Learning with Approximate Kernel Embeddings

Dino Sejdinovic

Department of Statistics University of Oxford

Statistical Learning Workshop, Lancaster, 23/03/2017

D.Sejdinovic (University of Oxford) [Learning with Kernel Embeddings](#page-32-0) 23/03/2016 1 / 25

2 [Testing and Learning on Distributions with Symmetric Noise Invariance](#page-10-0)

¹ [Preliminaries on Kernel Embeddings](#page-2-0)

[Testing and Learning on Distributions with Symmetric Noise Invariance](#page-10-0)

[Bayesian Learning of Embeddings](#page-23-0)

Reproducing Kernel Hilbert Spaces

- RKHS: a Hilbert space of functions on $\mathcal X$ with continuous evaluation $f \mapsto f(x)$, $\forall x \in \mathcal{X}$ (norm convergence implies pointwise convergence).
- Each RKHS corresponds to a positive definite kernel $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, s.t.
	- \bigcirc $\forall x \in \mathcal{X}, k(\cdot, x) \in \mathcal{H}$, and

$$
\mathbf{P} \ \forall x \in \mathcal{X}, \, \forall f \in \mathcal{H}, \ \ \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x).
$$

• RKHS can be constructed as $\mathcal{H}_k = span \{k(\cdot, x) | x \in \mathcal{X}\}\$ and includes functions $f(x) = \sum_{i=1}^{n} \alpha_i k(x, x_i)$ and their pointwise limits.

Kernel Trick and Kernel Mean Trick

- implicit feature map $x \mapsto k(\cdot, x) \in \mathcal{H}_k$ replaces $x \mapsto [\phi_1(x), \ldots, \phi_s(x)] \in \mathbb{R}^s$
- $\langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}_k} = k(x, y)$ inner products readily available
	- nonlinear decision boundaries, nonlinear regression functions, learning on non-Euclidean/structured data

[Cortes & Vapnik, 1995; Schölkopf & Smola, 2001]

Kernel Trick and Kernel Mean Trick

- implicit feature map $x \mapsto k(\cdot, x) \in \mathcal{H}_k$ replaces $x \mapsto [\phi_1(x), \ldots, \phi_s(x)] \in \mathbb{R}^s$
- $\langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}_k} = k(x, y)$ inner products readily available
	- nonlinear decision boundaries, nonlinear regression functions, learning on non-Euclidean/structured data
- RKHS embedding: implicit feature mean
	- [Smola et al, 2007; Sriperumbudur et al, 2010] $P \mapsto \mu_k(P) = \mathbb{E}_{X \sim P} k(\cdot, X) \in \mathcal{H}_k$ replaces $P \mapsto [\mathbb{E} \phi_1(X), \dots, \mathbb{E} \phi_s(X)] \in \mathbb{R}^s$
- $\langle \mu_k(P), \mu_k(Q) \rangle_{\mathcal{H}_k} = \mathbb{E}_{X \sim P, Y \sim Q} k(X, Y)$ inner products easy to estimate
	- nonparametric two-sample, independence, conditional independence, interaction testing, learning on distributions

[Cortes & Vapnik, 1995; Schölkopf & Smola, 2001]

[Gretton et al, 2005; Gretton et al, 2006; Fukumizu et al, 2007; DS et al, 2013; Muandet et al, 2012; Szabo et al, 2015]

Maximum Mean Discrepancy

• Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007] between P and Q :

Maximum Mean Discrepancy

• Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007] between P and Q :

 $\textsf{MMD}_k(P,Q) = {\|\mu_k(P) - \mu_k(Q)\|}_{\mathcal{H}_k} = \sup_{f \in \mathcal{H}_k, \|f\| = 0}$ $\sup_{f \in \mathcal{H}_k: \|f\|_{\mathcal{H}_k} \leq 1} |\mathbb{E}f(X) - \mathbb{E}f(Y)|$

