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Reproducing Kernel Hilbert Spaces

RKHS: a Hilbert space of functions on X with continuous evaluation
f 7→ f(x), ∀x ∈ X (norm convergence implies pointwise convergence).
Each RKHS corresponds to a positive definite kernel k : X × X → R, s.t.

1 ∀x ∈ X , k(·, x) ∈ H, and
2 ∀x ∈ X , ∀f ∈ H, 〈f, k(·, x)〉H = f(x).

RKHS can be constructed as Hk = span {k(·, x) |x ∈ X} and includes
functions f(x) =

∑n
i=1 αik(x, xi) and their pointwise limits.
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Kernel Trick and Kernel Mean Trick

implicit feature map x 7→ k(·, x) ∈ Hk
replaces x 7→ [φ1(x), . . . , φs(x)] ∈ Rs

〈k(·, x), k(·, y)〉Hk = k(x, y)
inner products readily available

• nonlinear decision boundaries, nonlinear regression
functions, learning on non-Euclidean/structured
data

[Cortes & Vapnik, 1995; Schölkopf &

Smola, 2001]

RKHS embedding: implicit feature mean
[Smola et al, 2007; Sriperumbudur et al, 2010]

P 7→ µk(P ) = EX∼P k(·, X) ∈ Hk
replaces P 7→ [Eφ1(X), . . . ,Eφs(X)] ∈ Rs

〈µk(P ), µk(Q)〉Hk = EX∼P,Y∼Qk(X,Y )
inner products easy to estimate

• nonparametric two-sample, independence,
conditional independence, interaction testing,
learning on distributions
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P 7→ µk(P ) = EX∼P k(·, X) ∈ Hk
replaces P 7→ [Eφ1(X), . . . ,Eφs(X)] ∈ Rs

〈µk(P ), µk(Q)〉Hk = EX∼P,Y∼Qk(X,Y )
inner products easy to estimate

• nonparametric two-sample, independence,
conditional independence, interaction testing,
learning on distributions

[Gretton et al, 2005; Gretton et al,

2006; Fukumizu et al, 2007; DS et

al, 2013; Muandet et al, 2012;

Szabo et al, 2015]
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Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007]

between P and Q:
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MMDk(P ,Q) = ‖µk(P )− µk(Q)‖Hk = sup
f∈Hk: ‖f‖Hk≤1

|Ef(X)− Ef(Y )|

Characteristic kernels: MMDk(P ,Q) = 0 iff P = Q.
• Gaussian RBF exp(− 1

2σ2 ‖x− x′‖
2
2), Matérn family, inverse multiquadrics.

For characteristic kernels on LCH X , MMD metrizes weak* topology on
probability measures [Sriperumbudur,2010],

MMDk (Pn, P )→ 0⇔ Pn  P.
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Some uses of MMD

within-sample average similarity
–

between-sample average similarity

k(dogi, fishj)

k(fishi, fishj)

k(dogi, dogj)

k(fishj , dogi)

Figure by Arthur Gretton

MMD has been applied to:

two-sample tests and independence tests
[Gretton et al, 2009, Gretton et al, 2012]

model criticism and interpretability [Lloyd &

Ghahramani, 2015; Kim, Khanna & Koyejo, 2016]

analysis of Bayesian quadrature [Briol et al,

2015+]

ABC summary statistics [Park, Jitkrittum &

DS, 2015]

summarising streaming data [Paige, DS &

Wood, 2016]

traversal of manifolds learned by
convolutional nets [Gardner et al, 2015]

training deep generative models [Dziugaite,

Roy & Ghahramani, 2015; Sutherland et al, 2017]

MMD2
k (P ,Q) = E

X,X′i.i.d.∼ P
k(X,X ′) + E

Y ,Y ′i.i.d.∼ Q
k(Y , Y ′)− 2EX∼P,Y∼Qk(X,Y ).
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Kernel dependence measures

X

Y

Dependence witness and sample
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HSIC2(X,Y ;κ) = ‖µκ(PXY )− µκ(PXPY )‖2Hκ

Hilbert-Schmidt norm of the feature-space
cross-covariance [Gretton et al, 2009]

dependence witness is a smooth function in
the RKHS Hκ of functions on X × Y

k( , )!" #" !"l( , )#"

k( , )× l( , )!" #" !" #"

κ( , ) =!" #"!" #"

Independence testing framework that
generalises Distance Covariance (dCov) of
[Szekely et al, 2007]: HSIC with Brownian
motion covariance kernels [DS et al, 2013]
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All possible differences between generating processes?

differences discovered by an MMD two-sample test can be due to different
types of measurement noise or data collection artefacts

• With a large sample-size, uncovers potentially irrelevant sources of variability:
slightly different calibration of the data collecting equipment, different
numerical precision, different conventions of dealing with edge-cases

Learning on distributions: each label yi in supervised learning is associated to
a whole bag of observations Bi = {Xij}Nij=1 – assumed to come from a
probability distribution Pi

• Each bag of observations could be impaired by a different measurement noise
process. Distributional covariate shift: different measurement noise on test
bags?

