Kernel Embeddings for Inference with Intractable Likelihoods

Dino Sejdinovic

Department of Statistics University of Oxford

The Institute of Statistical Mathematics, Tokyo, 30/03/2016

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page--1-0) 30/03/2016 1/44

Interested in Bayesian posterior inference:

$$
\mathsf{p}(\theta|\mathcal{D}) = \frac{\mathsf{p}(\theta)\mathsf{p}(\mathcal{D}|\theta)}{\mathsf{p}(\mathcal{D})}
$$

Interested in Bayesian posterior inference:

$$
\textsf{p}(\theta|\mathcal{D})=\frac{\textsf{p}(\theta)\textsf{p}(\mathcal{D}|\theta)}{\textsf{p}(\mathcal{D})}
$$

The case of intractable $\mathsf{p}(\mathcal{D})=\int \mathsf{p}(\theta)\mathsf{p}(\mathcal{D}|\theta)d\theta$ while posterior density is intractable, can use MCMC to generate an (asymptotically exact) sample from $p(\theta|\mathcal{D})$

Interested in Bayesian posterior inference:

$$
\mathsf{p}(\theta|\mathcal{D}) = \frac{\mathsf{p}(\theta)\mathsf{p}(\mathcal{D}|\theta)}{\mathsf{p}(\mathcal{D})}
$$

- The case of intractable $\mathsf{p}(\mathcal{D})=\int \mathsf{p}(\theta)\mathsf{p}(\mathcal{D}|\theta)d\theta$ while posterior density is intractable, can use MCMC to generate an (asymptotically exact) sample from $p(\theta|\mathcal{D})$
- **•** The case of intractable $p(\mathcal{D}|\theta)$: doubly intractable posterior which cannot be evaluated even up to a normalising constant.

Interested in Bayesian posterior inference:

$$
\mathsf{p}(\theta|\mathcal{D}) = \frac{\mathsf{p}(\theta)\mathsf{p}(\mathcal{D}|\theta)}{\mathsf{p}(\mathcal{D})}
$$

- The case of intractable $\mathsf{p}(\mathcal{D})=\int \mathsf{p}(\theta)\mathsf{p}(\mathcal{D}|\theta)d\theta$ while posterior density is intractable, can use MCMC to generate an (asymptotically exact) sample from $p(\theta|\mathcal{D})$
- **•** The case of intractable $p(\mathcal{D}|\theta)$: doubly intractable posterior which cannot be evaluated even up to a normalising constant.

Two situations where (approximate) posterior inference is still possible:

• Can simulate from $p(\cdot|\theta)$ for any $\theta \in \Theta$: Approximate Bayesian Computation (ABC)

[Tavaré et al, 1997; Beaumont et al, 2002]

• Can construct an unbiased estimator of $p(\mathcal{D}|\theta)$: Pseudo-Marginal MCMC [Beaumont, 2003; Andrieu & Roberts, 2009]

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 2 / 44

Motivating Example I: Bayesian GP Classification

- Given: covariates **X** and labels $\mathbf{y} = [y_1, \ldots, y_n]$.
- Model: y depends on \bf{X} via latent Gaussian process $f = [f(\mathbf{x}_1), \dots, f(\mathbf{x}_n)]$, with covariance parametrised by $\theta \in \Theta$
	- $f|\theta \sim \mathcal{GP}(0, \kappa_\theta)$ has a covariance function κ_θ .
	- Logistic link $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^{n} \frac{1}{1 + \exp(-y_i f_i)}, y_i \in \{-1, 1\}.$
	- κ_{θ} : Automatic Relevance Determination (ARD) covariance function:

$$
\kappa_{\theta}(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{1}{2} \sum_{s=1}^d \frac{(x_{i,s} - x_{j,s})^2}{\exp(\theta_s)}\right)
$$

- **Goal: For a prior** $p(\theta)$, sample from $p(\theta|\mathbf{y})$ [Williams & Barber, 1998; Filippone & Girolami, 2014]
	- \bullet Likelihood $p(\mathbf{y}|\theta) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\theta)d\mathbf{f}$ is intractable but can be unbiasedly estimated (by e.g. importance sampling f).

Motivating Example I: Bayesian GP Classification

- Given: covariates **X** and labels $\mathbf{y} = [y_1, \ldots, y_n]$.
- Model: y depends on \bf{X} via latent Gaussian process $f = [f(\mathbf{x}_1), \dots, f(\mathbf{x}_n)]$, with covariance parametrised by $\theta \in \Theta$
	- $f|\theta \sim \mathcal{GP}(0, \kappa_{\theta})$ has a covariance function κ_{θ} .
	- Logistic link $p(\mathbf{y}|\mathbf{f}) = \prod_{i=1}^{n} \frac{1}{1 + \exp(-y_i f_i)}, y_i \in \{-1, 1\}.$
	- κ_{θ} : Automatic Relevance Determination (ARD) covariance function:

$$
\kappa_{\theta}(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{1}{2} \sum_{s=1}^d \frac{(x_{i,s} - x_{j,s})^2}{\exp(\theta_s)}\right)
$$

- **Goal: For a prior** $p(\theta)$, sample from $p(\theta|\mathbf{y})$ [Williams & Barber, 1998; Filippone & Girolami, 2014]
	- \bullet Likelihood $p(\mathbf{y}|\theta) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|\theta)d\mathbf{f}$ is intractable but can be unbiasedly estimated (by e.g. importance sampling f).
	- Posterior of θ can have tightly coupled and nonlinearly dependent dimensions - how to sample from it efficiently without gradients?

Motivating example II: ABC for modelling ecological dynamics

- Given: a time series $\mathbf{Y} = (Y_1, \ldots, Y_T)$ of population sizes of a blowfly.
- Model: A dynamical system for blowfly population (a discretised ODE) [Nicholson, 1954; Gurney et al, 1980; Wood, 2010; Meeds & Welling, 2014]

$$
Y_{t+1} = PY_{t-\tau} \exp\left(-\frac{Y_{t-\tau}}{Y_0}\right) e_t + Y_t \exp(-\delta \epsilon_t),
$$

where $e_t \sim \mathsf{Gamma}\left(\frac{1}{\sigma_P^2}, \sigma_P^2\right)$, $\epsilon_t \sim \mathsf{Gamma}\left(\frac{1}{\sigma_d^2}, \sigma_d^2\right)$. Parameter vector: $\hat{\theta} = \{P, Y_0, \sigma_d, \sigma_n, \tau, \delta\}.$

$$
\mathbf{B}.\mathbf{A}.\mathbf{A}.\mathbf{A}.\mathbf{A}.\mathbf{A}.\mathbf{A}.\mathbf{A}.\mathbf{A}.\mathbf{A}.\mathbf{A}.\mathbf{A}.\mathbf{A}.\mathbf{A}.\mathbf{A}.\mathbf{A}.\mathbf{A}.\mathbf{A}.\mathbf{
$$

• Goal: For a prior $p(\theta)$, sample from $p(\theta|\mathbf{Y})$.

