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Reproducing Kernel Hilbert Space (RKHS)

De�nition ([Aronszajn, 1950; Berlinet & Thomas-Agnan, 2004])

Let X be a non-empty set and H be a Hilbert space of real-valued
functions de�ned on X . A function k : X × X → R is called a reproducing

kernel of H if:

1 ∀x ∈ X , k(·, x) ∈ H, and
2 ∀x ∈ X , ∀f ∈ H, 〈f, k(·, x)〉H = f(x).

If H has a reproducing kernel, it is said to be a reproducing kernel Hilbert

space.

In particular, for any x, y ∈ X ,
k(x, y) = 〈k (·, y) , k (·, x)〉H = 〈k (·, x) , k (·, y)〉H. Thus H servers as a
canonical feature space with feature map x 7→ k(·, x).

Equivalently, all evaluation functionals f 7→ f(x) are continuous (norm
convergence implies pointwise convergence).
Moore-Aronszajn Theorem: every positive semide�nite
k : X × X → R is a reproducing kernel and has a unique RKHS Hk.
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Moore-Aronszajn Theorem

RKHS can be constructed as Hk = span {k(·, x) |x ∈ X} and
includes functions of the form

f(x) =

n∑
i=1

αik(x, xi)

and their pointwise limits.
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Kernel Trick and Kernel Mean Trick

implicit feature map x 7→ k(·, x) ∈ Hk
replaces x 7→ [ϕ1(x), . . . , ϕs(x)] ∈ Rs

〈k(·, x), k(·, y)〉Hk
= k(x, y)

inner products readily available

• nonlinear decision boundaries, nonlinear

regression functions, learning on

non-Euclidean/structured data

[Cortes & Vapnik, 1995;

Schölkopf & Smola, 2001]

RKHS embedding: implicit feature mean
[Smola et al, 2007; Sriperumbudur et al, 2010]

P 7→ µk(P ) = EX∼Pk(·, X) ∈ Hk
replaces P 7→ [Eϕ1(X), . . . ,Eϕs(X)] ∈ Rs

〈µk(P ), µk(Q)〉Hk = EX∼P,Y∼Qk(X,Y )
inner products easy to estimate

• nonparametric two-sample, independence,

conditional independence, interaction testing,

learning on distributions
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〈µk(P ), µk(Q)〉Hk = EX∼P,Y∼Qk(X,Y )
inner products easy to estimate

• nonparametric two-sample, independence,

conditional independence, interaction testing,

learning on distributions

[Gretton et al, 2005; Gretton et

al, 2006; Fukumizu et al, 2007;

DS et al, 2013; Muandet et al,

2012; Szabo et al, 2015]
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Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al,

2007] between P and Q:
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MMDk(P ,Q) = ‖µk(P )− µk(Q)‖Hk = sup
f∈Hk: ‖f‖Hk≤1

|Ef(X)− Ef(Y )|

Characteristic kernels: MMDk(P ,Q) = 0 i� P = Q.
• Gaussian RBF exp(− 1

2σ2 ‖x− x′‖22), Matérn family, inverse
multiquadrics.

For characteristic kernels on LCH X , MMD metrizes weak* topology
on probability measures [Sriperumbudur,2010],

MMDk (Pn, P )→ 0⇔ Pn  P.
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Some uses of MMD

within-sample average similarity
�

between-sample average similarity

k(dogi, fishj)

k(fishi, fishj)

k(dogi, dogj)

k(fishj , dogi)

Figure by Arthur Gretton

MMD has been applied to:

independence tests [Gretton et al, 2009]

two-sample tests [Gretton et al, 2012]

training generative neural networks
for image data [Dziugaite, Roy &

Ghahramani, 2015]

traversal of manifolds learned by
convolutional nets [Gardner et al, 2015]

model criticism in Automatic
Statistician [Lloyd & Ghahramani, 2015]

similarity measure between
observed and simulated data in
ABC [Park, Jitkrittum & DS, 2015]

MMD2
k (P ,Q) = E

X,X′i.i.d.∼ P
k(X,X ′)+E

Y ,Y ′i.i.d.∼ Q
k(Y , Y ′)−2EX∼P,Y∼Qk(X,Y ).
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Kernel dependence measures

X

Y

Dependence witness and sample
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HSIC2(X,Y ;κ) =

‖µκ(PXY )− µκ(PXPY )‖2Hκ
dependence witness is a smooth

function in the RKHS Hκ of

functions on X × Y
k( , )!" #" !"l( , )#"

k( , )× l( , )!" #" !" #"

κ( , ) =!" #"!" #"

Independence testing framework
that generalises Distance
Covariance (dCov): HSIC with
Brownian motion covariance
kernels
[Szekely et al, 2007; DS et al, 2013]
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Kernel dependence measures (2)

k( , ) → K =

`(
The Sealyham Terrier is the
couch potato of the terrier
world - he loves to lay
around and take naps...

