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Reproducing Kernel Hilbert Space (RKHS)

Definition ([Aronszajn, 1950; Berlinet & Thomas-Agnan, 2004])

Let X' be a non-empty set and H be a Hilbert space of real-valued
functions defined on X. A function k : X x X — R is called a reproducing
kernel of H. if:

Q@ VrelX, k(,z) € H, and

Q Ve X VfeH, <f7k(7x)>’;-[ = f($)
If 7 has a reproducing kernel, it is said to be a reproducing kernel Hilbert
space.
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Reproducing Kernel Hilbert Space (RKHS)

Definition ([Aronszajn, 1950; Berlinet & Thomas-Agnan, 2004])

Let X' be a non-empty set and H be a Hilbert space of real-valued
functions defined on X. A function k : X x X — R is called a reproducing
kernel of H. if:

Q@ VrelX, k(,z) € H, and

Q Vz e Xv \V/f S H? <fak(a$)>’}-[ = f($)
If 7 has a reproducing kernel, it is said to be a reproducing kernel Hilbert
space.

In particular, for any z,y € X,
k<$7 y) = <k (‘7 y) ok (',$)>’H - <k (7:1:) ok (‘7 y))H Thus H servers as a
canonical feature space with feature map z — k(-, z).
e Equivalently, all evaluation functionals f +— f(z) are continuous (norm
convergence implies pointwise convergence).
@ Moore-Aronszajn Theorem: every positive semidefinite
k:X x X — Ris a reproducing kernel and has a unique RKHS #,.
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Moore-Aronszajn Theorem

@ RKHS can be constructed as Hy = span {k(-,z) |z € X} and
includes functions of the form

f(x) = ZO@k(Tl’L)
i=1

and their pointwise limits.
1
0.8r
0.6/
0.4f

0.2

D.Sejdinovic (University of Oxford) Inference with Kernel Embeddings 13/09/2016 4 /28



Kernel Trick and Kernel Mean Trick

e implicit feature map = — k(-,x) € Hy, Ve,
replaces x — [p1(2), ..., ps(T)] € R® . '. -
o (k(-,2), k(- y))gy, = k(z,y) - \Ee
inner products readily available °
e nonlinear decision boundaries, nonlinear [Cortes & Vapnik, 1995;
regression functions, learning on Schélkopf & Smola, 2001]

non-Euclidean/structured data
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Kernel Trick and Kernel Mean Trick

e implicit feature map = — k(-,x) € Hy, .

replaces z — [p1(z), ..., ps(x)] € R® O " e
° <k('am)7 k('ay»Hk = k‘(az,y) "

inner products readily available

e nonlinear decision boundaries, nonlinear [Cortes & Vapnik, 1995;

regression functions, learning on Scholkopf & Smola, 2001]
non-Euclidean/structured data ’

e RKHS embedding: implicit feature mean (P) = Exli( )
X ~ Eg
[Smola et al, 2007; Sriperumbudur et al, 2010] A
14(Q) = Evlk(- V)]
P (P) = Expk(-, X) € Hg — /ﬁ(’)&dnl
replaces P — [Ep1(X),...,Eps(X)] € R®
® (1i(P), k(@) 3, = Ex~py~Qk(X,Y) [Gretton et al, 2005; Gretton et
inner products easy to estimate al, 2006: Fukumizu et al, 2007;
® nonparametric two-sample, independence, DS et al, 2013; Muandet et al,

conditional independence, interaction testing, 5515 S,ab0 et al 2015]
learning on distributions
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Maximum Mean Discrepancy

@ Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al,
2007] between P and Q):

1k (P) = Ex[k(-, X)]

X~ Pl
m(Q) = Ey[k(, V)]
Y~Q \/—\»or\,.
h‘ 111 (P) = 1k (@) [4e

MMDy.(P, Q) = [luk(P) — pu(Q)llgy, = sup  [Ef(X) —E/(Y)]
e [ Fllpy, <1
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Maximum Mean Discrepancy

@ Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al,
2007] between P and Q):

1(P) = Ex[k(- X)]

X~ P.
(@) = Ey[k(-, V)]
Y~Q \/ﬂop\,.
h‘ (1124 (P) = 1 ( Q)14

MMDy (P, Q) = |1k (P) — pu(Q)llo, = e ?ﬁl/r‘)l <1|1E./'(X) —E/(Y)]

e Characteristic kernels: MMDy (P, Q) =0 iff P = Q.

e Gaussian RBF exp(—5is [lz — x’Hg) Matérn family, inverse
multiquadrics.