• Cannot evaluate $p(Y|\theta)$. But, can sample from $p(\cdot|\theta)$.

Motivating example II: ABC for modelling ecological dynamics

- Given: a time series $\mathbf{Y} = (Y_1, \ldots, Y_T)$ of population sizes of a blowfly.
- Model: A dynamical system for blowfly population (a discretised ODE) [Nicholson, 1954; Gurney et al, 1980; Wood, 2010; Meeds & Welling, 2014]

$$
Y_{t+1} = PY_{t-\tau} \exp\left(-\frac{Y_{t-\tau}}{Y_0}\right) e_t + Y_t \exp(-\delta \epsilon_t),
$$

where $e_t \sim \mathsf{Gamma}\left(\frac{1}{\sigma_P^2}, \sigma_P^2\right)$, $\epsilon_t \sim \mathsf{Gamma}\left(\frac{1}{\sigma_d^2}, \sigma_d^2\right)$. Parameter vector: $\hat{\theta} = \{P, Y_0, \sigma_d, \sigma_n, \tau, \delta\}.$

$$
\mathbf{B}.\mathbf{B}.\mathbf{b}.\mathbf{
$$

• Goal: For a prior $p(\theta)$, sample from $p(\theta|\mathbf{Y})$.

- Cannot evaluate $p(Y|\theta)$. But, can sample from $p(\cdot|\theta)$.
- For $\mathbf{X} = (X_1, \ldots, X_T) \sim p(\cdot | \theta)$, how to measure distance $\rho(\mathbf{X}, \mathbf{Y})$?

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 4 / 44

[Preliminaries on Kernel Embeddings](#page-10-0)

[Using Kernel MMD as a criterion in ABC](#page-57-0)

[Preliminaries on Kernel Embeddings](#page-10-0)

2 [Gradient-free kernel-based proposals in adaptive Metropolis-Hastings](#page-18-0)

[Using Kernel MMD as a criterion in ABC](#page-57-0)

4 [\(Conditional\) distribution regression for semi-automatic ABC](#page-69-0)

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 4 / 44

Reproducing Kernel Hilbert Space (RKHS)

Definition ([Aronszajn, 1950; Berlinet & Thomas-Agnan, 2004])

Let X be a non-empty set and H be a Hilbert space of real-valued functions defined on X. A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a reproducing kernel of H if:

- $\bigcirc \forall x \in \mathcal{X}, \; k(\cdot, x) \in \mathcal{H}$, and
- $\bullet \ \forall x \in \mathcal{X}, \forall f \in \mathcal{H}, \ \ \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x).$

If H has a reproducing kernel, it is said to be a reproducing kernel Hilbert space.

Reproducing Kernel Hilbert Space (RKHS)

Definition ([Aronszajn, 1950; Berlinet & Thomas-Agnan, 2004])

Let X be a non-empty set and H be a Hilbert space of real-valued functions defined on X. A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a reproducing kernel of H if:

- $\bigcirc \forall x \in \mathcal{X}, \; k(\cdot, x) \in \mathcal{H}$, and
- $\bullet \ \forall x \in \mathcal{X}, \forall f \in \mathcal{H}, \ \ \langle f, k(\cdot, x) \rangle_{\mathcal{H}} = f(x).$

If H has a reproducing kernel, it is said to be a reproducing kernel Hilbert space.

In particular, for any $x, y \in \mathcal{X}$,

 $k(x, y) = \langle k(\cdot, y), k(\cdot, x) \rangle_{\mathcal{H}} = \langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}}$. Thus H servers as a canonical *feature space* with feature map $x \mapsto k(\cdot, x)$.

- Equivalently, all evaluation functionals $f \mapsto f(x)$ are continuous (norm convergence implies pointwise convergence).
- Moore-Aronszajn Theorem: every positive semidefinite
	- $k:\mathcal{X}\times\mathcal{X}\rightarrow\mathbb{R}$ is a reproducing kernel and has a unique RKHS \mathcal{H}_{k} .

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 5 / 44

Kernel Trick and Kernel Mean Trick

- implicit feature map $x \mapsto k(\cdot, x) \in \mathcal{H}_k$ replaces $x \mapsto [\varphi_1(x), \ldots, \varphi_s(x)] \in \mathbb{R}^s$
- $\langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}_k} = k(x, y)$ inner products readily available
	- nonlinear decision boundaries, nonlinear regression functions, learning on non-Euclidean/structured data

[Cortes & Vapnik, 1995; Schölkopf & Smola, 2001]

Kernel Trick and Kernel Mean Trick

- implicit feature map $x \mapsto k(\cdot, x) \in \mathcal{H}_k$ replaces $x \mapsto [\varphi_1(x), \ldots, \varphi_s(x)] \in \mathbb{R}^s$
- $\langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}_k} = k(x, y)$ inner products readily available
	- nonlinear decision boundaries, nonlinear regression functions, learning on non-Euclidean/structured data

- $\langle \mu_k(P), \mu_k(Q) \rangle_{\mathcal{H}_k} = \mathbb{E}_{X \sim P, Y \sim Q} k(X, Y)$ inner products easy to estimate
	- nonparametric two-sample, independence, conditional independence, interaction testing, learning on distributions

[Cortes & Vapnik, 1995; Schölkopf & Smola, 2001]

[Gretton et al, 2005; Gretton et al, 2006; Fukumizu et al, 2007; DS et al. 2013: Muandet et al. 2012; Szabo et al, 2015]

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 6 / 44

Maximum Mean Discrepancy

• Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007] between P and Q :

 $\text{MMD}_k(P,Q) = ||\mu_k(P) - \mu_k(Q)||_{\mathcal{H}_k} = \sup_{\zeta \in \mathcal{U}_k}$ $f \in \mathcal{H}_k$: $\|f\|_{\mathcal{H}_k} \leq 1$ $|\mathbb{E}f(X) - \mathbb{E}f(Y)|$

Maximum Mean Discrepancy

• Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007] between P and Q .

