Inference with Kernel Embeddings

Dino Sejdinovic

Department of Statistics University of Oxford

RSS Conference, Manchester, 07/09/2016

D.Sejdinovic (University of Oxford)

Bayesian Learning of Embeddings

1 Preliminaries on Kernel Embeddings

2) Using Kernel MMD as a criterion in ABC

Bayesian Learning of Embeddings

D.Sejdinovic (University of Oxford)

Kernel Trick and Kernel Mean Trick

- implicit feature map $x\mapsto k(\cdot,x)\in\mathcal{H}_k$ replaces $x\mapsto [\varphi_1(x),\ldots,\varphi_s(x)]\in\mathbb{R}^s$
- $\langle k(\cdot,x),k(\cdot,y)\rangle_{\mathcal{H}_k} = k(x,y)$ inner products readily available
 - nonlinear decision boundaries, nonlinear regression functions, learning on non-Euclidean/structured data

[Cortes & Vapnik, 1995; Schölkopf & Smola, 2001]

Kernel Trick and Kernel Mean Trick

- implicit feature map $x \mapsto k(\cdot, x) \in \mathcal{H}_k$ replaces $x \mapsto [\varphi_1(x), \dots, \varphi_s(x)] \in \mathbb{R}^s$
- $\langle k(\cdot,x),k(\cdot,y)\rangle_{\mathcal{H}_k} = k(x,y)$ inner products readily available
 - nonlinear decision boundaries, nonlinear regression functions, learning on non-Euclidean/structured data

[Smola et al, 2007; Sriperumbudur et al, 2010] $P \mapsto \mu_k(P) = \mathbb{E}_{X \sim P} k(\cdot, X) \in \mathcal{H}_k$ replaces $P \mapsto [\mathbb{E}\varphi_1(X), \dots, \mathbb{E}\varphi_s(X)] \in \mathbb{R}^s$

- $\langle \mu_k(P), \mu_k(Q) \rangle_{\mathcal{H}_k} = \mathbb{E}_{X \sim P, Y \sim Q} k(X, Y)$ inner products easy to estimate
 - nonparametric two-sample, independence, conditional independence, interaction testing, learning on distributions

[Cortes & Vapnik, 1995; Schölkopf & Smola, 2001]

[Gretton et al, 2005; Gretton et al, 2006; Fukumizu et al, 2007; DS et al, 2013; Muandet et al, 2012; Szabo et al, 2015]

Maximum Mean Discrepancy

• Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007] between *P* and *Q*:

 $\mathsf{MMD}_k(P, Q) = \|\mu_k(P) - \mu_k(Q)\|_{\mathcal{H}_k} = \sup_{f \in \mathcal{H}_k \colon \|f\|_{\mathcal{H}_k} \le 1} |\mathbb{E}f(X) - \mathbb{E}f(Y)|$

Maximum Mean Discrepancy

• Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007] between *P* and *Q*:

 $\mathsf{MMD}_k(P, Q) = \|\mu_k(P) - \mu_k(Q)\|_{\mathcal{H}_k} = \sup_{f \in \mathcal{H}_k \colon \|f\|_{\mathcal{H}_k} \le 1} |\mathbb{E}f(X) - \mathbb{E}f(Y)|$

- Characteristic kernels: $MMD_k(P, Q) = 0$ iff P = Q.
 - Gaussian RBF $\exp(-\frac{1}{2\sigma^2} ||x x'||_2^2)$, Matérn family, inverse multiquadrics.
- For characteristic kernels on LCH X, MMD metrizes weak* topology on probability measures [Sriperumbudur,2010],

$$\mathsf{MMD}_k(P_n, P) \to 0 \Leftrightarrow P_n \rightsquigarrow P.$$

D.Sejdinovic (University of Oxford)

Some uses of MMD

within-sample average similarity

between-sample average similarity

Figure by Arthur Gretton

MMD has been applied to:

- independence tests [Gretton et al, 2009]
- two-sample tests [Gretton et al, 2012]
- training generative neural networks for image data [Dziugaite, Roy and Ghahramani, 2015]
- traversal of manifolds learned by convolutional nets [Gardner et al, 2015]
- similarity measure between observed and simulated data in ABC [Park, Jitkrittum and DS, 2015]

