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Feature maps and feature spaces
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Feature maps
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No linear classifier separates red from blue.
Linear separation after mapping to a higher dimensional feature space:

R2 3
(
x(1) x(2)

)>
= x 7→ ϕ(x) =
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x(1) x(2) x(1)x(2)

)> ∈ R3
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Feature maps and kernel trick

Kernel methods on a generic domain X allow constructing nonlinear methods
after mapping to a higher dimensional feature space:

ϕ : X → RD

Typically need only inner products ϕ(xi)
>ϕ(xj) are required and the

coordinates of the maps ϕ(xi) ∈ RD need not be computed explicitly - inner
product between features can be a simple function (kernel) of xi and xj .
Polynomial kernel k(xi, xj) = ϕ(xi)

>ϕ(xj) = (1 + x>i xj)
q on Rp computes

q-order features - never need to compute explicit feature expansion of
dimension D =

(
p+q
q

)
where this inner product is defined.

For example, if p = 2 and q = 2, we have the feature map with quadratic and
mixed non-linearities,

ϕ(x) =

(
1,
√

2x(1),
√

2x(2),
√

2x(1)x(2),
(
x(1)

)2
,
(
x(2)

)2)>
∈ R6
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Kernel: an inner product between feature maps

Definition (kernel)

Let X be a non-empty set. A function k : X × X → R is a kernel if there exists
a Hilbert space and a map ϕ : X → H such that ∀x, x′ ∈ X ,

k(x, x′) := 〈ϕ(x), ϕ(x′)〉H .

Almost no conditions on X (in particular, X itself need not have an inner
product).
Think of kernel as a similarity measure between input features

A single kernel can correspond to multiple pairs of underlying feature maps and
feature spaces. For a simple example, consider X := Rp:

φ1(x) = x and φ2(x) =

[
x1√

2
, · · · , xp√

2
,
x1√

2
, · · · , xp√

2

]>
.

Both φ1 and φ2 are valid feature maps (with feature spaces H1 = Rp and
H2 = R2p) of kernel k(x, x′) = x>x′.
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Positive semidefinite functions

If we are given a “measure of similarity” with two arguments, k(x, x′), how can we
determine if it is a valid kernel?

1 Find a feature map?
• Sometimes not obvious (especially if the feature vector is infinite-dimensional)

2 A simpler direct property of the function: positive semidefiniteness.
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Positive semidefinite functions

Definition (Positive semidefinite functions)

A symmetric function κ : X × X → R is positive semidefinite if
∀n ≥ 1, ∀(a1, . . . an) ∈ Rn, ∀(x1, . . . , xn) ∈ Xn,

n∑
i=1

n∑
j=1

aiajκ(xi, xj) ≥ 0.

Kernel k(x, y) := 〈ϕ(x), ϕ(y)〉H for a Hilbert space H is positive
semidefinite.

n∑
i=1

n∑
j=1

aiajk(xi, xj) =

n∑
i=1

n∑
j=1

〈aiϕ(xi), ajϕ(xj)〉H

=

∥∥∥∥∥
n∑
i=1

aiϕ(xi)

∥∥∥∥∥
2

H

≥ 0.
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Reproducing Kernel Hilbert Space (RKHS)

Definition ([Aronszajn, 1950; Berlinet & Thomas-Agnan, 2004])
Let X be a non-empty set and H be a Hilbert space of real-valued functions
defined on X . A function k : X × X → R is called a reproducing kernel of H if:

1 ∀x ∈ X , k(·, x) ∈ H, and
2 ∀x ∈ X , ∀f ∈ H, 〈f, k(·, x)〉H = f(x).

If H has a reproducing kernel, it is said to be a reproducing kernel Hilbert space.

Equivalent to the notion of kernel as an inner product of features: any function
k : X × X → R for which there exists a Hilbert space H and a map ϕ : X → H
s.t. k(x, x′) = 〈ϕ(x), ϕ(x′)〉H for all x, x′ ∈ X .
In particular, for any x, y ∈ X , k(x, y) = 〈k (·, y) , k (·, x)〉H = 〈k (·, x) , k (·, y)〉H.
Thus H servers as a canonical feature space with feature map x 7→ k(·, x).

Equivalently, all evaluation functionals f 7→ f(x) are continuous (norm
convergence implies pointwise convergence).
Moore-Aronszajn Theorem: every positive semidefinite k : X × X → R is a
reproducing kernel and has a unique RKHS Hk.
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Reproducing Kernel Hilbert Space (RKHS)

Definition ([Aronszajn, 1950; Berlinet & Thomas-Agnan, 2004])
Let X be a non-empty set and H be a Hilbert space of real-valued functions
defined on X . A function k : X × X → R is called a reproducing kernel of H if:

1 ∀x ∈ X , k(·, x) ∈ H, and
2 ∀x ∈ X , ∀f ∈ H, 〈f, k(·, x)〉H = f(x).

If H has a reproducing kernel, it is said to be a reproducing kernel Hilbert space.

Gaussian RBF kernel k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖2
)
has an infinite-dimensional

H with elements h(x) =
∑n
i=1 αik(xi, x) and their limits which give completion

with respect to the inner product〈
n∑
i=1

αik(xi, ·),
m∑
j=1

βjk(yj , ·)
〉

=

n∑
i=1

m∑
j=1

αiβjk(xi, yj).
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Representer Theorem
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Representer theorem

Standard supervised learning setup: we are given a set of paired observations
(x1, y1), . . . (xn, yn).
Goal: find the function f∗ in the RKHS H which solves the regularized empirical
risk minimization problem.

min
f∈H

R̂(f) + Ω
(
‖f‖2H

)
,

where empirical risk is

R̂(f) =
1

n

n∑
i=1

L(yi, f(xi), xi),

and Ω is a non-decreasing function.

Classification: L could be a hinge loss L(y, f(x), x) = (1− yf(x))+ or a
logistic loss L(y, f(x), x) = log (1 + exp(−yf(x)).
Regression: L(y, f(x), x) = (y − f(x))2.
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Representer theorem

Theorem (Representer Theorem)
There is a solution to

min
f∈H

R̂(f) + Ω
(
‖f‖2H

)
that takes the form

f∗ =

n∑
i=1

αik(·, xi).