,Cairn Terriers are independent
little bundles of energy. They
are alert and active with the
trademark terrier temperament...

) → L =

Hilbert-Schmidt Independence Criterion (HSIC): similarity between the

kernel matrices
〈
K̃, L̃

〉
= Tr

(
K̃L̃

)
, where K̃ = HKH, and

H = I− 1
n11

> is the centering matrix.

[Gretton et al, 2008; Fukumizu et al, 2008; Song et al, 2012]
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K2-ABC: Approximate Bayesian Computation with Kernel Embeddings.
AISTATS 2016

Mijung Park, Wittawat Jitkrittum, and DS.
http://arxiv.org/abs/1502.02558

Code: https://github.com/wittawatj/k2abc
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Motivating example: ABC for modelling ecological dynamics

Given: a time series Y = (Y1, . . . , YT ) of population sizes of a blow�y.

Model: A dynamical system for blow�y population (a discretised
ODE) [Nicholson, 1954; Gurney et al, 1980; Wood, 2010; Meeds & Welling, 2014]

Yt+1 = PYt−τ exp

(
−Yt−τ

Y0

)
et + Yt exp(−δεt),

where et ∼ Gamma
(

1
σ2
P
, σ2
P

)
, εt ∼ Gamma

(
1
σ2
d
, σ2
d

)
.

Parameter vector: θ = {P, Y0, σd, σp, τ, δ}.
B. from prior

1e4

#
 f
li
e
s

Goal: For a prior p(θ), sample from p(θ|Y).
• Cannot evaluate p(Y|θ). But, can sample from p(·|θ).
• For X = (X1, . . . , XT ) ∼ p(·|θ), how to measure distance ρ(X,Y)?
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ABC

Observe a dataset Y,

p(θ|Y) ∝ p(θ)p(Y|θ)

= p(θ)

ˆ
p(X|θ) dδY(X)

≈ p(θ)
ˆ
p(X|θ)κε(X,Y) dX,

where κε(X,Y) de�nes similarity of X and Y.

(ABC likelihood) pε(Y|θ) :=

ˆ
p(X|θ)κε(X,Y) dX.

Simplest choices for κε: 1(ρ(X,Y) < ε) or exp(−ρ2(X,Y)/ε)

• ρ : a distance function between observed and simulated data
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Data Similarity via Summary Statistics

Distance ρ is typically de�ned via summary statistics

ρ(X,Y) = ‖s(X)− s(Y)‖2.

How to select the summary statistics s(·)? Unless s(·) is su�cient,
targets the incorrect (partial) posterior p(θ|s(Y)) rather than p(θ|Y).

Hard to quantify additional bias.

• Adding more summary statistics decreases �information loss�:
p(θ|s(Y)) ≈ p(θ|Y)

• ρ computed on a higher dimensional space - without appropriate
calibration of distances therein, leads to a higher rejection rate so need
to increase ε: pε(θ|s(Y)) 6≈ p(θ|s(Y))

Contribution: Use a nonparametric distance (MMD) between the
empirical measures of datasets X and Y).

• No need to design s(·).
• Rejection rate does not blow up since MMD penalises the higher order
moments via Mercer expansion.
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Embeddings via Mercer Expansion

Mercer Expansion

For a compact metric space X , and a continous kernel k,

k(x, y) =

∞∑
r=1

λrer(x)er(y),

with {λr, er}r≥1 eigenvalue, eigenfunction pairs of f 7→
´
f(x)k(·, x)dP (x)

on L2(P ), with λr → 0, as r →∞. er are typically functions of increasing
�complexity�, i.e., Hermite polynomials of increasing degree.