 $\mathsf{MMD}_{k}^{2}(P, Q) = \mathbb{E}_{X, X'^{i.i.d.}P} k(X, X') + \mathbb{E}_{Y, Y'^{i.i.d.}Q} k(Y, Y') - 2\mathbb{E}_{X \sim P, Y \sim Q} k(X, Y).$

Kernel dependence measures

- $HSIC^2(X, Y; \kappa) =$ $\|\mu_{\kappa}(P_{XY}) - \mu_{\kappa}(P_X P_Y)\|^2_{\mathcal{H}_{\kappa}}$
- dependence witness is a smooth function in the RKHS \mathcal{H}_{κ} of functions on $\mathcal{X} \times \mathcal{Y}$

 Independence testing framework that generalises Distance Covariance (dCov): HSIC with Brownian motion covariance kernels

[Szekely et al, 2007; DS et al, 2013]

Kernel dependence measures (2)

$$k(x_i, x_j)$$

Hilbert-Schmidt Independence Criterion (HSIC): similarity between the kernel matrices $\langle \tilde{\mathbf{K}}, \tilde{\mathbf{L}} \rangle = [\mathsf{Tr}(\tilde{\mathbf{K}}\tilde{\mathbf{L}})]$, where $\tilde{\mathbf{K}} = \mathbf{H}\mathbf{K}\mathbf{H}$, and $\mathbf{H} = \mathbf{I} - \frac{1}{n}\mathbf{1}\mathbf{1}^{\top}$ is the centering matrix.

 $\mathbf{n} = \mathbf{I} - \frac{1}{n} \mathbf{I} \mathbf{I}$ is the centering matrix.

[Gretton et al, 2008; Fukumizu et al, 2008; Song et al, 2012]

Preliminaries on Kernel Embeddings

2 Using Kernel MMD as a criterion in ABC

Bayesian Learning of Embeddings

D.Sejdinovic (University of Oxford)

K2-ABC: Approximate Bayesian Computation with Kernel Embeddings. AISTATS 2016 Mijung Park, Wittawat Jitkrittum, and DS. http://arxiv.org/abs/1502.02558 Code: https://github.com/wittawatj/k2abc

Motivating example: ABC for modelling ecological dynamics

- Given: a time series $\mathbf{Y} = (Y_1, \dots, Y_T)$ of population sizes of a blowfly.
- Model: A dynamical system for blowfly population (a discretised ODE) [Nicholson, 1954; Gurney et al, 1980; Wood, 2010; Meeds & Welling, 2014]

$$Y_{t+1} = PY_{t-\tau} \exp\left(-\frac{Y_{t-\tau}}{Y_0}\right) e_t + Y_t \exp(-\delta\epsilon_t),$$

where $e_t \sim \text{Gamma}\left(\frac{1}{\sigma_P^2}, \sigma_P^2\right)$, $\epsilon_t \sim \text{Gamma}\left(\frac{1}{\sigma_d^2}, \sigma_d^2\right)$. Parameter vector: $\theta = \{P, Y_0, \sigma_d, \sigma_p, \tau, \delta\}$.

B.
$$y^* \equiv \text{from prior}$$

• <u>Goal</u>: For a prior $p(\theta)$, sample from $p(\theta|\mathbf{Y})$.

- Cannot evaluate $p(\mathbf{Y}|\boldsymbol{\theta})$. But, can sample from $p(\cdot|\boldsymbol{\theta})$.
- For $\mathbf{X} = (X_1, \dots, X_T) \sim p(\cdot | \theta)$, how to measure distance $\rho(\mathbf{X}, \mathbf{Y})$?

D.Sejdinovic (University of Oxford)

Inference with Kernel Embeddings

07/09/2016 8 / 22

Data Similarity via Summary Statistics

• Distance ho is typically defined via summary statistics

 $\rho(\mathbf{X}, \mathbf{Y}) = \|s(\mathbf{X}) - s(\mathbf{Y})\|_2.$

- How to select the summary statistics $s(\cdot)$? Unless $s(\cdot)$ is sufficient, targets the incorrect (partial) posterior $p(\theta|s(\mathbf{Y}))$ rather than $p(\theta|\mathbf{Y})$.
- Hard to quantify additional bias.
 - Adding more summary statistics decreases ''information loss'': $p(\theta|s(\mathbf{Y})) \approx p(\theta|\mathbf{Y})$
 - ρ computed on a higher dimensional space without appropriate calibration of distances therein, leads to a higher rejection rate so need to increase ϵ : $p_{\epsilon}(\theta|s(\mathbf{Y})) \not\approx p(\theta|s(\mathbf{Y}))$