- Characteristic kernels: $\text{MMD}_k(P,Q) = 0$ iff $P = Q$.
	- Gaussian RBF $\exp(-\frac{1}{2\sigma^2}||x-x'||_2^2)$, Matérn family, inverse multiquadrics.
- For characteristic kernels on LCH X , MMD metrizes weak* topology on probability measures [Sriperumbudur, 2010],

$$
\mathsf{MMD}_{k}(P_{n}, P) \to 0 \Leftrightarrow P_{n} \leadsto P.
$$

Some uses of MMD

within-sample average similarity –

Figure by Arthur Gretton

MMD has been applied to:

- two-sample tests and independence tests [Gretton et al, 2009, Gretton et al, 2012]
- **•** model criticism and interpretability [Lloyd & Ghahramani, 2015; Kim, Khanna & Koyejo, 2016]
- **•** analysis of Bayesian quadrature [Briol et al, 2015+]
- **ABC summary statistics** [Park, Jitkrittum & DS, 2015]
- **•** summarising streaming data [Paige, DS & Wood, 2016]
- traversal of manifolds learned by convolutional nets [Gardner et al, 2015]
- **training deep generative models [Dziugaite,** Roy & Ghahramani, 2015; Sutherland et al, 2017]

 $\mathsf{MMD}_k^2(P,Q) = \mathbb{E}_{X,X^I}$ i.i.d. ${}_P k(X,X') + \mathbb{E}_{Y,Y^I}$ i.i.d. ${}_Q k(Y,Y') - 2 \mathbb{E}_{X \sim P, Y \sim Q} k(X,Y).$

Kernel dependence measures

$HSIC^{2}(X, Y; \kappa) = ||\mu_{\kappa}(P_{XY}) - \mu_{\kappa}(P_{X}P_{Y})||_{\mathcal{H}_{\kappa}}^{2}$

- Hilbert-Schmidt norm of the feature-space cross-covariance [Gretton et al, 2009]
- **•** dependence witness is a smooth function in the RKHS \mathcal{H}_{κ} of functions on $\mathcal{X} \times \mathcal{Y}$

• Independence testing framework that generalises Distance Covariance (dCov) of [Szekely et al, 2007]: HSIC with Brownian motion covariance kernels [DS et al, 2013]

² [Testing and Learning on Distributions with Symmetric Noise Invariance](#page-10-0)

[Bayesian Learning of Embeddings](#page-23-0)

All possible differences between generating processes?

- differences discovered by an MMD two-sample test can be due to different types of measurement noise or data collection artefacts
	- With a large sample-size, uncovers potentially irrelevant sources of variability: slightly different calibration of the data collecting equipment, different numerical precision, different conventions of dealing with edge-cases
- Learning on distributions: each label y_i in supervised learning is associated to a whole bag of observations $B_i = \{X_{ij}\}_{j=1}^{N_i}$ – assumed to come from a probability distribution P_i
	- Each bag of observations could be impaired by a different measurement noise process. Distributional covariate shift: different measurement noise on test bags?
- Both problems require encoding the distribution with a representation invariant to symmetric noise.

Testing and Learning on Distributions with Symmetric Noise Invariance. Ho Chung Leon Law, Christopher Yau, DS. <http://arxiv.org/abs/1703.07596>

Random Fourier features: Inverse Kernel Trick

Bochner's representation: Assume that k is a positive definite <mark>translation-invariant</mark> kernel on \mathbb{R}^p . Then k can be written as

$$
k(x,y) = \int_{\mathbb{R}^p} \exp(i\omega^\top (x-y)) d\Lambda(\omega)
$$

= $2 \int_{\mathbb{R}^p} {\cos (\omega^\top x) \cos (\omega^\top y) + \sin (\omega^\top x) \sin (\omega^\top y)} d\Lambda(\omega)$

for some positive measure (w.l.o.g. a probability distribution) Λ .