Hk 3 k(·, x) ↔
{√

λrer(x)
}
∈ `2

Hk 3 µk(P ) ↔
{√

λrEer(X)
}
∈ `2∥∥∥µk(P̂ )− µk(Q̂)

∥∥∥2
Hk

=

∞∑
r=1

λr

(
1

nx

nx∑
t=1

er(Xt)−
1

ny

ny∑
t=1

er(Yt)

)2
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K2-ABC (proposed method)

Input: observed data Y, threshold ε

Output: Empirical posterior
∑M

i=1wiδθi

1: for i = 1, . . . ,M do

2: Sample θi ∼ p(θ)
3: Sample pseudo dataset Xi ∼ p(·|θi)

4: w̃i = κε(Xi,Y) = exp

(
− M̂MD

2
(Xi,Y)
ε

)
5: end for

6: wi = w̃i/
∑M

j=1 w̃j for i = 1, . . . ,M

Two kernels: k (in MMD) and κε, hence �K2�
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Blow Fly Population Modelling
Number of blow �ies over time

Yt+1 = PYt−τ exp

(
−Yt−τ

Y0

)
et + Yt exp(−δεt)

et ∼ Gam
(

1
σ2
P
, σ2P

)
and εt ∼ Gam

(
1
σ2
d
, σ2d

)
.

Want θ := {P, Y0, σd, σp, τ, δ}.

0 180

actual observation

0

1e4

K2-ABC

SL-ABC

K-ABC
0

1e4

0

1e4

# 
fli

es

time

Simulated trajectories with inferred
posterior mean of θ

• Observed sample of size 180.
• Other methods use handcrafted
10-dimensional summary statistics
s(·) from [Meeds & Welling, 2014]:
quantiles of marginals, �rst-order
di�erences, maximal peaks, etc.
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Blow�y dataset

0

2

4

6

8

K2 SL K-ABCSA-custom IS SAQ

Let θ̃ be the posterior mean.

Simulate X ∼ p(·|θ̃).
s = s(X) and s∗ = s(Y).

Improved mean squared error on
s, even though SL-ABC,
SA-custom explicitly operate on
s while K2-ABC does not.

K2 K2-rf K2-lin SL

1

2

3

0

Computation of M̂MD
2
(X,Y)

costs O(n2).

Linear-time unbiased estimators
of MMD2 or random feature
expansions reduce the cost to
O(n).
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Summary: K2-ABC

A dissimilarity criterion for ABC based on MMD between empirical
distributions of observed and simulated data

No �information loss� due to insu�cient statistics.

Simple and e�ective when parameters model marginal distribution of
observations (variants for conditional distributions readily available).
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Right... But how do you choose your kernel?

Frequentists cross-validate,
Bayesians optimize marginal
likelihood...

But with kernel embeddings,
neither is typically available (e.g.
hypothesis testing or ABC).

Median heuristic: bandwidth
parameter
θ = median(‖xi − xj‖2) for e.g.
Gaussian kernel
k(x, x′) = exp(−‖x−x

′‖2
2θ2

)

Bayesian Learning of Kernel Embeddings.
UAI 2016.

Seth Flaxman, DS, John Cunningham, and Sarah Filippi.
http://arxiv.org/abs/1603.02160
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Bayesian Model for Embeddings

In MMD and HSIC, we estimate embedding µ =
´
k(·, x)P(dx) with

its empirical mean µ̂ = 1
n

∑n
i=1 k(·, xi).

Empirical mean over an in�nite-dimensional case? Due to Stein's
phenomenon, shrinkage estimators are better behaved [Muandet et al,

2013] and are reported to improve performance in kernel PCA and in
testing power [Ramdas & Wehbe, 2015].

Can we formulate a Bayesian inference procedure for kernel
embeddings?

Two challenges:
• How to construct a valid prior over the RKHS?
• What is the likelihood of our observations given the kernel embedding?
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Priors on RKHS

A classical result, Kallianpur's 0-1 law, [Kallianpur, 1970; Wahba, 1990]: sample
paths of a GP with kernel k lie outside RKHS Hk with probability 1.

Recall Mercer's expansion k(x, x′) =
∑∞

i=1 λiei(x)ei(x
′), for the

eigenvalue-eigenfunction pairs {(λi, ei)}ni=1, which gives representation

f ∼ GP(0, k) : f =

∞∑
i=1

√
λiZiei, {Zi}∞i=1

i.i.d.∼ N (0, 1).