 $\text{MMD}_k(P,Q) = ||\mu_k(P) - \mu_k(Q)||_{\mathcal{H}_k} = \sup_{\zeta \in \mathcal{U}_k}$ $f \in \mathcal{H}_k$: $||f||_{\mathcal{H}_k} \leq 1$ $|\mathbb{E}f(X) - \mathbb{E}f(Y)|$

- Characteristic kernels: $\text{MMD}_k(P,Q) = 0$ iff $P = Q$.
	- Gaussian RBF $\exp(-\frac{1}{2\sigma^2}||x-x'||_2^2)$ $_2^2$), Matérn family, inverse multiquadrics.
- For characteristic kernels on LCH X , MMD metrizes weak* topology on probability measures [Sriperumbudur,2010],

 $MMD_k (P_n, P) \to 0 \Leftrightarrow P_n \rightsquigarrow P.$

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 7 / 44

Some uses of MMD

within-sample average similarity -

between-sample average similarity

Figure by Arthur Gretton

MMD has been applied to:

- **•** independence tests [Gretton et al, 2009]
- **o two-sample tests** [Gretton et al, 2012]
- **•** training generative neural networks for image data [Dziugaite, Roy and Ghahramani, 2015]
- **•** traversal of manifolds learned by convolutional nets [Gardner et al, 2015]
- **•** similarity measure between observed and simulated data in ABC [Park, Jitkrittum and DS, 2015]

 $\mathsf{MMD}_k^2(P,Q) = \mathbb{E}_{X,X'^{i.i.d.}P} k(X,X') + \mathbb{E}_{Y,Y'^{i.i.d.}Q} k(Y,Y') - 2\mathbb{E}_{X\sim P,Y\sim Q} k(X,Y).$

[Using Kernel MMD as a criterion in ABC](#page-57-0)

4 [\(Conditional\) distribution regression for semi-automatic ABC](#page-69-0)

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 8 / 44

Kernel Adaptive Metropolis Hastings. ICML 2014. DS, Heiko Strathmann, Maria Lomeli, Christophe Andrieu and Arthur Gretton, <http://jmlr.org/proceedings/papers/v32/sejdinovic14.pdf> Code: <https://github.com/karlnapf/kameleon-mcmc>

Metropolis-Hastings MCMC

- Access to unnormalized target $\pi(\theta) \propto p(\theta|\mathcal{D})$
- **•** Generate a Markov chain with the posterior $p(\cdot|\mathcal{D})$ as the invariant distribution
	- Initialize $\theta_0 \sim p_0$
	- $\bullet~$ At iteration $t\geq 0$, propose to move to state $\theta'\sim \mathsf{q}(\cdot|\theta_t)$
	- Accept/Reject proposals based on the MH acceptance ratio (preserves detailed balance)

$$
\theta_{t+1} = \begin{cases} \theta', & \text{w.p. min } \left\{ 1, \frac{\pi(\theta') \mathsf{q}(\theta_t | \theta')}{\pi(\theta_t) \mathsf{q}(\theta' | \theta_t)} \right\}, \\ \theta_t, & \text{otherwise.} \end{cases}
$$

The choice of proposal q

- What proposal $q(\cdot|\theta_t)$ to use in Metropolis-Hastings algorithms?
	- Variance of the proposal is too small: small increments \rightarrow slow convergence
	- Variance of the proposal is too large:

too many rejections \rightarrow slow convergence

The choice of proposal **q**

- What proposal $q(\cdot|\theta_t)$ to use in Metropolis-Hastings algorithms?
	- Variance of the proposal is too small: small increments \rightarrow slow convergence
	- Variance of the proposal is too large: too many rejections \rightarrow slow convergence
- \bullet In high dimensions: very different scalings along different principal directions
- **•** [Gelman, Roberts & Gilks, 1996]: in random walk Metropolis with proposal $\mathsf{q}(\cdot|\theta_t) = \mathcal{N}(\theta_t, \Sigma)$ on a product target π (independent dimensions):
	- $\bullet\;\Sigma=\frac{2.38^2}{d}\Sigma_\pi$ is shown to be asymptotically optimal as $d\to\infty$
	- Asymptotically optimal acceptance rate of 0.234 .

The choice of proposal **q**

- What proposal $q(\cdot|\theta_t)$ to use in Metropolis-Hastings algorithms?
	- Variance of the proposal is too small: small increments \rightarrow slow convergence
	- Variance of the proposal is too large: too many rejections \rightarrow slow convergence
- \bullet In high dimensions: very different scalings along different principal directions
- **•** [Gelman, Roberts & Gilks, 1996]: in random walk Metropolis with proposal $\mathsf{q}(\cdot|\theta_t) = \mathcal{N}(\theta_t, \Sigma)$ on a product target π (independent dimensions):
	- $\bullet\;\Sigma=\frac{2.38^2}{d}\Sigma_\pi$ is shown to be asymptotically optimal as $d\to\infty$
	- Asymptotically optimal acceptance rate of 0.234.
- \bullet Σ_{π} unknown can we learn it while running the chain?
- Assumptions not valid for complex targets non-linear dependence between principal directions?

Adaptive MCMC

Adaptive Metropolis [Haario, Saksman & Tamminen, 2001]: Update proposal $\mathsf{q}_t(\cdot|\theta_t) = \mathcal{N}(\theta_t, \nu^2 \hat{\Sigma}_t)$, using estimates of the target covariance

Adaptive MCMC

Adaptive Metropolis [Haario, Saksman & Tamminen, 2001]: Update proposal $\mathsf{q}_t(\cdot|\theta_t) = \mathcal{N}(\theta_t, \nu^2 \hat{\Sigma}_t)$, using estimates of the target covariance

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 12 / 44

Adaptive MCMC

• Adaptive Metropolis [Haario, Saksman & Tamminen, 2001]: Update proposal $\mathsf{q}_t(\cdot|\theta_t) = \mathcal{N}(\theta_t, \nu^2 \hat{\Sigma}_t)$, using estimates of the target covariance

Locally miscalibrated for targets with strongly non-linear dependencies: directions of large variance depend on the current location

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 12 / 44

- **•** Efficient samplers for targets with non-linear dependencies: Hybrid/Hamiltonian Monte Carlo (HMC) or Metropolis Adjusted Langevin Algorithms (MALA) [Duane, Pendleteon & Roweth, 1987; Neal, 2011; Roberts & Stramer, 2003; Girolami & Calderhead, 2011]
	- all require target gradients and second order information.
- **•** Efficient samplers for targets with non-linear dependencies: Hybrid/Hamiltonian Monte Carlo (HMC) or Metropolis Adjusted Langevin Algorithms (MALA) [Duane, Pendleteon & Roweth, 1987; Neal, 2011; Roberts & Stramer, 2003; Girolami & Calderhead, 2011]
	- all require target gradients and second order information.
- But in pseudo-marginal MCMC, target $\pi(\cdot)$ cannot be evaluated gradients typically unavailable.