If Ω is strictly increasing, all solutions have this form.
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Representer theorem: proof

Proof: Denote fs projection of f onto the subspace

span {k(·, xi) : i = 1, . . . , n}

such that
f = fs + f⊥,

where fs =
∑n
i=1 αik(·, xi) and f⊥ is orthogonal to span {k(·, xi) : i = 1, . . . , n}.

Regularizer:
‖f‖2H = ‖fs‖2H + ‖f⊥‖2H ≥ ‖fs‖

2
H ,

then
Ω
(
‖f‖2H

)
≥ Ω

(
‖fs‖2H

)
.
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Representer theorem: proof

Proof (cont.): Individual terms f(xi) in the loss:

f(xi) = 〈f, k(·, xi)〉H = 〈fs + f⊥, k(·, xi)〉H = 〈fs, k(·, xi)〉H ,

so
L(yi, f(xi), xi) = L(yi, fs(xi), xi)∀i =⇒ R̂(f) = R̂(fs).

Hence

The empirical risk only depends on the components of f lying in the
subspace spanned by canonical features.
Regularizer Ω(. . .) is minimized when f = fs.
If Ω is strictly non-decreasing, then ‖f⊥‖H = 0 is required at the minimum.
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A Simple Kernel Method:
Kernel Ridge Regression

D.Sejdinovic (University of Oxford) Kernel Methods, Embeddings and Aggregates Imperial, 28/11/2018 14 / 67



Regularised Least Squares

We are given n training points {xi}ni=1 in Rp: Define some λ > 0. Our goal is:

w∗ = arg min
w∈Rp

(
n∑
i=1

(yi − x>i w)2 + λ‖w‖2
)

= arg min
w∈Rp

(
‖y −Xw‖2 + λ‖w‖2

)
,

Solution is:

w∗ =
(
X>X + λI

)−1
X>y,

which is the standard regularised least squares solution.
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Kernel ridge regression

Use features φ(xi) in the place of xi:

w∗ = arg min
w∈H

(
n∑
i=1

(yi − 〈w, φ(xi)〉H)
2

+ λ‖w‖2H

)
.

E.g. for finite dimensional feature spaces,

φp(x) =


x
x2

...
x`

 φs(x) =


sin(x)
cos(x)
sin(2x)

...
cos
(
`
2x
)


In finite dimensions, w is a vector of length ` giving weight to each of these
features so that learned function is fw(x) = w>φ(x). Feature vectors can also
have infinite length.
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Kernel ridge regression

Recall that feature maps φ and feature spaces H are not unique, but RKHS Hk is.
Thus, we can identify w with the function fw (there is an isometry between w and
fw: ‖w‖H = ‖fw‖Hk regardless of the choice of the feature space H) and write

f∗ = arg min
f∈Hk

(
n∑
i=1

(yi − 〈f, k(·, xi)〉H)
2

+ λ‖f‖2Hk

)

= arg min
f∈Hk

(
n∑
i=1

(yi − f(xi))
2

+ λ‖f‖2Hk

)
.
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Kernel ridge regression

Recall the representer theorem: f is a linear combination of feature space
mappings of data points

f =

n∑
i=1

αik(·, xi).

Then
n∑
i=1

(
yi − 〈f, k(·, xi)〉Hk

)2
+ λ‖f‖2Hk = ‖y −Kα‖2 + λα>Kα

= y>y − 2y>Kα+ α>
(
K2 + λK

)
α

Differentiating wrt α and setting this to zero, we get

α∗ = (K + λIn)−1y.

Recall: ∂α>Uα
∂α = (U + U>)α, ∂v>α

∂α = ∂α>v
∂α = v
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Parameter selection for KRR

Given the objective

f∗ = arg min
f∈Hk

(
n∑
i=1

(yi − f(xi))
2

+ λ‖f‖2Hk

)
.

How do we choose

The regularization parameter λ?
The kernel parameter: for Gaussian kernel, σ in

k(x, y) = exp

(−‖x− y‖2
σ

)
.

Beware: Gaussian kernel has many different parametrisations in the literature and
software packages!
Typically use cross-validation.
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Choice of λ
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Choice of σ
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Kernel families and operations with kernels
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Examples of kernels

Linear: k(x, x′) = x>x′.
Polynomial: k(x, x′) = (c+ x>x′)m, c ∈ R, m ∈ N.

Periodic (1d): k(x, x′) = exp

(
− 2 sin2(π|x−x′|/p)

γ2

)
, period p, γ > 0.

Exponential: k(x, x′) = exp(x
>x′

γ ), γ > 0.

Gaussian RBF: k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖2
)
, γ > 0.

Laplace: k(x, x′) = exp
(
− 1
γ ‖x− x′‖

)
, γ > 0.

Rational quadratic: k(x, x′) =

(
1 +
‖x−x′‖2

2αγ2

)−α
, α, γ > 0.

Brownian covariance: k(x, x′) = 1
2 (‖x‖γ + ‖x′‖γ − ‖x− x′‖γ), γ ∈ [0, 2].

all norms are 2-norms unless specified otherwise
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Matérn Family

k(x, x′) =
21−ν

Γ(ν)

(√
2ν

γ
‖x− x′‖

)ν
Kν

(√
2ν

γ
‖x− x′‖

)
, ν > 0, γ > 0,

where Kν is the modified Bessel function of the second kind of order ν.