But then ‖f‖2Hk
=
∑∞

i=1
λiZ

2
i

λi
=
∑∞

i=1 Z
2
i =∞ so f 6∈ Hk a.s.

However, one can use a prior f ∼ GP(0, r) with

r(x, x′) =

ˆ
k(x, u)k(u, x′)ν(du)

for any �nite measure ν in which case f ∈ Hk with probability 1: nuclear
dominance theory established by [Lukic and Beder, 2001; Pillai et al, 2007].
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Priors on RKHS

For some simple cases, kernel r analytically available, e.g. for a Gaussian

kernel k(x, x′) = exp
(
−‖x−x

′‖2
2θ2

)
and ν(du) ∝ exp

(
−‖u‖

2

2η2

)
du:

r(x, x′) ∝ exp

(
−‖x− x

′‖2

4θ2
− ‖(x+ x′)/2‖2

4θ2 + η2

)
.

Has a nonstationary component, but similar to another (smoother)
Gaussian kernel with bandwidth θ

√
2 when η is large.
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Likelihood

We need a likelihood linking the kernel mean embedding µ to the
observations {xi}ni=1 Consider evaluating µ̂ induced by {xi}ni=1 at some
x ∈ X - we link µ̂(x) to µ(x) using a Gaussian distribution with variance
τ2/n:

p(µ̂(x)|µ(x)) = N (µ̂(x);µ(x), τ2/n), x ∈ X .

Motivation by the Central Limit Theorem:

√
n(µ̂(x)− µ(x))

D→ N (0, varX∼P[k(X,x)]).

A heteroscedastic noise model is certainly more appropriate, but let's keep
this (obviously wrong) model for now.
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Posterior of the embedding

Standard conjugacy results give:

µ(x) | µ̂(x) ∼ N (R(R+ (τ2/n)In)−1µ̂(x), R−R(R+ (τ2/n)In)−1R),

where R is the n× n matrix such that its (i, j)-th element is r(xi, xj).

Recovers the frequentist shrinkage estimator of [Muandet et al, 2013] as
the posterior mean (with R instead of K).

Allows to account for uncertainty in kernel embeddings in the
inference procedures.
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Learning hyperparameters

Kernel k = kθ typically has hyperparameters θ, e.g., bandwidth of the
Gaussian (SE) kernel.

Idea: Integrate out the kernel mean embedding µθ and consider the
probability of our observations {xi}ni=1 given the hyperparameters θ.

Fix a set of points z1, . . . , zm in X ⊂ RD, with m ≥ D.

µ̂θ(z) =
1

n

n∑
i=1

φz(Xi)|µθ ∼ N
(
µθ(z),

τ2

n
Im

)
,

with the mapping φz : RD 7→ Rm, given by

φz(x) := [kθ(x, z1), . . . , kθ(x, zm)] ∈ Rm.

How good this model is depends on how far φz(Xi)|µθ is from
N
(
µθ(z), τ2Im

)
. Similarly to e.g. KPCA, this is essentially a �Gaussian in

the feature space� assumption. Testable using a kernel two-sample test on
the RKHS [Kellner & Celisse, 2014].
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Marginal (pseudo)likelihood

Assume
φz(Xi)|µθ ∼ N

(
µθ(z), τ2Im

)
.

and apply change of variable to the mapping x 7→ φz(x), φz : RD 7→ Rm:
what model does this imply on the original space?

p(x1, . . . , xn|θ) =

ˆ
p(x1, . . . , xn|µθ, θ)p(µθ|θ)dµθ

=

ˆ
N
(
φz(x);

[
µθ(z)> · · ·µθ(z)>

]>
, τ2Imn

)[ n∏
i=1

γθ(xi)

]
p(µθ|θ)dµθ

= N
(
φz(x);0,1n1

>
n ⊗Rθ,zz + τ2Imn

) n∏
i=1

γθ(xi).

Jacobian term: γθ(x) =

(
det
[∑m

l=1
∂kθ(x,zl)
∂x(i)

∂kθ(x,zl)
∂x(j)

]
ij

)1/2

.