Both problems require encoding the distribution with a representation
invariant to symmetric noise.

Testing and Learning on Distributions with Symmetric Noise Invariance.
Ho Chung Leon Law, Christopher Yau, DS.
http://arxiv.org/abs/1703.07596
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Random Fourier features: Inverse Kernel Trick
Bochner’s representation: Assume that k is a positive definite
translation-invariant kernel on Rp. Then k can be written as

k(x, y) =

ˆ
Rp

exp
(
iω>(x− y)

)
dΛ(ω)

= 2

ˆ
Rp

{
cos
(
ω>x

)
cos
(
ω>y

)
+ sin

(
ω>x

)
sin
(
ω>y

)}
dΛ(ω)

for some positive measure (w.l.o.g. a probability distribution) Λ.

Sample m frequencies Ω = {ωj}mj=1 ∼ Λ and use a Monte Carlo estimator of
the kernel function instead [Rahimi & Recht, 2007]:

k̂(x, y) =
2

m

m∑
j=1

{
cos
(
ω>j x

)
cos
(
ω>j y

)
+ sin

(
ω>j x

)
sin
(
ω>j y

)}
= 〈ξΩ(x), ξΩ(y)〉R2m ,

with an explicit set of features ξΩ : x 7→
√

2
m

[
cos
(
ω>1 x

)
, sin

(
ω>1 x

)
, . . .

]>
.

How fast does m need to grow with n? Can be sublinear for regression [Bach,

2015].
D.Sejdinovic (University of Oxford) Learning with Kernel Embeddings 23/03/2016 8 / 25



Approximate Mean Embeddings and Characteristic Functions

If k is translation-invariant, MMD becomes the weighted L2-distance between the
characteristic functions of P and Q [Sriperumbudur, 2010].

‖µP − µQ‖2Hk =

ˆ
Rd
|ϕP (ω)− ϕQ (ω)|2 dΛ (ω) ,

Approximate mean embedding using random Fourier features is simply the
evaluation (real and complex part stacked together) of the characteristic function
at the frequencies {ωj}mj=1 ∼ Λ:

Φ(P ) = EX∼P ξΩ(X)

=

√
2

m
EX∼P

[
cos
(
ω>1 x

)
, sin

(
ω>1 x

)
, . . . , cos

(
ω>mx

)
, sin

(
ω>mx

)]>
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Noise and the Signal

Adopting similar ides from nonparametric deconvolution of [Delaigle and Hall, 2016].

define a symmetric positive definite (SPD) noise component to be any
random vector E on Rd with a positive characteristic function,
ϕE(ω) = EX∼E

[
exp(iω>E)

]
> 0, ∀ω ∈ Rd (but E is not a.s. 0)

• symmetric about zero, i.e. E and −E have the same distribution
• if E has a density, it must be a positive definite function
• spherical zero-mean Gaussian distribution, as well as multivariate Laplace,

Cauchy or Student’s t (but not uniform).

define an (SPD-)decomposable random vector X if its characteristic function
can be written as ϕX = ϕX0

ϕE , with E SPD noise component.
Assume that only the indecomposable components of distributions are of
interest.

D.Sejdinovic (University of Oxford) Learning with Kernel Embeddings 23/03/2016 10 / 25



Phase Discrepancy and Phase Features
[Delaigle and Hall, 2016] construct density estimators for nonparametric deconvolution,
i.e. estimate density f0 of X0 with observations Xi ∼ X0 + E. E has unknown
SPD distribution. Matching phase functions:

ρX (ω) =
ϕX (ω)

|ϕX (ω)|
= exp (iτX (ω))

Phase function is invariant to SPD noise as it only changes the amplitude of the
characteristic function.
We are not interested in density estimation but in measuring differences up to
SPD noise. In analogy to MMD, define phase discrepancy:

PhD(X,Y ) =

ˆ
Rd
|ρX (ω)− ρY (ω)|2 dΛ (ω)

for some spectral measure Λ.
Construct distribution features by simply normalising approximate mean
embeddings:

Ψ(PX) =

√
1

m

[
Eξω1

(X)

‖Eξω1
(X)‖

, . . . ,
Eξωm(X)

‖Eξωm(X)‖

]>
where ξωj (x) =

[
cos
(
ω>j x

)
, sin

(
ω>j x

)]
.
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Phase and Indecomposability

Is phase discrepancy a metric on indecomposable random variables?