Data Similarity via Summary Statistics

• Distance ho is typically defined via summary statistics

 $\rho(\mathbf{X}, \mathbf{Y}) = \|s(\mathbf{X}) - s(\mathbf{Y})\|_2.$

- How to select the summary statistics $s(\cdot)$? Unless $s(\cdot)$ is sufficient, targets the incorrect (partial) posterior $p(\theta|s(\mathbf{Y}))$ rather than $p(\theta|\mathbf{Y})$.
- Hard to quantify additional bias.
 - Adding more summary statistics decreases ''information loss'': $p(\theta|s(\mathbf{Y})) \approx p(\theta|\mathbf{Y})$
 - ρ computed on a higher dimensional space without appropriate calibration of distances therein, leads to a higher rejection rate so need to increase ϵ : $p_{\epsilon}(\theta|s(\mathbf{Y})) \not\approx p(\theta|s(\mathbf{Y}))$
- Contribution: Use a nonparametric distance (MMD) between the empirical measures of datasets **X** and **Y**).
 - No need to design $s(\cdot)$.
 - Rejection rate does not blow up since MMD penalises the higher order moments via Mercer expansion.

Embeddings via Mercer Expansion

Mercer Expansion

For a compact metric space \mathcal{X} , and a continous kernel k,

$$k(x,y) = \sum_{r=1}^{\infty} \lambda_r e_r(x) e_r(y),$$

with $\{\lambda_r, e_r\}_{r\geq 1}$ eigenvalue, eigenfunction pairs of $f\mapsto \int f(x)k(\cdot, x)dP(x)$ on $L_2(P)$, with $\lambda_r \to 0$, as $r \to \infty$. e_r are typically functions of increasing "complexity", i.e., Hermite polynomials of increasing degree.

$$\begin{aligned} \mathcal{H}_k \ni k(\cdot, x) &\leftrightarrow \left\{ \sqrt{\lambda_r} e_r(x) \right\} \in \ell_2 \\ \mathcal{H}_k \ni \mu_k(P) &\leftrightarrow \left\{ \sqrt{\lambda_r} \mathbb{E} e_r(X) \right\} \in \ell_2 \\ \left\| \mu_k(\hat{P}) - \mu_k(\hat{Q}) \right\|_{\mathcal{H}_k}^2 &= \sum_{r=1}^\infty \lambda_r \left(\frac{1}{n_x} \sum_{t=1}^{n_x} e_r(X_t) - \frac{1}{n_y} \sum_{t=1}^{n_y} e_r(Y_t) \right)^2 \end{aligned}$$

Blow Fly Population Modelling

Number of blow flies over time

$$Y_{t+1} = PY_{t-\tau} \exp\left(-\frac{Y_{t-\tau}}{Y_0}\right) e_t + Y_t \exp(-\delta\epsilon_t)$$

•
$$e_t \sim \operatorname{Gam}\left(\frac{1}{\sigma_P^2}, \sigma_P^2\right)$$
 and $\epsilon_t \sim \operatorname{Gam}\left(\frac{1}{\sigma_d^2}, \sigma_d^2\right)$
• Want $\theta := \{P, Y_0, \sigma_d, \sigma_p, \tau, \delta\}.$

- Simulated trajectories with inferred posterior mean of θ
 - Observed sample of size 180.
 - Other methods use handcrafted 10-dimensional summary statistics $s(\cdot)$ from [Meeds & Welling, 2014]: quantiles of marginals, first-order differences, maximal peaks, etc.

Blowfly dataset

- Let $\tilde{\theta}$ be the posterior mean.
- Simulate $\mathbf{X} \sim p(\cdot | \tilde{\theta})$.
- $\mathbf{s} = s(\mathbf{X})$ and $\mathbf{s}^* = s(\mathbf{Y})$.

 Improved mean squared error on s, even though SL-ABC, SA-custom explicitly operate on s while K2-ABC does not.

- Computation of $\widehat{\mathrm{MMD}}^2(\mathbf{X}, \mathbf{Y})$ costs $O(n^2)$.
- Linear-time unbiased estimators of MMD² or random feature expansions reduce the cost to O(n).