Sample m frequencies $\Omega = \left\{\omega_j \right\}_{j=1}^m \sim \Lambda$ and use a Monte Carlo estimator of the kernel function instead [Rahimi & Recht, 2007]:

$$
\hat{k}(x, y) = \frac{2}{m} \sum_{j=1}^{m} \{ \cos (\omega_j^\top x) \cos (\omega_j^\top y) + \sin (\omega_j^\top x) \sin (\omega_j^\top y) \}
$$

= $\langle \xi_{\Omega}(x), \xi_{\Omega}(y) \rangle_{\mathbb{R}^{2m}},$

with an explicit set of features $\xi_\Omega\colon x\mapsto \sqrt{\frac{2}{m}}\left[\cos\left(\omega_1^\top x\right),\sin\left(\omega_1^\top x\right),\ldots\right]^\top$. \bullet How fast does m need to grow with n? Can be sublinear for regression [Bach, 2015].

D.Sejdinovic (University of Oxford) [Learning with Kernel Embeddings](#page-0-0) 23/03/2016 8/25

Approximate Mean Embeddings and Characteristic Functions

If k is translation-invariant, MMD becomes the weighted L_2 -distance between the characteristic functions of P and Q [Sriperumbudur, 2010].

$$
\|\mu_P - \mu_Q\|_{\mathcal{H}_k}^2 = \int_{\mathbb{R}^d} |\varphi_P(\omega) - \varphi_Q(\omega)|^2 d\Lambda(\omega),
$$

Approximate mean embedding using random Fourier features is simply the evaluation (real and complex part stacked together) of the characteristic function at the frequencies $\left\{\omega_j\right\}_{j=1}^m \sim \Lambda$:

$$
\begin{array}{rcl}\n\Phi(P) & = & \mathbb{E}_{X \sim P} \xi_{\Omega}(X) \\
& = & \sqrt{\frac{2}{m}} \mathbb{E}_{X \sim P} \left[\cos \left(\omega_1^\top x \right), \sin \left(\omega_1^\top x \right), \dots, \cos \left(\omega_m^\top x \right), \sin \left(\omega_m^\top x \right) \right]^\top\n\end{array}
$$

Adopting similar ides from nonparametric deconvolution of [Delaigle and Hall, 2016].

- define a symmetric positive definite (SPD) noise component to be any random vector E on \mathbb{R}^d with a positive characteristic function, $\varphi_E(\omega) = \mathbb{E}_{X \sim E} \left[\exp(i\omega^\top E) \right] > 0, \, \forall \omega \in \mathbb{R}^d$ (but E is not a.s. $0)$
	- symmetric about zero, i.e. E and $-E$ have the same distribution
	- if E has a density, it must be a positive definite function
	- spherical zero-mean Gaussian distribution, as well as multivariate Laplace, Cauchy or Student's t (but not uniform).
- define an (SPD-)*decomposable* random vector X if its characteristic function can be written as $\varphi_X = \varphi_{X_0} \varphi_E$, with E SPD noise component.
- Assume that only the indecomposable components of distributions are of interest.

Phase Discrepancy and Phase Features

[Delaigle and Hall, 2016] construct density estimators for nonparametric deconvolution, i.e. estimate density f_0 of X_0 with observations $X_i \sim X_0 + E$. E has unknown SPD distribution. Matching phase functions:

$$
\rho_X(\omega) = \frac{\varphi_X(\omega)}{|\varphi_X(\omega)|} = \exp(i\tau_X(\omega))
$$

Phase function is *invariant to SPD noise* as it only changes the amplitude of the characteristic function.

We are not interested in density estimation but in measuring differences up to SPD noise. In analogy to MMD, define phase discrepancy:

$$
\mathsf{PhD}(X,Y) = \int_{\mathbb{R}^d} |\rho_X(\omega) - \rho_Y(\omega)|^2 d\Lambda(\omega)
$$

for some spectral measure Λ .