• Posterior inference, latent process f

$$
p(\theta|\mathbf{y}) \propto p(\theta)p(\mathbf{y}|\theta) = p(\theta) \int p(\mathbf{f}|\theta)p(\mathbf{y}|\mathbf{f}, \theta) d\mathbf{f} =: \pi(\theta)
$$

• Posterior inference, latent process f

$$
p(\theta|\mathbf{y}) \propto p(\theta)p(\mathbf{y}|\theta) = p(\theta) \int p(\mathbf{f}|\theta)p(\mathbf{y}|\mathbf{f}, \theta) d\mathbf{f} =: \pi(\theta)
$$

Cannot integrate out f, so cannot compute the MH ratio:

$$
\alpha(\theta, \theta') = \min \left\{ 1, \frac{p(\theta')p(\mathbf{y}|\theta')q(\theta|\theta')}{p(\theta)p(\mathbf{y}|\theta)q(\theta'|\theta)} \right\}
$$

• Posterior inference, latent process f

$$
p(\theta|\mathbf{y}) \propto p(\theta)p(\mathbf{y}|\theta) = p(\theta) \int p(\mathbf{f}|\theta)p(\mathbf{y}|\mathbf{f}, \theta) d\mathbf{f} =: \pi(\theta)
$$

 \bullet Cannot integrate out $\bf f$, so cannot compute the MH ratio:

$$
\alpha(\theta, \theta') = \min \left\{ 1, \frac{p(\theta')p(\mathbf{y}|\theta')q(\theta|\theta')}{p(\theta)p(\mathbf{y}|\theta)q(\theta'|\theta)} \right\}
$$

• Replace $p(y|\theta)$ with a Monte Carlo (typically importance sampling) estimate $\hat{p}(\mathbf{v}|\theta)$

• Posterior inference, latent process f

$$
p(\theta|\mathbf{y}) \propto p(\theta)p(\mathbf{y}|\theta) = p(\theta) \int p(\mathbf{f}|\theta)p(\mathbf{y}|\mathbf{f}, \theta) d\mathbf{f} =: \pi(\theta)
$$

 \bullet Cannot integrate out $\bf f$, so cannot compute the MH ratio:

$$
\alpha(\theta, \theta') = \min \left\{ 1, \frac{p(\theta')\hat{p}(\mathbf{y}|\theta')q(\theta|\theta')}{p(\theta)\hat{p}(\mathbf{y}|\theta)q(\theta'|\theta)} \right\}
$$

- Replace $p(y|\theta)$ with a Monte Carlo (typically importance sampling) estimate $\hat{p}(\mathbf{v}|\theta)$
- Replacing the likelihood with an *unbiased estimate* still results in the correct invariant distribution [Beaumont, 2003; Andrieu & Roberts, 2009]

Back to the motivating example: Bayesian GPC

- $f|\theta \sim \mathcal{GP}(0, \kappa_{\theta}), p(y_i|f(x_i)) = \frac{1}{1+\exp(-y_i f(x_i))}$
- Cannot use a Gibbs sampler on $p(\theta, f|y)$, which samples from $p(\mathbf{f}|\theta, \mathbf{y})$ and $p(\theta|\mathbf{f}, \mathbf{y})$ in turns, since $p(\theta|\mathbf{f}, \mathbf{y})$ is extremely sharp.
- Use Pseudo-Marginal MCMC to sample $p(\theta|\mathbf{y}) = p(\theta) \int p(\theta, \mathbf{f}|\mathbf{y}) p(\mathbf{f}|\theta) d\mathbf{f}.$
- Unbiased estimate of $\hat{p}(\mathbf{y}|\theta)$ via importance sampling:

$$
\hat{p}(\mathbf{y}|\theta) = \frac{1}{n_{\text{imp}}} \sum_{i=1}^{n_{\text{imp}}} p(\mathbf{y}|\mathbf{f}^{(i)}) \frac{p(\mathbf{f}^{(i)}|\theta)}{Q(\mathbf{f}^{(i)})}
$$

• No access to the gradient or Hessian of the target.

Intractable & Non-linear Target in GPC

- Sliced posterior over hyperparameters of a Gaussian Process classifier on UCI Glass dataset obtained using Pseudo-Marginal MCMC
- Classification of window vs. non-window glass:
	- Heterogeneous structure of each of the classes (non-window glass consists of containers, tableware and headlamps): ambiguities in the set of lengthscales which determine the decision boundary

Adaptive sampler that learns the shape of non-linear targets without gradient information?

RKHS Covariance operator

Definition

The covariance operator of P is $C_P : \mathcal{H}_k \to \mathcal{H}_k$ such that $\forall f, g \in \mathcal{H}_k$, $\langle f, C_P g \rangle_{\mathcal{H}_k} = \text{Cov}_P \left[f(X) g(X) \right].$

• Covariance operator: $C_P : \mathcal{H}_k \to \mathcal{H}_k$ is given by the covariance of canonical features

$$
C_P = \int (k(\cdot, x) - \mu_P) \otimes (k(\cdot, x) - \mu_P) \, dP(x)
$$
RKHS Covariance operator

Definition

The covariance operator of P is $C_P : \mathcal{H}_k \to \mathcal{H}_k$ such that $\forall f, g \in \mathcal{H}_k$, $\langle f, C_P g \rangle_{\mathcal{H}_k} = \text{Cov}_P \left[f(X) g(X) \right].$

• Covariance operator: $C_P: \mathcal{H}_k \to \mathcal{H}_k$ is given by the covariance of canonical features

$$
C_P = \int (k(\cdot, x) - \mu_P) \otimes (k(\cdot, x) - \mu_P) \, dP(x)
$$

Empirical versions of embedding and the covariance operator:

$$
\mu_{\mathbf{z}} = \frac{1}{n} \sum_{i=1}^{n} k(\cdot, z_i) \qquad C_{\mathbf{z}} = \frac{1}{n} \sum_{i=1}^{n} (k(\cdot, z_i) - \mu_{\mathbf{z}}) \otimes (k(\cdot, z_i) - \mu_{\mathbf{z}})
$$

The empirical covariance captures non-linear features of the underlying distribution, e.g. Kernel PCA [Schölkopf, Smola and Müller, 1998]

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 17 / 44

Based on chain history $\{z_i\}_{i=1}^n$, capture non-linearities using covariance $C_{\mathbf{z}}=\frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n\left(k(\cdot,z_i)-\mu_{\mathbf{z}}\right)\otimes\left(k(\cdot,z_i)-\mu_{\mathbf{z}}\right)$ in the RKHS \mathcal{H}_{k} .

Based on chain history $\{z_i\}_{i=1}^n$, capture non-linearities using covariance $C_{\mathbf{z}}=\frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n\left(k(\cdot,z_i)-\mu_{\mathbf{z}}\right)\otimes\left(k(\cdot,z_i)-\mu_{\mathbf{z}}\right)$ in the RKHS \mathcal{H}_{k} .

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 18 / 44

Based on chain history $\{z_i\}_{i=1}^n$, capture non-linearities using covariance $C_{\mathbf{z}}=\frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n\left(k(\cdot,z_i)-\mu_{\mathbf{z}}\right)\otimes\left(k(\cdot,z_i)-\mu_{\mathbf{z}}\right)$ in the RKHS \mathcal{H}_k .

Based on chain history $\{z_i\}_{i=1}^n$, capture non-linearities using covariance $C_{\mathbf{z}}=\frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n\left(k(\cdot,z_i)-\mu_{\mathbf{z}}\right)\otimes\left(k(\cdot,z_i)-\mu_{\mathbf{z}}\right)$ in the RKHS \mathcal{H}_k .