- A dissimilarity criterion for ABC based on MMD between empirical distributions of observed and simulated data
- No "information loss" due to insufficient statistics.
- Simple and effective when parameters model marginal distribution of observations (variants for conditional distributions readily available).

Using Kernel MMD as a criterion in ABC

Bayesian Learning of Embeddings

Right... But how do you choose your kernel?

- Frequentists cross-validate, Bayesians optimize marginal likelihood...
- But with kernel embeddings, neither is typically available (e.g. hypothesis testing or ABC).
- Median heuristic: bandwidth parameter $\theta = \text{median}(||x_i - x_j||_2)$ for e.g. Gaussian kernel $k(x, x') = \exp(-\frac{||x - x'||^2}{2d^2})$

Bayesian Learning of Kernel Embeddings. UAI 2016. Seth Flaxman, DS, John Cunningham, and Sarah Filippi. http://arxiv.org/abs/1603.02160

Bayesian Model for Embeddings

- In MMD and HSIC, we estimate embedding $\mu = \int k(\cdot, x) P(dx)$ with its empirical mean $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} k(\cdot, x_i)$.
- Empirical mean over an infinite-dimensional case? Due to Stein's phenomenon, shrinkage estimators are better behaved [Muandet et al, 2013] and are reported to improve performance in kernel PCA and in testing power [Ramdas & Wehbe, 2015].
- Can we formulate a Bayesian inference procedure for kernel embeddings?
- Two challenges:
 - How to construct a valid prior over the RKHS?
 - What is the likelihood of our observations given the kernel embedding?

Priors on RKHS

A classical result, Kallianpur's 0-1 law, [Kallianpur, 1970; Wahba, 1990]: sample paths of a GP with kernel k lie outside RKHS \mathcal{H}_k with probability 1. However, one can use a prior $f \sim \mathcal{GP}(0, r)$ with

$$r(x, x') = \int k(x, u) k(u, x') \nu(du)$$

for any finite measure ν in which case $f \in \mathcal{H}_k$ with probability 1: nuclear dominance theory established by [Lukic and Beder, 2001; Pillai et al, 2007]. Kernel r analytically available, e.g. for a Gaussian kernel $k(x, x') = \exp\left(-\frac{\|x-x'\|^2}{2\theta^2}\right)$ and $\nu(du) \propto \exp\left(-\frac{\|u\|^2}{2\eta^2}\right) du$:

$$r(x, x') \propto \exp\left(-\frac{\|x - x'\|^2}{4\theta^2} - \frac{\|(x + x')/2\|^2}{4\theta^2 + \eta^2}\right)$$

• Has a nonstationary component, but similar to another (smoother) Gaussian kernel with bandwidth $\theta\sqrt{2}$ when η is large.

Likelihood

We need a likelihood linking the kernel mean embedding μ to the observations $\{x_i\}_{i=1}^n$ Consider evaluating $\hat{\mu}$ induced by $\{x_i\}_{i=1}^n$ at some $x \in \mathcal{X}$ - we link $\hat{\mu}(x)$ to $\mu(x)$ using a Gaussian distribution with variance τ^2/n :

 $p(\widehat{\mu}(x)|\mu(x)) = \mathcal{N}(\widehat{\mu}(x);\mu(x),\tau^2/n), \quad x \in \mathcal{X}.$

Motivation by the Central Limit Theorem:

$$\sqrt{n}(\widehat{\mu}(x) - \mu(x)) \xrightarrow{D} \mathcal{N}(0, \mathsf{var}_{X \sim \mathsf{P}}[k(X, x)]).$$

A heteroscedastic noise model is certainly more appropriate, but let's keep this (obviously wrong) model for now.

Standard conjugacy results give:

 $\mu(\mathbf{x}) \mid \widehat{\mu}(\mathbf{x}) \sim \mathcal{N}(R(R + (\tau^2/n)I_n)^{-1}\widehat{\mu}(\mathbf{x}), R - R(R + (\tau^2/n)I_n)^{-1}R),$

where R is the $n \times n$ matrix such that its (i, j)-th element is $r(x_i, x_j)$.

- Recovers the frequentist shrinkage estimator of [Muandet et al, 2013] as the posterior mean (with R instead of K).
- Allows to account for uncertainty in kernel embeddings in the inference procedures.