ν = 1/2: k(x, x′) = exp
(
− 1
γ ‖x− x′‖

)
ν = 3/2: k(x, x′) =

(
1 +

√
3
γ ‖x− x′‖

)
exp

(
−
√

3
γ ‖x− x′‖

)
ν = 5/2:
k(x, x′) =

(
1 +

√
5
γ ‖x− x′‖+ 5

3γ2 ‖x− x′‖2
)

exp
(
−
√

5
γ ‖x− x′‖

)
as ν →∞, converges to Gaussian RBF k(x, x′) = exp

(
− 1

2γ2 ‖x− x′‖2
)

Matérn family norms penalize the derivatives of f . In particular, for ν = s+ 1/2, it
penalizes the derivatives up to order s+ 1, e.g. for ν = 3/2 and in one dimension:

‖f‖2Hk ∝
ˆ
f ′′(x)2dx+

6

γ2

ˆ
f ′(x)2dx+

9

γ4

ˆ
f(x)2dx
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New kernels from old: sums, transformations

The great majority of useful kernels are built from simpler kernels.

Lemma (Sums of kernels are kernels)
Given α > 0 and k, k1 and k2 all kernels on X , then αk and k1 + k2 are kernels
on X .

To prove this, just check inner product definition (features get scaled with
√
α or

concatenated). A difference of kernels need not be a kernel (why?)

Lemma (Space transformation)

Let X and X̃ be sets, and consider any map s : X → X̃ . Let k̃ be a kernel on X̃ .
Then k(x, x′) = k̃(s(x), s(x′)) is a kernel on X .

Proof: if ϕ̃ is a feature map for k̃, then ϕ = ϕ̃ ◦ s is a feature map for k.
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New kernels from old: products

Lemma (Products of kernels are kernels)
Given k1 on X1 and k2 on X2, then k1 × k2 is a kernel on X1 ×X2.

The general proof requires technical details about tensor products, but the main
idea comes from simple linear algebra. Consider finite-dimensional feature maps
k (x, x′) = ϕ(x)>ϕ(x′) and l (y, y′) = ψ(y)>ψ(y′), with ϕ(x) ∈ RM , and
ψ(y) ∈ RN . Note that a valid inner product between matrices A ∈ RM×N and
B ∈ RM×N is

〈A,B〉RM×N = trace(A>B) =
M∑
i=1

N∑
j=1

AijBij .

Then

k
(
x, x′

)
l
(
y, y′

)
= ϕ(x)>ϕ(x′)ψ(y′)>ψ(y)

= tr(ψ(y)ϕ(x)>ϕ(x′)ψ(y′)>)

=
〈
ϕ(x)ψ(y)>, ϕ(x′)ψ(y′)>

〉
RM×N

.

Thus product kernel has (matrix-valued) features A(x, y) = ϕ(x)ψ(y)>.
More simply, Kronecker product of positive definite matrices is positive definite.
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More products and Taylor expansions

Lemma (Products of kernels are kernels)
Given kernels k1 and k2 on X , k1 × k2 is a kernel on X .

Proof: It is certainly a kernel on X × X , so just consider space transformation
s : X → X ×X with s(x) = (x, x).
More simply, Hadamard (entrywise) product of positive definite matrices is
positive definite.
As a corollary:

k(x, x′) = c+

d∑
j=1

aj〈x, x′〉d (1)

is certainly a kernel. Readily extends to

k(x, x′) = g (〈x, x′〉) (2)

for an analytic function g with nonnegative Taylor coefficients, e.g., exp.
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Gaussian RBF is a kernel

As a product of an exponential kernel and a kernel with 1-d feature
x 7→ exp

(
−‖x‖

2

2γ2

)
.

k(x, x′) = exp

(
− 1

2γ2
‖x− x′‖2

)
= exp

(
−‖x‖

2

2γ2

)
exp

(
−‖x

′‖2
2γ2

)
exp

(
1

γ2
〈x, x′〉

)

All of the proofs above are constructive: they give a way of constructing new
features from old. But the resulting features quickly become very difficult to
interpret. There is another, much cleaner way to do this: Mercer’s Theorem.
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Mercer’s theorem

Assume that X is a compact metric space, k : X × X → R a continuous
kernel and fix a finite measure ν on X with suppν = X .
To k we can associate a certain operator Tk on L2(X ; ν) which is compact,
positive and self-adjoint

[Tkf ](y) =

ˆ
f(x)k(x, y)ν(dx)

There exist an orthonormal set of continuous L2 functions {ej}j∈J and
{λj}j∈J (strictly positive eigenvalues with λj → 0; J at most countable).

Theorem (Mercer’s theorem)
∀x, y ∈ X with convergence uniform on X × X :

k(x, y) =
∑
j∈J

λjej(x)ej(y).
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Mercer’s theorem

k(x, y) =
∑
j∈J

λjej(x)ej(y)

=
〈{√

λjej(x)
}
,
{√

λjej(y)
}〉

`2(J)

Another (Mercer) feature map:

ϕ : X → `2(J)

ϕ : x 7→
{√

λjej(x)
}
j∈J
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Mercer’s Theorem and Smoothness
What does ‖f‖H have to do with smoothing? For the Gaussian kernel:

f(x) =

∞∑
r=1

arer(x), ‖f‖2H =

∞∑
r=1

a2
r

λr
.

λr ∼ Br → 0, as r →∞ for B ∈ (0, 1) and er(x) are functions of increasing
complexity as r increases (r zero-crossings) – related to r-th order Hermite
polynomials. Figure from Rasmussen and Williams, 2006
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Kernel Embeddings
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Kernel Trick and Kernel Mean Trick

implicit feature map x 7→ k(·, x) ∈ Hk
replaces x 7→ [φ1(x), . . . , φs(x)] ∈ Rs

〈k(·, x), k(·, y)〉Hk = k(x, y)
inner products readily available

• nonlinear decision boundaries, nonlinear regression
functions, learning on non-Euclidean/structured
data

[Cortes & Vapnik, 1995; Schölkopf &

Smola, 2001]

RKHS embedding: implicit feature mean
[Smola et al, 2007; Sriperumbudur et al, 2010; Muandet et al,

2017]

P 7→ µk(P ) = EX∼P k(·, X) ∈ Hk
replaces P 7→ [Eφ1(X), . . . ,Eφs(X)] ∈ Rs

〈µk(P ), µk(Q)〉Hk = EX∼P,Y∼Qk(X,Y )
inner products easy to estimate

• nonparametric two-sample, independence,
conditional independence, interaction testing,
learning on distributions

[Gretton et al, 2005; Gretton et al,

2006; Fukumizu et al, 2007; DS et

al, 2013; Muandet et al, 2012;

Szabo et al, 2015]
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Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007]

between P and Q:

6 4 2 0 2 4 6
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

MMDk(P ,Q) = ‖µk(P )− µk(Q)‖Hk = sup
f∈Hk: ‖f‖Hk≤1

|Ef(X)− Ef(Y )|

Characteristic kernels: MMDk(P ,Q) = 0 iff
P = Q (also metrizes weak*
[Sriperumbudur,2010]).