Proposal Construction Summary

- \textbf{D} Get a chain subsample $\textbf{z} = \{z_i\}_{i=1}^n$
- **2** Construct an RKHS sample $f \sim \mathcal{N}(k(\cdot, x_t), \nu^2 C_{\mathbf{z}})$
- \bullet Propose x' such that $k\left(\cdot,x'\right)$ is close to f (with an additional exploration term $\xi \sim \mathcal{N}\left(0, \gamma^2 I_d\right)$).

Proposal Construction Summary

 \textbf{D} Get a chain subsample $\textbf{z} = \{z_i\}_{i=1}^n$

2 Construct an RKHS sample $f \sim \mathcal{N}(k(\cdot, x_t), \nu^2 C_{\mathbf{z}})$

 \bullet Propose x' such that $k\left(\cdot,x'\right)$ is close to f (with an additional exploration term $\xi \sim \mathcal{N}\left(0, \gamma^2 I_d\right)$).

This gives:

$$
x'|x_t, f, \xi = x_t - \eta \nabla_x ||k(\cdot, x) - f||^2_{\mathcal{H}_k} ||_{x=x_t} + \xi
$$

Proposal Construction Summary

D Get a chain subsample
$$
\mathbf{z} = \{z_i\}_{i=1}^n
$$

2 Construct an RKHS sample $f \sim \mathcal{N}(k(\cdot, x_t), \nu^2 C_{\mathbf{z}})$

 \bullet Propose x' such that $k\left(\cdot,x'\right)$ is close to f (with an additional exploration term $\xi \sim \mathcal{N}\left(0, \gamma^2 I_d\right)$).

This gives:

$$
x'|x_t, f, \xi = x_t - \eta \nabla_x ||k(\cdot, x) - f||^2_{\mathcal{H}_k} ||_{x=x_t} + \xi
$$

Integrate out RKHS samples f, gradient step, and ξ to obtain marginal Gaussian proposal on the input space:

$$
q_{\mathbf{z}}(x'|x_t) = \mathcal{N}(x_t, \gamma^2 I_d + \nu^2 M_{\mathbf{z}, x_t} H M_{\mathbf{z}, x_t}^\top),
$$

$$
M_{\mathbf{z},x_t} = \left[\nabla_x k(x,z_1)|_{x=x_t}, \ldots, \nabla_x k(x,z_n)|_{x=x_t}\right].
$$

MCMC Kameleon: Kernel Adaptive Metropolis Hastings

Input: unnormalized target π ; subsample size n; scaling parameters ν, γ , kernel k; $\sum_{t=1}^{\infty} p_t = \infty$ update schedule $\{p_t\}_{t>1}$ with $p_t \rightarrow 0$,

At iteration $t+1$,

- \textbf{D} With probability p_t , update a random subsample $\textbf{z} = \{z_i\}_{i=1}^n$ of the chain history $\{x_i\}_{i=0}^{t-1}$,
- \bullet Sample proposed point x' from $q_{\mathbf{z}}(\cdot|x_t) = \mathcal{N}(x_t, \gamma^2 I_d + \nu^2 M_{\mathbf{z}, x_t} H M_{\mathbf{z}, x_t}^\top),$
- ³ Accept/Reject with standard MH ratio:

$$
x_{t+1} = \begin{cases} x', & \text{w.p. min } \left\{ 1, \frac{\pi(x')q_{\mathbf{z}}(x_t|x')}{\pi(x_t)q_{\mathbf{z}}(x'|x_t)} \right\}, \\ x_t, & \text{otherwise.} \end{cases}
$$

MCMC Kameleon: Kernel Adaptive Metropolis Hastings

Input: unnormalized target π ; subsample size n; scaling parameters ν, γ , kernel k; $\sum_{t=1}^{\infty} p_t = \infty$ update schedule $\{p_t\}_{t>1}$ with $p_t \rightarrow 0$,

At iteration $t+1$,

- \textbf{D} With probability p_t , update a random subsample $\textbf{z} = \{z_i\}_{i=1}^n$ of the chain history $\{x_i\}_{i=0}^{t-1}$,
- \bullet Sample proposed point x' from $q_{\mathbf{z}}(\cdot|x_t) = \mathcal{N}(x_t, \gamma^2 I_d + \nu^2 M_{\mathbf{z}, x_t} H M_{\mathbf{z}, x_t}^\top),$
- **3** Accept/Reject with standard MH ratio:

$$
x_{t+1} = \begin{cases} x', & \text{w.p. min } \left\{ 1, \frac{\pi(x')q_{\mathbf{z}}(x_t|x')}{\pi(x_t)q_{\mathbf{z}}(x'|x_t)} \right\}, \\ x_t, & \text{otherwise.} \end{cases}
$$

Convergence to target π preserved as long as $p_t \to 0$

[Roberts & Rosenthal, 2007].

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 20 / 44

Locally aligned covariance

Kameleon proposals capture local covariance structure

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 21 / 44

Locally aligned covariance

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 21 / 44

Examples of Covariance Structure for Standard Kernels

Linear kernel: $k(x, x') = x^\top x'$

$$
q_{\mathbf{z}}(\cdot|y) = \mathcal{N}(y, \gamma^2 I + 4\nu^2 \mathbf{Z}^\top H \mathbf{Z})
$$

which is classical Adaptive Metropolis [Haario et al 1999;2001].

Examples of Covariance Structure for Standard Kernels

Linear kernel: $k(x, x') = x^\top x'$

$$
q_{\mathbf{z}}(\cdot|y) = \mathcal{N}(y, \gamma^2 I + 4\nu^2 \mathbf{Z}^\top H \mathbf{Z})
$$

which is classical Adaptive Metropolis [Haario et al 1999;2001].

Gaussian RBF kernel: $k(x,x') = \exp \left(-\frac{1}{2\sigma^2}\left\|x-x'\right\|_2^2\right)$ $\begin{pmatrix} 2 \ 2 \end{pmatrix}$

$$
\begin{array}{rcl}\n\left[\text{cov}[q_{\mathbf{z}(\cdot|x_t)}]\right]_{ij} & = & \gamma^2 \delta_{ij} + \frac{4\nu^2}{\sigma^4} \sum_{\ell=1}^n \left[k(y, z_\ell)\right]^2 (z_{\ell,i} - x_{t,i}) (z_{\ell,j} - x_{t,j}) \\
& & + & \mathcal{O}\left(\frac{1}{n}\right).\n\end{array}
$$

Influence of previous points z_{ℓ} on the proposal covariance is weighted by the similarity $k(x_t, z_\ell)$ to the current location x_t .