Construct distribution features by simply normalising approximate mean embeddings:

$$
\Psi(P_X) = \sqrt{\frac{1}{m}} \begin{bmatrix} \mathbb{E}\xi_{\omega_1}(X) & \dots & \mathbb{E}\xi_{\omega_m}(X) \\ \overline{\|\mathbb{E}\xi_{\omega_1}(X)\|} & \dots & \overline{\|\mathbb{E}\xi_{\omega_m}(X)\|} \end{bmatrix}^{\top}
$$
\n
$$
\text{where } \xi_{\omega_j}(x) = \begin{bmatrix} \cos(\omega_j^{\top} x) & \sin(\omega_j^{\top} x) \end{bmatrix}.
$$
\nD.5cjallowic (University of Oxford)

\nLearning with Kernel Embeddings

\n23/03/2016

\n24.17

Phase and Indecomposability

Is phase discrepancy a metric on indecomposable random variables?

Phase and Indecomposability

Is phase discrepancy a metric on indecomposable random variables? No

Figure: Example of two indecomposable distributions which have the same phase function. Left: densities. Right: characteristic functions.

$$
f_X(x) = \frac{1}{\sqrt{2\pi}} x^2 \exp(-x^2/2), \quad f_Y(x) = \frac{1}{2}|x| \exp(-|x|).
$$

Learning Phase Features

- Given a supervised signal, we can optimise a set of frequencies $\{w_i\}_{i=1}^m$ that will give us a useful discriminative representation. In other words, we are no longer focusing on a specific translation-invariant kernel k (specific Λ), but are learning Fourier/phase features.
- A neural network with coupled cos/sin activation functions, mean pooling and normalisation.
- Straightforward implementation in Tensorflow (code: [https://github.com/hcllaw/](https://github.com/hcllaw/Fourier-Phase-Neural-Network) [Fourier-Phase-Neural-Network](https://github.com/hcllaw/Fourier-Phase-Neural-Network))

Synthetic Example

$$
\theta \sim \Gamma(\alpha, \beta),
$$

\n
$$
Z \sim U[0, \sigma],
$$

\n
$$
\epsilon | Z \sim \mathcal{N}(0, Z),
$$

\n
$$
\{X_i\} | \theta, \epsilon \stackrel{i.i.d.}{\sim} \frac{\Gamma(\theta/2, 1/2)}{\sqrt{2\theta}} + \epsilon,
$$

- Goal: Learn a mapping $\{X_i\} \mapsto \theta$
- Can be used for semi-automatic ABC [Fearnhead & Prangle, 2012] with kernel distribution regression for summary statistics [Mitrovic, DS & Teh, 2016].

Figure: MSE of θ , using the Fourier and phase neural network averaged over 100 runs. Here noise σ is varied between 0 and 3.5 , and the 5^{th} and the 95^{th} percentile is shown.

Aerosol Dataset with Covariate Shift

- **Aerosol MISR1 dataset [Wang et]** al, 2012; Szabo et al, 2015]
- Aerosol Optical Depth (AOD) multiple-instance learning problem with 800 bags, each containing 100 randomly selected 16-dim multispectral pixels (satellite imaging) within 20km radius of AOD sensor.
- The label y_i provided by the ground AOD sensors.
- The test data is impaired by additive SPD noise components.

Figure: RMSE on the test set, corrupted by various levels of noise, using the Fourier and phase neural network and GKKR averaged over 100 runs. Here noise-to-signal ratio σ is varied between 0 and 3.0 , and the 5^{th} and the 95^{th} percentile is shown.

Can Fourier features learn invariance?

- Discriminative frequencies learned on the "noiseless" training data correspond to Fourier features that are nearly normalised (i.e. they are close to unit norm).
- **o** This means that the Fourier NN has learned to be approximately invariant based on training data, indicating that Aerosol data potentially has irrelevant SPD noise components.

Figure: Histograms for the distribution of the modulus of Fourier features over each frequency w for the Aerosol data (test set). Top Green: Random Fourier Features w (with the optimised kernel bandwidth) Bottom Blue: Learned Fourier features w from the Fourier Neural Network

- When measuring nonparametric distances between distributions, can we disentangle the differences in noise from the differences in the signal?
- We considered two different ways to encode invariances to symmetric noise:
	- MMD for asymmetry (not discussed in the talk) in paired sample differences, $MMD(X - Y, Y - X)$, which can be used to construct a two-sample test up to symmetric noise.
	- weighted distance between the empirical phase functions for learning algorithms on distribution inputs which are robust to measurement noise and covariate shift.