• Gaussian RBF exp(− 1
2σ2 ‖x− x′‖

2
2),

Matérn family, inverse multiquadrics.

Can encode structural properties in the
data: kernels on non-Euclidean domains,
networks, images, text...
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Some uses of MMD

within-sample average similarity
–

between-sample average similarity

k(dogi, fishj)

k(fishi, fishj)

k(dogi, dogj)

k(fishj , dogi)

Figure by Arthur Gretton

MMD has been applied to:

two-sample tests and independence tests
(on graphs, text, audio...) [Gretton et al,

2009, Gretton et al, 2012]

model criticism and interpretability [Lloyd &

Ghahramani, 2015; Kim, Khanna & Koyejo, 2016]

analysis of Bayesian quadrature [Briol et al,

2018]

ABC summary statistics [Park, Jitkrittum &

DS, 2015; Mitrovic, DS & Teh, 2016]

summarising streaming data [Paige, DS &

Wood, 2016]

traversal of manifolds learned by
convolutional nets [Gardner et al, 2015]

MMD-GAN: training deep generative
models [Dziugaite, Roy & Ghahramani, 2015;

Sutherland et al, 2017; Li et al, 2017]

MMD2
k (P ,Q) = E

X,X′
i.i.d.∼ P

k(X,X ′) + E
Y ,Y ′

i.i.d.∼ Q
k(Y , Y ′)− 2EX∼P,Y∼Qk(X,Y ).
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MMD-GAN: training deep generative
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Sutherland et al, 2017; Li et al, 2017]

M̂MD2
k (P ,Q) =

1

nx(nx − 1)

∑
i 6=j

k(Xi, Xj)+
1

ny(ny − 1)

∑
i6=j

k(Y i, Y j)−
2

nxny

∑
i,j

k(Xi, Y j).
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Kernel dependence measures: HSIC
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Figure by Arthur Gretton

HSIC2(X,Y ;κ) = ‖µκ(PXY )− µκ(PXPY )‖2Hκ
Hilbert-Schmidt norm of the feature-space
cross-covariance [Gretton et al, 2009]

dependence witness is a smooth function in the
RKHS Hκ of functions on X × Y

k( , )!" #" !"l( , )#"

k( , )× l( , )!" #" !" #"

κ( , ) =!" #"!" #"

Independence testing framework that generalises
Distance Correlation (dcor) of [Szekely et al, 2007]:
HSIC with Brownian motion kernels [DS et al, 2013]

Extends to multivariate interaction and joint
dependence measures [DS et al, 2013; Pfister et al,

2017]
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Kernel dependence measures: HSIC (2)

k( , ) → K =

`(
The Sealyham Terrier is the
couch potato of the terrier
world - he loves to lay
around and take naps...

,Cairn Terriers are independent
little bundles of energy. They
are alert and active with the
trademark terrier temperament...

) → L =

Hilbert-Schmidt Independence Criterion (HSIC): similarity between the kernel

matrices
〈
K̃, L̃

〉
= Tr

(
K̃L̃

)
, where K̃ = HKH, and H = I− 1

n11
> is the

centering matrix.
[Gretton et al, 2008; Fukumizu et al, 2008; Song et al, 2012]
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Distribution Regression
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Kernel Embeddings for Distribution Regression

-0.856 0.562 1.39

Labels yi = f(Pi) but observe only {xji}Nij=1 ∼ Pi.
The goal: build a predictive model ŷ? = f({xj?}N?j=1) for a new sample
{xj?}N?j=1 ∼ P?.
Represent each sample with the empirical mean embedding
µ̂i = 1

Ni

∑Ni
j=1 k(·, xji ) ∈ Hk.

Now can use the induced inner product structure on empirical measures to
build a regression model:

• Linear kernel on the RKHS: K (µ̂i, µ̂j) = 〈µ̂i, µ̂j〉Hk = 1
NiNj

∑
r,s k(xri , x

s
j)

• Gaussian kernel on the RKHS:
K (µ̂i, µ̂j) = exp(−γ‖µ̂i − µ̂j‖2Hk ) = exp

(
−γM̂MD2

k (Pi, Pj)
)
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Kernel Embeddings for Distribution Regression

Supervised learning where labels are available at the group, rather than at the
individual level.

If we wish to make a prediction at a new location s∗, the
standard predictive equations for GP regression [26], derived
by conditioning a multivariate Gaussian distribution, tell us:

y∗ | s∗, X,y ∼ N (k∗(K+σ2I)−1y, k∗∗−k∗(K+σ2I)−1k∗>)
(11)

where Kij = k(si, sj) and k∗ = [k(s1, s
∗) . . . k(sn, s

∗)] and
k∗∗ = k(s∗, s∗). Thus we have a way of combining a prior
over f , parametrized by k(s, s′), with observed data to ob-
tain a posterior distribution over a new prediction y∗ at a
new location s∗. This is a very powerful method, as it en-
ables a fully Bayesian treatment of regression, a coherent
approach to kernel learning through the marginal likelihood
(for details see [26]), and posterior uncertainty intervals.

We can immediately see the connection between the ker-
nel ridge regression estimator in Eq. (7) and the posterior
mean of the GP in Eq. (11). (A superficial difference is that
in Eq. (7) our predictors are µ̂i while in Eq. (11) they are
generic locations si, but this difference will go away in Sec-
tion 5 when we propose using GP regression for distribution
regression.) The predictive mean of GP regression is ex-
actly equal to the kernel ridge regression estimator, with σ2

corresponding to λ. In ridge regression, a larger penalty λ
leads to a smoother fit (equivalently, less overfitting), while
in GP regression a larger σ2 favors a smoother GP poste-
rior because it implies more measurement error. For a full
discussion of the connections see [2, Sections 6.2.2-6.2.3].