- (SM) Standard Metropolis with the isotropic proposal $q(\cdot|x_t)=\mathcal{N}(x_t,\nu^2 I)$ and scaling $\nu=2.38/\sqrt{d}$ [Gelman, Roberts & Gilks, 1996].
- (AM-FS) Adaptive Metropolis with a learned covariance matrix and √ fixed global scaling $\nu=2.38/\surd d$
- (AM-LS) Adaptive Metropolis with a learned covariance matrix and global scaling ν learned to bring the acceptance rate close to $\alpha^*=0.234$ [Gelman, Roberts & Gilks, 1996].
- **(KAMH-LS)** MCMC Kameleon with the global scaling ν learned to bring the acceptance rate close to $\alpha^*=0.234$

comparison in terms of all mixed moments up to order 3

8-dimensional non-linear posterior $p(\theta|\mathbf{y})$: no ground truth, performance with respect to a long-run, heavily thinned benchmark sample.

comparison in terms of all mixed moments up to order 3

8-dimensional non-linear posterior $p(\theta|\mathbf{y})$: no ground truth, performance with respect to a long-run, heavily thinned benchmark sample.

comparison in terms of all mixed moments up to order 3

8-dimensional non-linear posterior $p(\theta|\mathbf{y})$: no ground truth, performance with respect to a long-run, heavily thinned benchmark sample.

Random Fourier features: Inverse Kernel Trick

Bochner's representation: any positive definite translation-invariant kernel on \mathbb{R}^p can be written as

$$
k(x,y) = \int_{\mathbb{R}^p} \exp(i\omega^\top (x-y)) d\Lambda(\omega)
$$

=
$$
\int_{\mathbb{R}^p} {\cos (\omega^\top x) \cos (\omega^\top y) + \sin (\omega^\top x) \sin (\omega^\top y)} d\Lambda(\omega)
$$

for some positive measure (w.l.o.g. a probability distribution) Λ .

• Sample *m* frequencies $\{\omega_i\} \sim \Lambda$ and use a Monte Carlo estimator of the kernel function instead [Rahimi & Recht, 2007]:

$$
\hat{k}(x, y) = \frac{1}{m} \sum_{j=1}^{m} \{ \cos (\omega_j^{\top} x) \cos (\omega_j^{\top} y) + \sin (\omega_j^{\top} x) \sin (\omega_j^{\top} y) \}
$$

= $\langle \varphi_{\omega}(x), \varphi_{\omega}(y) \rangle_{\mathbb{R}^{2m}},$

with an explicit set of features $x\mapsto \sqrt{\frac{1}{m}}$ $\frac{1}{m}\left[\cos\left(\omega_{1}^{\top}x\right),\sin\left(\omega_{1}^{\top}x\right),\ldots\right]$

 \bullet How fast does m need to grow with n ? Sublinear for regression [Bach, 2015; Rudi et al, 2016]

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 25 / 44

RFF Kameleon

- Kameleon updates cost $O(np^2+p^3)$ where p is the ambient dimension and n is the number of samples used to estimate the RKHS covariance
- A version based on random Fourier features allows online updates independent of n , costing $O(m^2p + mp^2 + p^3)$ preserves the benefits of capturing nonlinear covariance structure with no limit on the number of samples that can be used - better estimation of covariance in the "wrong" RKHS.

8-dimensional synthetic Banana distribution [A. Kotlicki, MSc Thesis, Oxford, 2015]

Summary

- A family of simple, versatile, gradient-free adaptive MCMC samplers.
- Proposals automatically conform to the local covariance structure of the target distribution at the current chain state.
- Outperforming existing approaches on intractable target distributions with nonlinear dependencies.
- Random Fourier feature expansions: tradeoffs between the computational and statistical efficiency

code: https://github.com/karlnapf/kameleon-mcmc

[Gradient-free kernel-based proposals in adaptive Metropolis-Hastings](#page-18-0)

[Using Kernel MMD as a criterion in ABC](#page-57-0)

[\(Conditional\) distribution regression for semi-automatic ABC](#page-69-0)

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 27 / 44

K2-ABC: Approximate Bayesian Computation with Kernel Embeddings. AISTATS 2016 Mijung Park, Wittawat Jitkrittum, and DS. <http://arxiv.org/abs/1502.02558> Code: <https://github.com/wittawatj/k2abc>

 \bullet Observe a dataset $\mathbf{Y},$

$$
p(\theta|\mathbf{Y}) \propto p(\theta)p(\mathbf{Y}|\theta)
$$

= $p(\theta) \int p(\mathbf{X}|\theta) d\delta_{\mathbf{Y}}(\mathbf{X})$
 $\approx p(\theta) \int p(\mathbf{X}|\theta) \kappa_{\epsilon}(\mathbf{X}, \mathbf{Y}) d\mathbf{X},$

where $\kappa_{\epsilon}(\mathbf{X}, \mathbf{Y})$ defines similarity of \mathbf{X} and \mathbf{Y} .

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 29 / 44

 \bullet Observe a dataset $\mathbf Y$.

$$
p(\theta|\mathbf{Y}) \propto p(\theta)p(\mathbf{Y}|\theta)
$$

= $p(\theta) \int p(\mathbf{X}|\theta) d\delta_{\mathbf{Y}}(\mathbf{X})$
 $\approx p(\theta) \int p(\mathbf{X}|\theta) \kappa_{\epsilon}(\mathbf{X}, \mathbf{Y}) d\mathbf{X},$

where $\kappa_{\epsilon}(\mathbf{X}, \mathbf{Y})$ defines similarity of **X** and **Y**.

$$
\text{(ABC likelihood)} \ \ p_{\epsilon}(\mathbf{Y} | \theta) := \int p(\mathbf{X} | \theta) \kappa_{\epsilon}(\mathbf{X}, \mathbf{Y}) \, \mathrm{d}\mathbf{X}.
$$

- **•** Simplest choice $\kappa_{\epsilon}(\mathbf{X}, \mathbf{Y}) := \mathbf{1}(\rho(\mathbf{X}, \mathbf{Y}) < \epsilon)$
	- \bullet ρ : a distance function between observed and simulated data
	- $\mathbf{1}(\cdot) \in \{0,1\}$: indicator function

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 29 / 44

Rejection ABC Algorithm

- **Input:** observed dataset Y, distance ρ , threshold ϵ
- $\mathsf{Output:}$ posterior sample $\{\theta_i\}_{i=1}^M$ from approximate posterior $p_{\epsilon}(\theta|\mathbf{Y}) \propto p(\theta)p_{\epsilon}(\mathbf{Y}|\theta)$

• Notation: $Y =$ observed set. $X =$ pseudo (generated) dataset.