Learning hyperparameters

Kernel $k = k_{\theta}$ typically has hyperparameters θ , e.g., bandwidth of the Gaussian (SE) kernel.

Idea: Integrate out the kernel mean embedding μ_{θ} and consider the probability of our observations $\{x_i\}_{i=1}^n$ given the hyperparameters θ . Fix a set of points z_1, \ldots, z_m in $\mathcal{X} \subset \mathbb{R}^D$, with $m \geq D$.

$$\widehat{\mu_{\theta}}(\mathbf{z}) = \frac{1}{n} \sum_{i=1}^{n} \phi_{\mathbf{z}}(X_i) | \mu_{\theta} \sim \mathcal{N}\left(\mu_{\theta}(\mathbf{z}), \frac{\tau^2}{n} I_m\right),$$

with the mapping $\phi_{\mathbf{z}}: \mathbb{R}^D \mapsto \mathbb{R}^m$, given by

$$\phi_{\mathbf{z}}(x) := [k_{\theta}(x, z_1), \dots, k_{\theta}(x, z_m)] \in \mathbb{R}^m.$$

How good this model is depends on how far $\phi_{\mathbf{z}}(X_i)|\mu_{\theta}$ is from $\mathcal{N}\left(\mu_{\theta}(\mathbf{z}), \tau^2 I_m\right)$.

Marginal (pseudo)likelihood

Assume

$$\phi_{\mathbf{z}}(X_i)|\mu_{\theta} \sim \mathcal{N}\left(\mu_{\theta}(\mathbf{z}), \tau^2 I_m\right).$$

and apply change of variable to the mapping $x \mapsto \phi_{\mathbf{z}}(x), \phi_{\mathbf{z}} : \mathbb{R}^D \mapsto \mathbb{R}^m$: what model does this imply on the original space?

$$p(x_1, \dots, x_n | \theta) = \int p(x_1, \dots, x_n | \mu_{\theta}, \theta) p(\mu_{\theta} | \theta) d\mu_{\theta}$$

= $\int \mathcal{N} \left(\phi_{\mathbf{z}}(\mathbf{x}); \left[\mu_{\theta}(\mathbf{z})^\top \cdots \mu_{\theta}(\mathbf{z})^\top \right]^\top, \tau^2 I_{mn} \right) \left[\prod_{i=1}^n \gamma_{\theta}(x_i) \right] p(\mu_{\theta} | \theta) d\mu_{\theta}$
= $\mathcal{N} \left(\phi_{\mathbf{z}}(\mathbf{x}); \mathbf{0}, \mathbf{1}_n \mathbf{1}_n^\top \otimes R_{\theta, \mathbf{zz}} + \tau^2 I_{mn} \right) \prod_{i=1}^n \gamma_{\theta}(x_i).$

• Jacobian term:
$$\gamma_{\theta}(x) = \left(\det \left[\sum_{l=1}^{m} \frac{\partial k_{\theta}(x, z_{l})}{\partial x^{(i)}} \frac{\partial k_{\theta}(x, z_{l})}{\partial x^{(j)}} \right]_{ij} \right)^{1/2}$$

• Computational complexity: using Kronecker structure $\mathcal{O}(m^3 + mn)$ for the Gaussian log-likelihood and $\mathcal{O}(nD^3 + nmD^2)$ for the Jacobian term (Gaussian kernel).

D.Sejdinovic (University of Oxford)

Inference with Kernel Embeddings

07/09/2016 20 / 22

Marginal (pseudo)likelihood for a challenging two-sample test

Figure : Comparing samples from a grid of isotropic Gaussians (black dots) to samples from a grid of non-isotropic Gaussians (red dots) with a ratio ϵ of largest to smallest covariance eigenvalues. BKL marginal log-likelihood is maximised for a lengthscale of 0.85 whereas the median heuristic suggests a value of 20.

- A simple Bayesian model on kernel embeddings recovers shrinkage estimators.
- Marginal (pseudo)likelihood of observations given the kernel hyperparameters allows optimization or sampling of hyperparameters as well.
- Can discover multiscale properties in the data where there is a mismatch between the global scale of the distribution and the scale at which differences or dependencies are present.
- Potentially a drop-in replacement for median heuristic in unsupervised settings?