4. ECOLOGICAL INFERENCE
In this section we state the ecological inference problem

that we intend to solve. We use the motivating example of
inferring Barack Obama’s vote share by demographic sub-
group (e.g. men versus women) in the 2012 US presidential
election, without access to any individual-level labels. Vote
totals by electoral precinct are publicly available, and these
provide the labels in our problem. Predictors are in the
form of demographic covariates about individuals (e.g. from
a survey with individual level data like the census). The
challenge is that the labels are aggregate, so it is impossi-
ble to know which candidate was selected by any particular
individual. This explains the terminology: “ecological cor-
relations” are correlations between variables which are only
available as aggregates at the group level [28]

We use the same notation as in Section 3.2. Let xji ∈ Rd
be a vector of covariates for individual i in region j. Let
wji be survey weights2. Let yi be labels in the form of two-
dimensional vectors (ki, ni) where ki is the number of votes
received by Obama out of ni total votes in region i. Then
our dataset is:(

{xj1}
N1
j=1, y1

)
,
(
{xj2}

N2
j=1, y2

)
, . . . ,

(
{xjn}Nn

j=1, yn
)

(12)

We will typically have a rich set of covariates available, in
addition to the demographic variables we are interested in
stratifying on, so the xji will be high-dimensional vectors
denoting gender, age, income, education, etc.

Our task is to learn a function f from a demographic sub-
group (which could be everyone) within region i to the prob-
ability that this demographic subgroup supported Obama,

2Covariates usually come from a survey based on a random
sample of individuals. Typically, surveys are reported with
survey weights wji for each individual to correct for oversam-
pling and non-response, which must be taken into account
for any valid inference (e.g. summary statistics, regression
coefficients, standard errors, etc.).

i.e. the number of votes this group gave Obama divided by
the total number of votes in this group.

5. OUR METHOD
In this section we propose our new ecological inference

method. Our approach is illustrated in a schematic in Figure
1 and formally stated in Algorithm 1.
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Figure 1: Illustration of our approach. Labels
y1, y2 and y3 are available at the group level giving
Obama’s vote share in regions 1, 2, and 3. Co-
variates are available at the individual level giv-
ing the demographic characteristics of a sample of
individuals in regions 1, 2, and 3. We project
the individuals from each group into feature space
using a feature map φ(x) and take the mean by
group to find high-dimensional vectors µ1, µ2 and µ3,
e.g. µ1 = 1

3
(φ(x11) + φ(x21) + φ(x31)). Now our prob-

lem is reduced to supervised learning, where we
want to learn a function f : µ → y. Once we have
learned f we make subgroup predictions for men
and women in region 3 by calculating mean embed-
dings for the men µm3 = 1

2
(φ(x33) + φ(x43)) and women

µw3 = 1
3
(φ(x13) + φ(x23) + φ(x53)) and then calculating

f(µm3 ) and f(µw3 ). For a more rigorous description
of our algorithm see Algorithm 1.

Recall the two-stage distribution regression approach in-
troduced in Section 3.2. Our method has a similar approach.
To begin, we use FastFood as introduced in Section 3.3 with
an RBF kernel to produce an explicit feature map φ and
calculate the mean embeddings3, one for each region i, of
Eq. (4) with survey weights:

µ̂1 =

∑
j w

j
1φ(xj1)∑
j w

j
1

, . . . , µ̂n =

∑
j w

j
nφ(xjn)∑
j w

j
n

(13)

3 Distribution regression with explicit random features was
previously considered in Oliva et al. [19] using Rahimi and
Recht [25] to speed up an earlier distribution regression
method based on kernel density estimation [22]. This ap-
proach has comparable statistical guarantees to distribution
regression using RKHS-mean embeddings but inferior em-
pirical performance [33]. As far as we are aware, using Fast-
Food kernel mean embeddings for distribution regression is
a novel approach.

Mooij, Peters, Janzing, Zscheischler and Schölkopf

Figure 6: Scatter plots of the cause-effect pairs in the CauseEffectPairs benchmark data.
We only show the pairs for which both variables are one-dimensional.

the performance of methods on simulated data where we can control the data-generating
process, and therefore can be certain about the ground truth.

Simulating data can be done in many ways. It is not straightforward to simulate data
in a “realistic” way, e.g., in such a way that scatter plots of simulated data look similar to
those of the real-world data (see Figure 6). For reproducibility, we describe in Appendix C
in detail how the simulations were done. Here, we will just sketch the main ideas.

We sample data from the following structural equation models. If we do not want to
model a confounder, we use:

EX ∼ pEX , EY ∼ pEY
X = fX(EX)

Y = fY (X,EY ),

and if we do want to include a confounder Z, we use:

EX ∼ pEX , EY ∼ pEY , EZ ∼ pEZ
Z = fZ(EZ)

X = fX(EX , EZ)

Y = fY (X,EY , EZ).