Data Similarity via Summary Statistics

 \bullet Distance ρ is typically defined via summary statistics

 $\rho(\mathbf{X}, \mathbf{Y}) = ||s(\mathbf{X}) - s(\mathbf{Y})||_2.$

- How to select the summary statistics $s(\cdot)$? Unless $s(\cdot)$ is sufficient, targets the incorrect (partial) posterior $p(\theta|s(\mathbf{Y}))$ rather than $p(\theta|\mathbf{Y})$.
- Hard to quantify additional bias.
	- Adding more summary statistics decreases "information loss": $p(\theta|s(\mathbf{Y})) \approx p(\theta|\mathbf{Y})$
	- ρ computed on a higher dimensional space without appropriate calibration of distances therein, leads to a higher rejection rate so need to increase ϵ $p_{\epsilon}(\theta|s(\mathbf{Y})) \not\approx p(\theta|s(\mathbf{Y}))$

Data Similarity via Summary Statistics

 \bullet Distance ρ is typically defined via summary statistics

 $\rho(\mathbf{X}, \mathbf{Y}) = ||s(\mathbf{X}) - s(\mathbf{Y})||_2.$

- How to select the summary statistics $s(\cdot)$? Unless $s(\cdot)$ is sufficient, targets the incorrect (partial) posterior $p(\theta|s(\mathbf{Y}))$ rather than $p(\theta|\mathbf{Y})$.
- Hard to quantify additional bias.
	- Adding more summary statistics decreases "information loss": $p(\theta|s(\mathbf{Y})) \approx p(\theta|\mathbf{Y})$
	- ρ computed on a higher dimensional space without appropriate calibration of distances therein, leads to a higher rejection rate so need to increase ϵ : $p_{\epsilon}(\theta|s(\mathbf{Y})) \not\approx p(\theta|s(\mathbf{Y}))$
- Contribution: Use a nonparametric distance (MMD) between the empirical measures of datasets $\mathbf X$ and $\mathbf Y)$.
	- No need to design $s(\cdot)$.
	- Rejection rate does not blow up since MMD penalises the higher order moments via Mercer expansion.

Embeddings via Mercer Expansion

Mercer Expansion

For a compact metric space \mathcal{X} , and a continous kernel k,

$$
k(x,y) = \sum_{r=1}^{\infty} \lambda_r \Phi_r(x) \Phi_r(y),
$$

with $\{\lambda_r, \Phi_r\}_{r \geq 1}$ eigenvalue, eigenfunction pairs of $f\mapsto \int f(x)k(\cdot,x)dP(x)$ on $L_2(P)$, with $\lambda_r\to 0$, as $r\to\infty$. Φ_r are typically functions of increasing "complexity", i.e., Hermite polynomials of increasing degree.

$$
\mathcal{H}_k \ni k(\cdot, x) \leftrightarrow \left\{ \sqrt{\lambda_r} \Phi_r(x) \right\} \in \ell_2
$$
\n
$$
\mathcal{H}_k \ni \mu_k(P) \leftrightarrow \left\{ \sqrt{\lambda_r} \mathbb{E} \Phi_r(X) \right\} \in \ell_2
$$
\n
$$
\left\| \mu_k(\hat{P}) - \mu_k(\hat{Q}) \right\|_{\mathcal{H}_k}^2 = \sum_{r=1}^{\infty} \lambda_r \left(\frac{1}{n_x} \sum_{t=1}^{n_x} \Phi_r(X_t) - \frac{1}{n_y} \sum_{t=1}^{n_y} \Phi_r(Y_t) \right)^2
$$

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30 30/03/2016 32

II II

K2-ABC (proposed method)

• Input: observed data Y, threshold ϵ

 $\mathsf{Output} \colon \mathsf{Empirical}\ \mathsf{posterior}\ \textstyle\sum_{i=1}^{M} w_i \delta_{\theta_i}$

1: **for**
$$
i = 1, ..., M
$$
 do
\n2: Sample $\theta_i \sim p(\theta)$
\n3: Sample pseudo dataset $\mathbf{X}_i \sim p(\cdot|\theta_i)$
\n4: $\widetilde{w}_i = \kappa_\epsilon(\mathbf{X}_i, \mathbf{Y}) = \exp\left(-\frac{\widehat{\text{MMD}}^2(\mathbf{X}_i, \mathbf{Y})}{\epsilon}\right)$
\n5: **end for**
\n6: $w_i = \widetilde{w}_i / \sum_{j=1}^M \widetilde{w}_j$ for $i = 1, ..., M$

Easy to sample from $\sum_{i=1}^M w_i \delta_{\theta_i}.$

• "K2" because we use two kernels. k (in MMD) and κ_{ϵ} .

Toy data: Failure of Insufficient Statistics

 \bullet Summary statistics $s(\mathbf{y}) = (\mathbb{\hat{E}}[\mathbf{y}], \mathbb{\hat{V}}[\mathbf{y}])^\top$ are insufficient to represent $p(\mathbf{y}|\theta)$.

D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 34 / 44

Blow Fly Population Modelling

Number of blow flies over time

$$
Y_{t+1} = PY_{t-\tau} \exp\left(-\frac{Y_{t-\tau}}{Y_0}\right) e_t + Y_t \exp(-\delta \epsilon_t)
$$

\n- $$
e_t \sim \text{Gam}\left(\frac{1}{\sigma_P^2}, \sigma_P^2\right)
$$
 and $\epsilon_t \sim \text{Gam}\left(\frac{1}{\sigma_d^2}, \sigma_d^2\right)$
\n- Want $\theta := \{P, Y_0, \sigma_d, \sigma_p, \tau, \delta\}$
\n

- Simulated trajectories with inferred posterior mean of θ
	- Observed sample of size 180.
	- Other methods use handcrafted 10-dimensional summary statistics $s(\cdot)$ from [Meeds & Welling, 2014]: quantiles of marginals, first-order differences, maximal peaks, etc.

.

Blowfly dataset

- Let $\tilde{\theta}$ be the posterior mean.
- Simulate $\mathbf{X} \sim p(\cdot|\tilde{\theta})$.
- $\mathbf{s} = s(\mathbf{X})$ and $\mathbf{s}^* = s(\mathbf{Y}).$

· Improved mean squared error on s, even though SL-ABC, SA-custom explicitly operate on s while K2-ABC does not.

- Computation of $\widehat{\text{MMD}}^2(\mathbf{X}, \mathbf{Y})$ costs $O(n^2)$.
- Linear-time unbiased estimators of $\rm MMD^2$ or random feature expansions reduce the cost to $O(n)$.

2 [Gradient-free kernel-based proposals in adaptive Metropolis-Hastings](#page-18-0)

[Using Kernel MMD as a criterion in ABC](#page-57-0)

4 [\(Conditional\) distribution regression for semi-automatic ABC](#page-69-0)

DR-ABC: Approximate Bayesian Computation with Kernel-Based Distribution Regression Jovana Mitrovic, DS, and Yee Whye Teh. <http://arxiv.org/abs/1602.04805>

Semi-Automatic ABC

 \bullet [Fearnhead & Prangle, 2012] consider summary statistics "optimal" for Bayesian inference with respect to a particular loss function, i.e. achieves the minimum expected loss under the true posterior

 $\int L(\theta, \hat{\theta}) p(\theta | \mathbf{y}) d\theta,$

where $\hat{\theta}$ is a point estimate under the ABC partial posterior $p_{\epsilon}(\theta|s(\mathbf{y}))$.

