thank you!