[Preliminaries on Kernel Embeddings](#page-2-0)

[Testing and Learning on Distributions with Symmetric Noise Invariance](#page-10-0)

³ [Bayesian Learning of Embeddings](#page-23-0)

Bayesian Model for Embeddings

- In MMD, HSIC and other applications of embeddings, we estimate $\mu = \int k(\cdot, x) \mathsf{P}(dx)$ with its empirical mean $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} k(\cdot, x_i)$.
- Empirical mean over an infinite-dimensional case? Due to Stein's phenomenon, shrinkage estimators are better behaved [Muandet et al, 2013] and are reported to improve performance in kernel PCA and in testing power [Ramdas & Wehbe, 2015].
- Can we formulate a Bayesian inference procedure for kernel embeddings?
- Two challenges:
	- How to construct a valid prior over the RKHS?
	- What is the likelihood of our observations given the kernel embedding?

Bayesian Learning of Kernel Embeddings. UAI 2016. Seth Flaxman, DS, John Cunningham, and Sarah Filippi. <http://arxiv.org/abs/1603.02160>

Priors on RKHS

Since sample paths of a GP with kernel k lie outside RKHS \mathcal{H}_k with probability 1 Kallianpur's 0-1 law, [Kallianpur, 1970; Wahba, 1990], use

$$
r(x, x') = \int k(x, u)k(u, x')\nu(du)
$$

in which case $f \in \mathcal{H}_k$ with probability 1 by nuclear dominance theory [Lukic and Beder, 2001; Pillai et al, 2007].

For some simple cases, kernel r analytically available, e.g. for a Gaussian kernel $k(x, x') = \exp \left(-\frac{||x - x'||^2}{2\theta^2}\right)$ $\frac{-x'\parallel ^2}{2\theta ^2} \Big)$ and $\nu(du) \propto \exp \left(- \frac{\|u\|^2}{2\eta^2} \right)$ $rac{|u\|^2}{2\eta^2}\bigg)\,du$: $r(x, x') \propto \exp \left(-\frac{\|x - x'\|^2}{4\sigma^2}\right)$ $\frac{(-x')^2}{4\theta^2} - \frac{\left\|(x+x')/2\right\|^2}{4\theta^2 + \eta^2}$ $4\theta^2+\eta^2$ \setminus .

Has a nonstationary component, but similar to another (smoother) Gaussian √ kernel with bandwidth $\theta\surd 2$ when η is large.

We need a likelihood linking the kernel mean embedding μ to the observations ${x_i}_{i=1}^n$ Consider evaluating $\hat{\mu}$ induced by ${x_i}_{i=1}^n$ at some $x \in \mathcal{X}$ - we link $\hat{\mu}(x)$
to $\mu(x)$ using a Gaussian distribution with variance τ^2/n : to $\mu(x)$ using a Gaussian distribution with variance τ^2/n :

 $p(\widehat{\mu}(x)|\mu(x)) = \mathcal{N}(\widehat{\mu}(x); \mu(x), \tau^2/n), \quad x \in \mathcal{X}.$

Obviously wrong - both μ and $\hat{\mu}$ are smooth functions. In general covariance will depend both on k and P .

Standard conjugacy results give:

 $\mu(\mathbf{x}) \mid \widehat{\mu}(\mathbf{x}) \sim \mathcal{N}(R(R + (\tau^2/n)I_n)^{-1}\widehat{\mu}(\mathbf{x}), R - R(R + (\tau^2/n)I_n)^{-1}R),$

where R is the $n\times n$ matrix such that its (i,j) -th element is $r(x_i,x_j).$

- \bullet Recovers the frequentist shrinkage estimator of $[Mu]$ andet et al, 2013] as the posterior mean (with R instead of K).
- Allows to account for uncertainty in kernel embeddings in the inference procedures, e.g. when estimating a witness function for the two-sample test.