@ For characteristic kernels on LCH X', MMD metrizes weak* topology
on probability measures [Sriperumbudur,2010],

MMDy, (P, P) — 0 < P, ~ P.
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Some uses of MMD

MMD has been applied to:

within-sample average similarity @ independence tests [Gretton et al, 2009

betweensample average similarity @ two-sample tests [Gretion et al, 2012]

L PR H e training generative neural networks
Powe. for image data [Dziugaite, Roy &
“» Ghahramani, 2015]

-

-

k(dog;, fish;)

o traversal of manifolds learned by
2, convolutional nets [Gardner et al, 2015]
Q:gé @ model criticism in Automatic
v Statistician [Lloyd & Ghahramani, 2015]

fish;, fish;

k(fish;, dog;)

@ similarity measure between

Aaad « observed and simulated data in
Figure by Arthur Gretton ABC [Park, Jitkrittum & DS, 2015]
MMD% (P7 Q) = EX’X/i-iNJiPk(Xa X/)—HEY,Y/"‘Zd'Qk(Y’ Y/)_2EX~P,Y~Qk(Xa Y)
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Kernel dependence measures

@ HSIC*(X,Y;k) =
it (Pxy) = i (Px Py )3,
Dependence witness and sample @ dependence witness is a smooth
005 function in the RKHS #,; of
004 functions on X x Y

0.03 k(a) l(7)
0.01
0 x(@0/eP) =

0.5

> 0
-05 -0.01 k(?) X l(’)
, 222 e Independence testing framework
» that generalises Distance
R B Covariance (dCov): HSIC with
X Brownian motion covariance
kernels

[Szekely et al, 2007; DS et al, 2013]
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Kernel dependence measures (2)

Hilbert-Schmidt Independence Criterion (HSIC): similarity between the

kernel matrices <I~(,I~J> =

Tr (KL)

, where K= HKH, and

H=1- %11T is the centering matrix.

[Gretton et al, 2008; Fukumizu et al, 2008; Song et al, 2012]
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Outline

© Using Kernel MMD as a criterion in ABC
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K2-ABC: Approximate Bayesian Computation with Kernel Embeddings.
AISTATS 2016

Mijung Park, Wittawat Jitkrittum, and DS.
http://arxiv.org/abs/1502.02558

Code: https://github.com/wittawatj/k2abc
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Motivating example: ABC for modelling ecological dynamics

e Given: a time series Y = (Y7,...,Yr) of population sizes of a blowfly.

e Model: A dynamical system for blowfly population (a discretised
ODE) [Nicholson, 1954; Gurney et al, 1980; Wood, 2010; Meeds & Welling, 2014]

Y-
Yiy1 = PYi - exp (— ;,0 ) et + Yy exp(—der),

1 2 1 2
where e; ~ Gamma (E,ap) € ~ Gamma (0—3,0(1).

Parameter vector: 0 = {P,Y),04,0,,7,0}.

B. y* — from prior

@ Goal: For a prior p(f), sample from p(0|Y).
e Cannot evaluate p(Y|#). But, can sample from p(-|6).
e For X = (Xy,...,X7) ~ p(:|0), how to measure distance p(X,Y)?
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ABC

@ Observe a dataset Y,
p(0Y) o p(0)p(Y|0)
= 5(6) [ p(X[6) a5y (X)

~ p(0) / p(X[0)k. (X, Y) dX,
where r(X,Y) defines similarity of X and Y.
(ABClikelihood) pc(Y16) ::/p(X|9)/i€(X,Y) dX.

o Simplest choices for k.: 1(p(X,Y) <€) or exp(—p?(X,Y)/e)

e p: a distance function between observed and simulated data
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Data Similarity via Summary Statistics

@ Distance p is typically defined via summary statistics

p(X,Y) = [|s(X) = s(Y)]l2.

@ How to select the summary statistics s(-)? Unless s(-) is sufficient,
targets the incorrect (partial) posterior p(0|s(Y)) rather than p(0|Y).
@ Hard to quantify additional bias.
e Adding more summary statistics decreases "information loss":
p(0]s(Y)) = p(0]Y)
e p computed on a higher dimensional space - without appropriate

calibration of distances therein, leads to a higher rejection rate so need
to increase € p(0]s(Y)) % p(0|s(Y))
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Data Similarity via Summary Statistics

@ Distance p is typically defined via summary statistics

p(X,Y) = [|s(X) = s(Y)]l2.