Here, the noise distributions pEX , pEY , pEZ are randomly generated distributions, and the
causal mechanisms fZ , fX , fY are randomly generated functions. Sampling the random

28

Figure from Flaxman et al, 2015 Figure from Mooij et al, 2014

• classifying text based on word features [Yoshikawa et al, 2014; Kusner et al, 2015]
• aggregate voting behaviour of demographic groups [Flaxman et al, 2015; 2016]
• image labels based on a distribution of small patches [Szabo et al, 2016]
• “traditional” parametric statistical inference by learning a function from sets of

samples to parameters: ABC [Mitrovic et al, 2016], EP [Jitkrittum et al, 2015]
• identify the cause-effect direction between a pair of variables from a joint

sample [Lopez-Paz et al,2015]
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Kernel Methods and Gaussian Processes
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Different Flavours of Regression

We can model response yi as a noisy version of the underlying function f
evaluated at input xi:

yi|f(xi) ∼ N (f(xi), σ
2)

Appropriate loss: L(y, f(x)) = (y − f(x))2

Frequentist Parametric approach: model f as fθ for some parameter vector
θ. Fit θ by ML / ERM with squared loss (linear regression).
Frequentist Nonparametric approach: model f as the unknown parameter
taking values in an infinite-dimensional space of functions. Fit f by
regularized ML / ERM with squared loss (kernel ridge regression)
Bayesian Parametric approach: model f as fθ for some parameter vector θ.
Put a prior on θ and compute a posterior p(θ|D) (Bayesian linear regression).
Bayesian Nonparametric approach: treat f as the random variable taking
values in an infinite-dimensional space of functions. Put a prior over functions
f ∈ F , and compute a posterior p(f |D) (Gaussian Process regression).
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Priors on function values

Work with the function values at a set
of inputs f = (f(x1), . . . , f(xn))>

What properties of the function can we
incorporate?

• Multivariate normal prior on f :

f ∼ N (0,K)

• Use a (positive definite) covariance
function k to define K:

Kij = k(xi, xj)

• Expect regression functions to be
smooth: If x and x′ are close by, then
f(x) and f(x′) have similar values,
i.e. strongly correlated.(

f(x)
f(x′)

)
∼ N

((
0
0

)
,

(
k(x, x) k(x, x′)
k(x′, x) k(x′, x′)

))

The prior p(f) encodes our prior
knowledge about the function.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5
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1.5

Model:

f ∼ N (0,K)

yi|fi ∼ N (fi, σ
2)
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Gaussian Processes

What does a multivariate normal prior mean?
Imagine x forms an infinitesimally dense grid of data space. Simulate prior
draws

f ∼ N (0,K)

Plot fi vs xi for i = 1, . . . , n.
The corresponding prior over functions is called a Gaussian Process (GP):
any finite number of evaluations of which follow a Gaussian distribution.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−4

−3

−2

−1

0

1

2

3

http://www.gaussianprocess.org/
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Gaussian Processes

Different kernels lead to different function characteristics.

Carl Rasmussen. Tutorial on Gaussian Processes at NIPS 2006.
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Gaussian Processes

f |x ∼ N (0,K)

y|f ∼ N (f , σ2I)

Posterior distribution:

f |y ∼ N (K(K + σ2I)−1y,K−K(K + σ2I)−1K)

Posterior predictive distribution: Suppose x′ is a test set. We can extend our
model to include the function values f ′ at the test set:(

f
f ′

)
|x,x′ ∼ N

((
0
0

)
,

(
Kxx Kxx′

Kx′x Kx′x′

))
y|f ∼ N (f , σ2I)

where Kxx′ is matrix with (i, j)-th entry k(xi, x
′
j).

Some manipulation of multivariate normals gives:

f ′|y ∼ N
(
Kx′x(Kxx + σ2I)−1y,Kx′x′ −Kx′x(Kxx + σ2I)−1Kxx′

)
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GP regression and Kernel Ridge Regression

If KRR and GPR use the same kernel and if the regularization parameter λ equals
the noise variance σ2, KRR estimate of the function coincides with the GPR
posterior mean/mode. Indeed, recall that in KRR we are solving empirical risk
minimisation

min
f∈Hk

n∑
i=1

(yi − f(xi))
2

+ σ2 ‖f‖2Hk ,

and are fitting a function of the form f(x) =
∑n
i=1 αik (·, xi). Closed form

solution is given by α =
(
Kxx + σ2I

)−1
y. But then if we wish to predict

function values at a new set x′ = {x′j}mj=1 of input vectors, we have

f(x′j) =

n∑
i=1

αik
(
x′j , xi

)
=
[
k(x′j , x1), . . . , k(x′j , xn)

]
(Kxx + σ2I)−1y,

and
[
k(x′j , x1), . . . , k(x′j , xn)

]
is the j-th row of Kx′x.

More generally, GP posterior mode for any likelihood model lies in the RKHS
(essentially the same proof as the representer theorem).
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GPs and RKHSs: shared mathematical foundations
The same notion of a (positive definite) kernel, but conceptual gaps between
communities.
Orthogonal projection in RKHS ⇔ Conditioning in GPs.
Beware! 0/1 laws: GP sample paths with (infinite-dimensional) covariance
kernel k almost surely fall outside of Hk.

• But the space of sample paths is only slightly larger than Hk (outer shell).
• It is typically also an RKHS (with another kernel).

Worst-case in RKHS ⇔ Average-case in GPs.

MMD2(P,Q;Hk) =

(
sup

‖f‖Hk≤1

(Pf −Qf)

)2

= Ef∼GP(0,k)

[
(P f −Qf)2

]
.

Radford Neal, 1998: “prior beliefs regarding the true function being modeled and
expectations regarding the properties of the best predictor for this function [...]
need not be at all similar.”
Gaussian Processes and Kernel Methods: A Review on Connections and
Equivalences
M. Kanagawa, P. Hennig, DS, and B. K. Sriperumbudur
ArXiv e-prints:1807.02582
https://arxiv.org/abs/1807.02582
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Large-Scale Kernel Approximations
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Kernel methods at scale
Expressivity of kernel methods comes at a price of O(n2) or O(n3) in the
number of observations n (due to having to compute, store and often invert
the Gram matrix)
Problematic when we have a lot of observations (and this is exactly when we
want to use a rich expressive model with a high-dimensional hypothesis class!)
Scaling up kernel methods is a very active research area
[Sonnenburg et al, 2006; Rahimi & Recht, 2007; Le, Sarlos & Smola, 2013; Wilson et al, 2014; Dai

et al, 2014; Sriperumbudur & Szabo, 2015; Bach, 2015; Avron et al, 2017; Li et al, 2019].
Main idea: study the RKHS and construct a (random) low-dimensional space
with similar inner product structure for a given data - then undo the kernel
trick(!?)