No

Figure: Example of two indecomposable distributions which have the same phase
function. Left: densities. Right: characteristic functions.

fX(x) =
1√
2π
x2 exp(−x2/2), fY (x) =

1

2
|x| exp(−|x|).
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Learning Phase Features

Given a supervised signal, we can optimise a
set of frequencies {wi}mi=1 that will give us a
useful discriminative representation. In other
words, we are no longer focusing on a
specific translation-invariant kernel k
(specific Λ), but are learning Fourier/phase
features.
A neural network with coupled cos/sin
activation functions, mean pooling and
normalisation.
Straightforward implementation in
Tensorflow
(code: https://github.com/hcllaw/
Fourier-Phase-Neural-Network)
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Synthetic Example

θ ∼ Γ(α, β),

Z ∼ U [0, σ],

ε|Z ∼ N (0, Z),

{Xi}|θ, ε
i.i.d.∼ Γ (θ/2, 1/2)√

2θ
+ ε,

Goal: Learn a mapping {Xi} 7→ θ

Can be used for semi-automatic
ABC [Fearnhead & Prangle, 2012] with
kernel distribution regression for
summary statistics [Mitrovic, DS & Teh,

2016].

Figure: MSE of θ, using the Fourier and
phase neural network averaged over 100
runs. Here noise σ is varied between 0 and
3.5, and the 5th and the 95th percentile is
shown.
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Aerosol Dataset with Covariate Shift

Aerosol MISR1 dataset [Wang et

al, 2012; Szabo et al, 2015]

Aerosol Optical Depth (AOD)
multiple-instance learning
problem with 800 bags, each
containing 100 randomly
selected 16-dim multispectral
pixels (satellite imaging) within
20km radius of AOD sensor.
The label yi provided by the
ground AOD sensors.
The test data is impaired by
additive SPD noise components.

Figure: RMSE on the test set, corrupted by
various levels of noise, using the Fourier and
phase neural network and GKKR averaged over
100 runs. Here noise-to-signal ratio σ is varied
between 0 and 3.0, and the 5th and the 95th

percentile is shown.
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Can Fourier features learn invariance?

Discriminative frequencies learned
on the “noiseless” training data
correspond to Fourier features that
are nearly normalised (i.e. they are
close to unit norm).
This means that the Fourier NN has
learned to be approximately
invariant based on training data,
indicating that Aerosol data
potentially has irrelevant SPD noise
components.

Figure: Histograms for the distribution of
the modulus of Fourier features over each
frequency w for the Aerosol data (test set).
Top Green: Random Fourier Features w
(with the optimised kernel bandwidth)
Bottom Blue: Learned Fourier features w
from the Fourier Neural Network
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Summary

When measuring nonparametric distances between distributions, can we
disentangle the differences in noise from the differences in the signal?
We considered two different ways to encode invariances to symmetric noise:

• MMD for asymmetry (not discussed in the talk) in paired sample differences,
MMD(X − Y, Y −X), which can be used to construct a two-sample test up
to symmetric noise.

• weighted distance between the empirical phase functions for learning
algorithms on distribution inputs which are robust to measurement noise and
covariate shift.
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Bayesian Model for Embeddings

In MMD, HSIC and other applications of embeddings, we estimate
µ =
´
k(·, x)P(dx) with its empirical mean µ̂ = 1

n

∑n
i=1 k(·, xi).

Empirical mean over an infinite-dimensional case? Due to Stein’s
phenomenon, shrinkage estimators are better behaved [Muandet et al, 2013] and
are reported to improve performance in kernel PCA and in testing power
[Ramdas & Wehbe, 2015].
Can we formulate a Bayesian inference procedure for kernel embeddings?
Two challenges:

• How to construct a valid prior over the RKHS?
• What is the likelihood of our observations given the kernel embedding?

Bayesian Learning of Kernel Embeddings.
UAI 2016.
Seth Flaxman, DS, John Cunningham, and Sarah Filippi.
http://arxiv.org/abs/1603.02160
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Priors on RKHS

Since sample paths of a GP with kernel k lie outside RKHS Hk with probability 1
Kallianpur’s 0-1 law, [Kallianpur, 1970; Wahba, 1990], use

r(x, x′) =

ˆ
k(x, u)k(u, x′)ν(du)

in which case f ∈ Hk with probability 1 by nuclear dominance theory [Lukic and

Beder, 2001; Pillai et al, 2007].
For some simple cases, kernel r analytically available, e.g. for a Gaussian kernel
k(x, x′) = exp

(
−‖x−x

′‖2
2θ2

)
and ν(du) ∝ exp

(
−‖u‖

2

2η2

)
du:

r(x, x′) ∝ exp

(
−‖x− x

′‖2

4θ2
− ‖(x+ x′)/2‖2

4θ2 + η2

)
.