Learning hyperparameters

Kernel $k = k_{\theta}$ typically has hyperparameters θ , e.g., bandwidth of the Gaussian (SE) kernel.

Idea: Integrate out the kernel mean embedding μ_{θ} and consider the probability of our observations $\{x_i\}_{i=1}^n$ given the hyperparameters $\theta.$

Fix a set of points z_1, \ldots, z_m in $\mathcal{X} \subset \mathbb{R}^D$, with $m \geq D$.

$$
\widehat{\mu_{\theta}}(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} \phi_{\mathbf{z}}(X_i) | \mu_{\theta} \sim \mathcal{N}\left(\mu_{\theta}(\mathbf{z}), \frac{\tau^2}{n} I_m\right),
$$

with the mapping $\phi_{\mathbf{z}}: \mathbb{R}^D \mapsto \mathbb{R}^m$, given by

$$
\phi_{\mathbf{z}}(x) := [k_{\theta}(x, z_1), \dots, k_{\theta}(x, z_m)] \in \mathbb{R}^m.
$$

How good this model is depends on how far $\phi_{\bf z}(X_i)|\mu_\theta$ is from $\mathcal{N}\left(\mu_\theta({\bf z}),\tau^2 I_m\right)$. Similarly to e.g. KPCA, this is essentially a "Gaussian in the feature space" assumption. Testable using a kernel two-sample test on the RKHS [Kellner & Celisse, 2014].

Marginal (pseudo)likelihood

Assume

$$
\phi_{\mathbf{z}}(X_i)|\mu_{\theta} \sim \mathcal{N}\left(\mu_{\theta}(\mathbf{z}), \tau^2 I_m\right).
$$

and apply change of variable to the mapping $x\mapsto \phi_{\bf z}(x)$, $\phi_{\bf z}:\mathbb{R}^D\mapsto \mathbb{R}^m$: what model does this imply on the original space?

- $X|\mu_\theta, \theta \sim \mathcal{N}\left(\mu_\theta(\mathbf{z}), \tau^2 I_m\right) \times \gamma_\theta(x)$, with the Jacobian term $\gamma_\theta(x) = \bigg(\det\left[\sum_{l=1}^m \frac{\partial k_\theta(x,z_l)}{\partial x^{(i)}}\right]$ $\partial x^{(i)}$ $\partial k_{\theta}(x,z_l)$ $\left.\frac{\partial x_\theta(x,z_l)}{\partial x^{(j)}}\right]_{ij}\bigg)^{1/2}$
- Integrate out the embedding μ_{θ} :

$$
p(x_1,...,x_n|\theta) = \int p(x_1,...,x_n|\mu_{\theta},\theta)p(\mu_{\theta}|\theta)d\mu_{\theta}
$$

= $\mathcal{N}(\phi_{\mathbf{z}}(\mathbf{x});\mathbf{0},\mathbf{1}_n\mathbf{1}_n^\top \otimes R_{\theta,\mathbf{z}\mathbf{z}} + \tau^2 I_{mn})\prod_{i=1}^n \gamma_{\theta}(x_i).$

• Computational complexity: using Kronecker structure $\mathcal{O}(m^3 + mn)$ for the Gaussian log-likelihood and $\mathcal{O}(nD^3 + nmD^2)$ for the Jacobian term (Gaussian kernel).

Marginal (pseudo)likelihood for a challenging two-sample test

Figure: Comparing samples from a grid of isotropic Gaussians (black dots) to samples from a grid of non-isotropic Gaussians (red dots) with a ratio ϵ of largest to smallest covariance eigenvalues. BKL marginal log-likelihood is maximised for a lengthscale of 0.85 whereas the median heuristic suggests a value of 20.

- A simple Bayesian model on kernel embeddings recovers shrinkage estimators.
- Marginal (pseudo)likelihood of observations given the kernel hyperparameters allows optimization or sampling of hyperparameters as well.
- Can discover multiscale properties in the data where there is a mismatch between the global scale of the distribution and the scale at which differences or dependencies are present.
- Potentially a drop-in replacement for median heuristic in unsupervised settings?