@ How to select the summary statistics s(-)? Unless s(-) is sufficient,
targets the incorrect (partial) posterior p(0|s(Y)) rather than p(0|Y).
@ Hard to quantify additional bias.

e Adding more summary statistics decreases "information loss":
p(01s(Y)) ~ p(6]Y)

e p computed on a higher dimensional space - without appropriate
calibration of distances therein, leads to a higher rejection rate so need
to increase € p(0]s(Y)) % p(0|s(Y))

e Contribution: Use a nonparametric distance (MMD) between the
empirical measures of datasets X and Y).

e No need to design s(-).

e Rejection rate does not blow up since MMD penalises the higher order
moments via Mercer expansion.
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Embeddings via Mercer Expansion

Mercer Expansion

For a compact metric space X, and a continous kernel k,

T,y) = Z)‘T€T<x)er(y)

with {\., e, },~, eigenvalue, eigenfunction pairs of f > [ f(x)k(-, 2)dP(x)
on Lo(P), with A\, — 0, as r — 00. e, are typically functions of increasing
“complexity”, i.e., Hermite polynomials of increasing degree.

Hy 5 k(z) © {\/xer(a;)} € ly
M > 1s(P) < {\/EEeT(X)} el

ny 2
= (e S o)

n
T =1 Y =1

Hﬂk(lﬁ) — we(Q)
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K2-ABC (proposed method)

@ Input: observed data Y, threshold ¢
@ Qutput: Empirical posterior sz\i1 w;0p,

1: fori=1,...,M do

2:  Sample 0; ~ p(0)

3:  Sample pseudo dataset X; ~ p(-|6;)
—2

4: ’1,171 = /QG(XZ',Y) = exp <—MMD €(X“Y)

5: end for

6: w; :@Z/Zﬁl@ fori=1,....M

e Two kernels: k£ (in MMD) and k¢, hence “K2"
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Blow Fly Population Modelling

Number of blow flies over time

Yi -+
Yit1 = PY;rexp <— ;,O ) eq + Yy exp(—de;)

1 1
@ ¢; ~ Gam (g,al%) and ¢ ~ Gam <U—§,a§).
e Want 0 := {P,Yy,04,0p,T,0}.

4l _ K2.ABC = actual observation @ Simulated trajectories with inferred
posterior mean of 6

)

# flies

=)

e Observed sample of size 180.

eaf = KABC e Other methods use handcrafted
10-dimensional summary statistics

o s(+) from [Meeds & Welling, 2014]:

1es| = SL-ABC quantiles of marginals, first-order
differences, maximal peaks, etc.

% time 180
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Blowfly dataset

IR A
gﬂfﬁ

lls™ = sl

Let 6 be the posterior mean.
Simulate X ~ p(-|6).

s = s(X) and s* = s(Y).
Improved mean squared error on
s, even though SL-ABC,

SA-custom explicitly operate on
s while K2-ABC does not.

K2 SL  SA-custom IS SAQ K-ABC
_ 2
, - e Computation of MMD (X,Y)
costs O(n?).
= 2 g @ Linear-time unbiased estimators
i of MMD? or random feature
T ﬁ |:| - expansions reduce the cost to
O(n).

0

K2 K2-rf K2-lin SL
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Summary: K2-ABC

o A dissimilarity criterion for ABC based on MMD between empirical
distributions of observed and simulated data

o No “information loss” due to insufficient statistics.

@ Simple and effective when parameters model marginal distribution of
observations (variants for conditional distributions readily available).
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Outline

© Bayesian Learning of Embeddings
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Right... But how do you choose your kernel?

o Frequentists cross-validate,
Bayesians optimize marginal
likelihood...

@ But with kernel embeddings,
neither is typically available (e.g.
hypothesis testing or ABC).

o Median heuristic: bandwidth
parameter
6 = median(||z; — z;||2) for e.g.
Gaussian kernel
k(x,2') = exp(— L2551

Bayesian Learning of Kernel Embeddings.

UAI 2016.

Seth Flaxman, DS, John Cunningham, and Sarah Filippi.
http://arxiv.org/abs/1603.02160
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http://arxiv.org/abs/1603.02160

Bayesian Model for Embeddings

@ In MMD and HSIC, we estimate embedding = [ k(-, z)P(dz) with
its empirical mean i = 13" k(- ;).

@ Empirical mean over an infinite-dimensional case? Due to Stein's
phenomenon, shrinkage estimators are better behaved [Muandet et al,
2013] and are reported to improve performance in kernel PCA and in
testing power [Ramdas & Wehbe, 2015].

o Can we formulate a Bayesian inference procedure for kernel
embeddings?

@ Two challenges:

e How to construct a valid prior over the RKHS?
e What is the likelihood of our observations given the kernel embedding?
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Priors on RKHS

A classical result, Kallianpur's 0-1 law, [Kallianpur, 1970; Wahba, 1990]: sample
paths of a GP with kernel & lie outside RKHS H;, with probability 1.