explicit basis functions
↓

implicit basis functions
↓

explicit random basis functions
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Random Fourier features: Inverse Kernel Trick
Bochner’s representation: Assume that k is a positive definite translation-invariant
kernel on Rp. Then k can be written as

k(x, y) =

ˆ
Rp

exp
(
iω>(x− y)

)
dΛ(ω)

= 2

ˆ
Rp

{
cos
(
ω>x

)
cos
(
ω>y

)
+ sin

(
ω>x

)
sin
(
ω>y

)}
dΛ(ω)

for some positive measure (w.l.o.g. a probability distribution) Λ.
Sample m frequencies Ω = {ωj}mj=1 ∼ Λ and use a Monte Carlo estimator of
the kernel function instead [Rahimi & Recht, 2007]:

k̂(x, y) =
2

m

m∑
j=1

{
cos
(
ω>j x

)
cos
(
ω>j y

)
+ sin

(
ω>j x

)
sin
(
ω>j y

)}
= 〈ξΩ(x), ξΩ(y)〉R2m ,

with an explicit set of features ξΩ : x 7→
√

2
m

[
cos
(
ω>1 x

)
, sin

(
ω>1 x

)
, . . .

]>
.

The cost drops: O(n3)→ O(m2n+m3), O(n2)→ O(mn+m2). How fast
does m need to grow with n? Often sublinear and can be as low as log n
without sacrificing convergence rates [Bach, 2015; Rudi et al, 2017; Avron et al, 2017; Li

et al, 2019].
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Inducing variables / Nyström

Directly approximate the n× n Gram matrix KXX of a set of inputs {xi}ni=1

with
K̂XX = KXZK

−1
ZZKZX

where KZZ is m×m on “inducing” inputs {zi}mi=1.

Corresponds to explicit feature representation x 7→ KxZK
−1/2
ZZ .

Surrogate kernel k̂(x, x′) = 〈k|(·, x), k|(·, x′)〉, where k|(·, x) is a projection of
k(·, x) to span {k(·, z1), . . . , k(·, zm)}
Often used in regression with Gaussian processes: with the use of
Sherman-Morrison-Woodbury identity, reduces O(n3) cost to O(nm2).
[ Quiñonero-Candela and Rasmussen, 2005, Snelson and Ghahramani, 2006 ]

m can grow much slower than n in regression without sacrificing performance
[Rudi, Camoriano & Rosasco, 2015].
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Next:

How to model uncertainty of kernel embeddings when learning on
aggregates?

• A simple Bayesian (GP) model for kernel mean embeddings leads to shrinkage
estimators with better predictive performance in high noise regimes.

How to predict on individual inputs when only aggregate count data is
available?

• Variational bounds leading to improved prediction accuracy and scalability to
large datasets, while explicitly taking uncertainty into account.
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Uncertainty in Bag Sizes

-0.856 0.562 1.39
Recall: we represent each sample with the empirical mean embedding
µ̂i = 1

Ni

∑Ni
j=1 k(·, xji ) ∈ Hk.

Empirical mean in infinite-dimensional space? Stein’s phenomenon?
Shrinkage estimators can be better behaved [Muandet et al, 2013]

These inputs (with or without shrinkage) are noisy - we do not observe the
true embedding µi. Moreover, bags with small Ni are noisier - can this
uncertainty be included in the predictive model?

Bayesian Approaches to Distribution Regression
Ho Chung Leon Law, Dougal Sutherland, DS, and Seth Flaxman
AISTATS 2018
http://proceedings.mlr.press/v84/law18a.html

D.Sejdinovic (University of Oxford) Kernel Methods, Embeddings and Aggregates Imperial, 28/11/2018 54 / 67

http://proceedings.mlr.press/v84/law18a.html


Uncertainty in Mean Embeddings

The empirical mean embedding is µ̂i = 1
Ni

∑Ni
j=1 k(·, xji ) ∈ Hk

Bayesian model for kernel mean embeddings [Flaxman,DS,Cunningham & Filippi, UAI

2016]:
• Place prior on the RKHS µi ∼ GP (m0(·), r(·, ·)) (requires care due to 0/1

laws [Kallianpur, 1970; Wahba, 1990; Steinwart, 2014+])
• Posit normal likelihood for the evaluations of the embedding at a set of points

u:
µ̂i(u)|µi(u) ∼ N (µi(u),Σi/Ni)

• Leads to a closed-form GP posterior µi|{xji}:

µi(z)|{xji} ∼ N
(
Rzu(Ruu + Σi/Ni)

−1(µ̂i −m0) +m0,

Rzz −Rzu(Ruu + Σi/Ni)
−1Ruz

)

• Recovers frequentist shrinkage estimator of mean embeddings [Muandet et al,

2013] (but with r instead of k), similar to James-Stein estimator.
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Distribution Regression Model
Model label as a function of the “true” kernel mean embedding:

yi = f(µi) + ε, µi = EX∼Pik(·, X)

Linear model on the evaluation of kernel mean embedding at a set of
“landmark points” z:

f(µi) = β>µi(z)

Can model uncertainty in β (BLR) or in µi (shrinkage) or in both (BDR,
which requires MCMC due to non-conjugacy).
Shrinkage: Integrate likelihood yi ∼ N (f(µi), σ

2) through the posterior
µi|{xji} to obtain

yi | {xji}, β ∼ N (ξβi , ν
β
i )

ξβi = β>Rzxi

(
Rxixi +

Σi
Ni

)
−1(µ̂i −m0) + β>m0

νβi = β>

(
Rzz −Rzxi

(
Rxixi +

Σi
Ni

)−1

R>xiz

)
β + σ2.

Can be optimized to find MAP of β, σ2, kernel parameters, locations of
landmark points, ...
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Age prediction from images

{
, ,

}
→

0 25 50 75
age

IMDb-Wiki database of images with age labels
• Very noisy labels in the dataset

Distribution regression: group pictures of actors, predict mean age
Image features: last hidden layer from a convolutional neural network by
[Rothe et al, IJCV 2016]

Lots of variation in Ni:
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Ni = 1: 23% of bags

Figure: Histogram of Ni.
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Age prediction from images
Propagating uncertainty using shrinkage helps!