Has a nonstationary component, but similar to another (smoother) Gaussian
kernel with bandwidth θ

√
2 when η is large.
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Likelihood

We need a likelihood linking the kernel mean embedding µ to the observations
{xi}ni=1 Consider evaluating µ̂ induced by {xi}ni=1 at some x ∈ X - we link µ̂(x)
to µ(x) using a Gaussian distribution with variance τ2/n:

p(µ̂(x)|µ(x)) = N (µ̂(x);µ(x), τ2/n), x ∈ X .

Obviously wrong - both µ and µ̂ are smooth functions. In general covariance will
depend both on k and P .
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Posterior of the embedding

Standard conjugacy results give:

µ(x) | µ̂(x) ∼ N (R(R+ (τ2/n)In)−1µ̂(x), R−R(R+ (τ2/n)In)−1R),

where R is the n× n matrix such that its (i, j)-th element is r(xi, xj).

Recovers the frequentist shrinkage estimator of [Muandet et al, 2013] as the
posterior mean (with R instead of K).
Allows to account for uncertainty in kernel embeddings in the inference
procedures, e.g. when estimating a witness function for the two-sample test.
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Learning hyperparameters

Kernel k = kθ typically has hyperparameters θ, e.g., bandwidth of the Gaussian
(SE) kernel.
Idea: Integrate out the kernel mean embedding µθ and consider the probability of
our observations {xi}ni=1 given the hyperparameters θ.
Fix a set of points z1, . . . , zm in X ⊂ RD, with m ≥ D.

µ̂θ(z) =
1

n

n∑
i=1

φz(Xi)|µθ ∼ N
(
µθ(z),

τ2

n
Im

)
,

with the mapping φz : RD 7→ Rm, given by

φz(x) := [kθ(x, z1), . . . , kθ(x, zm)] ∈ Rm.

How good this model is depends on how far φz(Xi)|µθ is from N
(
µθ(z), τ2Im

)
.

Similarly to e.g. KPCA, this is essentially a “Gaussian in the feature space”
assumption. Testable using a kernel two-sample test on the RKHS [Kellner & Celisse,

2014].
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Marginal (pseudo)likelihood
Assume

φz(Xi)|µθ ∼ N
(
µθ(z), τ2Im

)
.

and apply change of variable to the mapping x 7→ φz(x), φz : RD 7→ Rm: what
model does this imply on the original space?

X|µθ, θ ∼ N
(
µθ(z), τ2Im

)
× γθ(x), with the Jacobian term

γθ(x) =

(
det
[∑m

l=1
∂kθ(x,zl)
∂x(i)

∂kθ(x,zl)
∂x(j)

]
ij

)1/2

Integrate out the embedding µθ:

p(x1, . . . , xn|θ) =

ˆ
p(x1, . . . , xn|µθ, θ)p(µθ|θ)dµθ

= N
(
φz(x);0,1n1

>
n ⊗Rθ,zz + τ2Imn

) n∏
i=1

γθ(xi).

Computational complexity: using Kronecker structure O(m3 +mn) for the
Gaussian log-likelihood and O(nD3 + nmD2) for the Jacobian term
(Gaussian kernel).
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Marginal (pseudo)likelihood for a challenging two-sample test
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(A) data, epsilon=2
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Figure: Comparing samples from a grid of isotropic Gaussians (black dots) to samples from a grid of
non-isotropic Gaussians (red dots) with a ratio ε of largest to smallest covariance eigenvalues. BKL
marginal log-likelihood is maximised for a lengthscale of 0.85 whereas the median heuristic suggests a
value of 20.
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Summary

A simple Bayesian model on kernel embeddings recovers shrinkage estimators.
Marginal (pseudo)likelihood of observations given the kernel hyperparameters
allows optimization or sampling of hyperparameters as well.
Can discover multiscale properties in the data – where there is a mismatch
between the global scale of the distribution and the scale at which differences
or dependencies are present.
Potentially a drop-in replacement for median heuristic in unsupervised
settings?

D.Sejdinovic (University of Oxford) Learning with Kernel Embeddings 23/03/2016 25 / 25



D.Sejdinovic (University of Oxford) Learning with Kernel Embeddings 23/03/2016 26 / 25


	Preliminaries on Kernel Embeddings
	Testing and Learning on Distributions with Symmetric Noise Invariance
	Bayesian Learning of Embeddings