Recall Mercer's expansion k(z,2') = 372, Niei(x)ei(a’), for the
eigenvalue-eigenfunction pairs {(\;, e;)}7_;, which gives representation

F~GPOK): f= ZfZel, {(Z:}2, "5 N(0,1).

But then [[f3, = X2, 2 = 2% Z2—ooso f ¢ Hy  as.

z

However, one can use a prior f ~ GP(0,r) with

r(z,2') = /k:(a:,u)k:(u,x/)y(du)

for any finite measure v in which case f € H; with probability 1: nuclear
dominance theory established by [Lukic and Beder, 2001; Pillai et al, 2007].
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Priors on RKHS

For some simple cases, kernel r analytically available, e.g. for a Gaussian

kernel k(x,2’) = exp (—%) and v(du) o exp (—%) du:

: e =21 i@+ 220
r(m,x)ocexp( 10 107 1P .

e Has a nonstationary component, but similar to another (smoother)
Gaussian kernel with bandwidth 61/2 when 7 is large.
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Likelihood

We need a likelihood linking the kernel mean embedding 11 to the
observations {z;}”_; Consider evaluating fi induced by {x;}!" ; at some
x € X - we link j2(x) to pu(x) using a Gaussian distribution with variance

72 /n:
p(fi(z)|u(x)) = N(fi(z); plx), 7% /n), =€ X,
Motivation by the Central Limit Theorem:
Valfi(z) — p(x)) B N (0, varx p[k(X, 2)]).

A heteroscedastic noise model is certainly more appropriate, but let’s keep
this (obviously wrong) model for now.
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Posterior of the embedding

Standard conjugacy results give:
p(x) | fi(x) ~ N(R(R + (1% /n) L)~ i(x), R = R(R+ (7% /n)I,) "' R),

where R is the n x n matrix such that its (i, j)-th element is 7(x;, x;).

@ Recovers the frequentist shrinkage estimator of [Muandet et al, 2013] as
the posterior mean (with R instead of K).

@ Allows to account for uncertainty in kernel embeddings in the
inference procedures.
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Learning hyperparameters

Kernel k = kg typically has hyperparameters 6, e.g., bandwidth of the
Gaussian (SE) kernel.

Idea: Integrate out the kernel mean embedding 1y and consider the
probability of our observations {z;}!" ; given the hyperparameters 6.

Fix a set of points z1,..., 2y, in X C RP, with m > D.

Z% Do~ N (oo, T ).

with the mapping ¢, : RP — R™, given by
Gz(x) = [kg(x,21), ..., ko(z, 2m)] € R™.

How good this model is depends on how far ¢,(X;)|ug is from

N (wo(z),71,,). Similarly to e.g. KPCA, this is essentially a “Gaussian in
the feature space” assumption. Testable using a kernel two-sample test on
the RKHS [Kellner & Celisse, 2014].
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Marginal (pseudo)likelihood

Assume

b2 (Xi) g ~ N (po(z), 7%1) -
and apply change of variable to the mapping = — ¢,(z), ¢, : RP s R™:
what model does this imply on the original space?

P, 20]6) = / P, o0, O)p (1010 dpso

= /N(¢z(x); [o(2)T - po(2)T] 7 Imn) le ] (1o|0)dyeo

n

= N ((bz (X); 07 1n17—zr ® R9,zz + TQImn) H Yo (mz)

i=1

) ) 1/2
@ Jacobian term: yy(z) = (det [ i dkgi’fi’f” dkgi@f[)} ) :
@ Computational complexity: using Kronecker structure O(m?3 + mn) for the
Gaussian log-likelihood and O(nD? + nmD?) for the Jacobian term
(Gaussian kernel).
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Marginal (pseudo)likelihood for a challenging two-sample test

(A) data, epsilon=2

(B) data, epsilon=10
o

(C) Type Il error

Median heuristic

BKL
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Figure : Comparing samples from a grid of isotropic Gaussians (black dots) to samples from a
grid of non-isotropic Gaussians (red dots) with a ratio e of largest to smallest covariance
eigenvalues. BKL marginal log-likelihood is maximised for a lengthscale of 0.85 whereas the
median heuristic suggests a value of 20.
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Summary

o A simple Bayesian model on kernel embeddings recovers shrinkage
estimators.

e Marginal (pseudo)likelihood of observations given the kernel
hyperparameters allows optimization or sampling of hyperparameters
as well.

@ Can discover multiscale properties in the data — where there is a
mismatch between the global scale of the distribution and the scale at
which differences or dependencies are present.

o Potentially a drop-in replacement for median heuristic in unsupervised
settings?
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