Figure: Results across 10 data splits (means and standard deviations). RBF net is tuned
for RMSE, other methods for NLL. CNN takes the mean of the predictive distributions of
[Rothe, 2016] for each point in the bag.

Tensorflow implementation: https://github.com/hcllaw/bdr
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Learning on Aggregates
Supervised learning: obtaining inputs has a lower cost than obtaining
outputs/labels, hence we build a (predictive) functional relationship or a
conditional probabilistic model of outputs given inputs.
Semisupervised learning: because of the lower cost, there is much more
unlabelled than labelled inputs.
Weakly supervised learning on aggregates: because of the lower cost, inputs
are at a much higher resolution than outputs.

Figure: left: Malaria incidences reported per administrative unit; centre: land surface
temperature at night; centre: topographic wetness index
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Disaggregating Aggregate Outputs

Variational Learning on Aggregate Outputs with Gaussian Processes
H. C. L. Law, DS, E. Cameron, T. C. D. Lucas, S. Flaxman, K. Battle, and
K. Fukumizu
to appear in NeurIPS 2018
https://arxiv.org/abs/1805.08463
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Distribution regression: train on bags, predict on bags

xa
1

xa
2

xa
3

xa
Na

...

bag xa is a sample drawn iid from P a

aggregate output ya

Individual labels need not exist - the label is a function of the whole
population.
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Output disaggregation: train on bags, predict on individuals

xa
1

xa
2

xa
3

xa
Na

...

bag xa

ya1
ya2
ya3

yaNa

...
...

aggregate output ya

Weakly supervised ML problem. Classification instance widely studied in ML
(learning with label proportions) [Quadrianto et al, 2009; Yu et al, 2013], but little work
on regression / other observation likelihoods.
Spatial statistics: ‘down-scaling’, ‘fine-scale modelling’ or ‘spatial disaggregation’ in
the analysis of disease mapping, agricultural data, and species distribution
modelling, but mostly simple linear models.
This work: scalable variational GP machinery + general aggregation model.
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Output disaggregation: train on bags, predict on individuals

xa
1

xa
2

xa
3

xa
Na

...

bag xa

f(xa
1)

f(xa
2)

f(xa
3)

f(xa
Na

)

...
...

aggregate parameter fa

aggregate output ya|fa

Weakly supervised ML problem. Classification instance widely studied in ML
(learning with label proportions) [Quadrianto et al, 2009; Yu et al, 2013], but little work
on regression / other observation likelihoods.
Spatial statistics: ‘down-scaling’, ‘fine-scale modelling’ or ‘spatial disaggregation’ in
the analysis of disease mapping, agricultural data, and species distribution
modelling, but mostly simple linear models.
This work: scalable variational GP machinery + general aggregation model.
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Bag Observation Model: Aggregation in Mean Parameters

An exponential family model p(y|η) for output y ∈ Y, with mean parameter
η = η(x) depending on the individual input x ∈ X .
Given a fixed set of points xai ∈ X such that xa = {xa1 , . . . , xaNa}, i.e. a bag
of points with Na individuals
Observe the aggregate outputs for each of the bags: training data
({x1

i }N1
i=1, y

1), . . . ({xni }Nni=1, y
n).

However, we wish to estimate the regression value η(xai ) for each individual
(in-sample or out-of-sample), not for new bags.
No restrictions on the collection of the individuals, with the bagging process
possibly dependent on covariates xai .

To relate the aggregate ya and the bag xa = (xai )Nai=1, we use the following bag
observation model:

ya|xa ∼ p(y|ηa), ηa =

Na∑
i=1

pai η(xai ), (3)

where pai is an optional fixed non-negative weight used to adjust the scales. .
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Poisson Bag Model

ya|xa ∼ Poisson

(
Na∑
i=1

pai λ
a
i

)
, λai = Ψ(f(xai )), f ∼ GP (µ, k)

Nonnegative link functions: Ψ(f) = f2 and Ψ(f) = ef .
Standard variational bound using inducing points u = [f(w1), . . . , f(wm)]> and a
multivariate normal variational posterior q(u)

log p(y|Θ) = log

ˆ ˆ
p(y, f, u|X,W,Θ)dfdu

≥
ˆ ˆ

log
{
p(y|f,Θ)

p(u)

q(u)

}
p(f |u,Θ)q(u)dfdu (Jensen’s inequality)

=
∑
a

ya
ˆ

log
(Na∑
i=1

pai Ψ(f(xai )
)
q(f)df −

∑
a

Na∑
i=1

ˆ
pai Ψ(f(xai ))q(f)df

−
∑
a

log(ya!)−KL(q(u)||p(u)) =: L(q,Θ),

is still intractable due to aggregation. Needs a further lower bound or an
approximation.
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Log-sum Lemma

Lemma

Let v = [v1, . . . , vN ]> be a random vector with probability density q(v), and let
wi ≥ 0, i = 1, . . . , N . Then, for any non-negative valued function Ψ(v),

ˆ
log
( N∑
i=1

wiΨ(vi)
)
q(v)dv ≥ log

( N∑
i=1

wie
ξi
)
,

where
ξi :=

ˆ
log Ψ(vi)qi(vi)dvi.

Additionally, a Taylor approximation can be used for Ψ(f) = f2 (where intractable
term essentially becomes E log ‖V ‖2 where V is a multivariate normal) – note
that log-sum lemma still gives a lower bound in terms of special functions in that
case (problematic for backpropagation!)
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Results

Tensorflow implementation: https://github.com/hcllaw/VBAgg
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Summary

Both contributions study learning on aggregates, i.e. where the responses are
available at the group level, and demonstrate how statistical modelling can
be brought to bear.
Increasing confluence between statistical modelling and machine learning –
making use of the well engineered deep learning (black-box) infrastructure,
while carefully considering appropriate statistical models.
Flexibility of the RKHS framework and Gaussian processes as a common
ground between deep learning and statistical inference.
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