Computational complexity: using Kronecker structure O(m3 +mn) for the
Gaussian log-likelihood and O(nD3 + nmD2) for the Jacobian term
(Gaussian kernel).
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Marginal (pseudo)likelihood for a challenging two-sample test

●
●

●
●

●
●
●

●●●
●

●

●

●

●
●

● ●●●

●
●

●●
●●●

●

●

●●
●

●

●●
●●● ●

● ●

●

●

●

●

●

●

●
●

●
●

●

●● ●

●

●

●●

●●
●

●●
●●

● ●

●
●

●

●

●
●

●
●

●

●
●
●

●
●●●
●●

●●●
● ●●

●
●

●

●
● ●● ●

●
● ●

●

●

●●● ●●

●

●●●●

●

●

●

●●

●

●●

●

●

●

●
● ●

●
●●●

●

●

●
●
● ●

●●●

●

●

●

●
● ●● ●

●
●●● ●●

●
●

●
●

●

●

●●● ●
●

●
●

●

●●●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●●● ●

●●
●

●

●
● ●

●

●

●

●

●
●●

● ●● ●
●

●
●
●

●
●●

●

●

●

●
● ●

●
●

●●
●

●

● ●
●

●

● ●
●

●

●●
●●

●●
●

●
●

● ●
●

●

●● ●
●●

●

●

● ●

●

●
●

●
●

●●

●

●

●

●

●
●

●

●
●●

● ●
●

●
●

●
●
●●

●

●●●

●●

●●

●

●

●●●

●

●●

●
●
●

●●
●●●

●

●

●●
●

●

●

●

●

●
● ● ●

●

●
●

●

●
● ●

●

● ●

●●
●
●

●
●●
●●

●

●

●

● ●●
● ●

●

●

●

●

●●

●
●

●

●
● ●●

●●

● ●●
●

●●● ●
●●

●●
●●
●

●

●

●
●●

●

●
●

● ●

●●

●

●●

●

●
●

●

●
●●

●
●

●

●●

●
●

●●●

●
●

●

●
●

●
●

●
●●

●

●●

●

●●
●

●

●
●

●
●

●

●

●
●

●

●
●

●● ●
●

●

●

●

●

●● ●
●

●

●
●
● ●

●
●

●
●

●

●

● ●

●

●●

●
●●

●
●●

●●
●

●●●●
● ●●●

●●
●

●
●

●
●

●
●●

●●

●
●

●

●

●

●●

●

●
●

●

●●

●

●

●

●● ●
●●

●

●

●●●●●

●

● ●
●

●
●

●

●

●

●
●

● ●

●

●

●

●
●

●●
●●

●●

● ●
●

●
●

● ●

●●
●

●●
●

●
●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●
●

● ●
●

●●
●

● ●
●

●●

●
●

●●

●

●

●
●●

●
●

●
●

●

●

●

●

●
●

●

● ●

●

●
●●
●

●●
●●

●

●

●
●
●●

●●

●●
●

● ●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●
●●

●
●

●

●

●
●●

●
●

●
●

●

●
●

●
● ●

●
●

●●
●

●
●●

●●

●

●

● ●●●●
●●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●
●

●
●

●

● ●

●

●
●●

●

●●●●●
● ●

●

● ●●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●
●●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●●

●

●
●●
●

●
●●

●
●

● ●

●
●

●

●
●

●
●

●
●

●●
●

● ●

●

●●

●

● ●
●

●

●

●

●

● ●

●

●●●
●

●

●

●

●

●

●
●

●
●●

●

●

●
●●●

● ●●

●

● ●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●● ●
●

●
●

●

0 20 40 60

10
30

50

(A) data, epsilon=2
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Figure : Comparing samples from a grid of isotropic Gaussians (black dots) to samples from a
grid of non-isotropic Gaussians (red dots) with a ratio ε of largest to smallest covariance
eigenvalues. BKL marginal log-likelihood is maximised for a lengthscale of 0.85 whereas the
median heuristic suggests a value of 20.
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Summary

A simple Bayesian model on kernel embeddings recovers shrinkage
estimators.

Marginal (pseudo)likelihood of observations given the kernel
hyperparameters allows optimization or sampling of hyperparameters
as well.

Can discover multiscale properties in the data � where there is a
mismatch between the global scale of the distribution and the scale at
which di�erences or dependencies are present.

Potentially a drop-in replacement for median heuristic in unsupervised
settings?
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