- Under the squared loss $L(\theta, \hat{\theta}) = \|\theta \hat{\theta}\|_2^2$, and for $\hat{\theta} = \mathbb{E}_\epsilon\left[\theta | s(\mathbf{y})\right]$, the optimal summary statistic is the true posterior mean $s(\mathbf{y}) = \mathbb{E}[\theta | \mathbf{y}]$.
	- Results in ABC approximation that attempts to have the same posterior mean as the true posterior (but still returns the whole posterior).
Semi-Automatic ABC

 \bullet [Fearnhead & Prangle, 2012] consider summary statistics "optimal" for Bayesian inference with respect to a particular loss function, i.e. achieves the minimum expected loss under the true posterior

 $\int L(\theta, \hat{\theta}) p(\theta | \mathbf{y}) d\theta,$

where $\hat{\theta}$ is a point estimate under the ABC partial posterior $p_{\epsilon}(\theta|s(\mathbf{y}))$.

- Under the squared loss $L(\theta, \hat{\theta}) = \|\theta \hat{\theta}\|_2^2$, and for $\hat{\theta} = \mathbb{E}_\epsilon\left[\theta | s(\mathbf{y})\right]$, the optimal summary statistic is the true posterior mean $s(\mathbf{y}) = \mathbb{E}[\theta | \mathbf{y}]$.
	- Results in ABC approximation that attempts to have the same posterior mean as the true posterior (but still returns the whole posterior).

SA-ABC

- Use regression on simulated (\mathbf{x}_i, θ_i) pairs to estimate the regression function $q(\mathbf{x}) = \mathbb{\hat{E}} [\theta | \mathbf{x}]$.
- \bullet Use g as the summary statistic in the usual ABC algorithm.

- Linear on all concatenated dataset x_i ? Adding quadratic terms and/or basis functions? Can be extremely high-dimensional and poorly behaved.
- \bullet Target θ is not a property of the concatenated data but of its generating distribution $p(\cdot|\theta)$.
- Linear on all concatenated dataset x_i ? Adding quadratic terms and/or basis functions? Can be extremely high-dimensional and poorly behaved.
- \bullet Target θ is not a property of the concatenated data but of its generating distribution $p(\cdot|\theta)$.
- Contribution: Distribution regression (for iid data from $p(\cdot|\theta)$) and conditional distribution regression (for time series or models with "auxiliary observations") to select optimal summary statistics.

Learning on Distributions

- Multiple-Instance Learning: Input is a bag of B_i vectors $\mathbf{x}_i = \{x_{i1}, \dots, x_{iB_i}\}$, each $x_{ia} \in X$ assumed to arise from a probability distribution P_i on \mathcal{X} .
- Represent the i -th bag by the corresponding empirical kernel embedding w.r.t. a kernel k on \mathcal{X} .

$$
\mathfrak{m}_i = \mathfrak{m}[\mathbf{x}_i] = \widehat{\mu_k[\mathsf{P}_i]} = \frac{1}{B_i} \sum_{a=1}^{B_i} k(\cdot, x_{ia})
$$

• Now treat the problem as having inputs $m_i \in \mathcal{H}_k$: just need to define a kernel K on \mathcal{H}_k . [Muandet et al, 2012; Szabo et al, 2015]. B_j

 $\textsf{Linear:} \qquad K(\mathfrak{m}_i, \mathfrak{m}_j) = \langle \mathfrak{m}_i, \mathfrak{m}_j \rangle_{\mathcal{H}_k} = \frac{1}{B_{\text{old}}}$ B_iB_j $\sum_{i=1}^{B_i}$ $a=1$ \sum $_{b=1}$ $k(x_{ia}, x_{jb})$

Gaussian:
$$
K(\mathfrak{m}_i, \mathfrak{m}_j) = \exp\left(-\frac{1}{2\gamma^2} ||\mathfrak{m}_i - \mathfrak{m}_j||^2_{\mathcal{H}_k}\right).
$$

Term $\left\|\mathfrak{m}_{i}-\mathfrak{m}_{j}\right\|_{\mathcal{P}}^{2}$ $_{\mathcal{H}_{k}}^{2}$ is precisely the MMD². D.Sejdinovic (University of Oxford) [Kernels and Intractable Likelihoods](#page-0-0) 30/03/2016 40 / 44

DR-ABC

Input: prior $p(\theta)$, simulator $p(\cdot|\theta)$, observed data $\mathbf{y} = \{y_i\}_i$, threshold ϵ $\mathsf{Step~1:}$ Simulate training pairs $(\theta_i, \mathbf{x}_i)_{i=1}^n$, where each $\mathbf{x}_i = (x_{i1}, \dots, x_{iB}) \stackrel{i.i.d.}{\sim} p(\cdot|\theta)$ and perform distribution kernel ridge regression:

$$
g(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i K(\mathfrak{m}[\mathbf{x}], \mathfrak{m}_i)
$$

with $\alpha=({\bf K}+\lambda I)^{-1}{\bm\theta}$, ${\bf K}_{ij}=K(\mathfrak{m}_i,\mathfrak{m}_j)$ and ${\bm\theta}=[\theta_1,\theta_2,\ldots,\theta_n]^\top$ **Step 2:** Run ABC with $g(\cdot)$ as the summary statistic.

Regression from Conditional Distributions

 \bullet Often, θ models a certain transition operator, e.g. time series, or a conditional distribution of observations given certain auxiliary information z (e.g. a spatial location). In that case, more natural to regress from a conditional embedding operator [Fukumizu et al 2008; Song et al 2013] $C_{X|Z}: \mathcal H_{k_Z} \to \mathcal H_{k_X}$ of $\{P_\theta(\cdot|z)\}_{z \in \mathcal Z},$ such that

$$
\mu_{X|Z=z} = C_{X|Z} k_{\mathcal{Z}}(\cdot, z), \quad C_{X|Z} C_{ZZ} = C_{XZ}
$$

- Now simply need a kernel on the space of linear operators from $\mathcal{H}_{k,z}$ to $\mathcal{H}_{k_\mathcal{X} }$, e.g. a linear kernel $K(C,C')=Tr(C^*C')$ or any kernel that depends on $||C-C'||_{HS}$.
- Easily implementable with multiple layers of random Fourier features.

Experiments

Toy example: Gaussian hierarchical model

 $\theta \sim \mathcal{N}(2,1),$ $z \sim \mathcal{N}(0, 2),$ $x|z, \theta \sim \mathcal{N}(\theta z^2, 1).$ Blowfly data, again.

Summary

\bullet K₂-ABC

- A dissimilarity criterion for ABC based on MMD between empirical distributions of observed and simulated data
- No "information loss" due to insufficient statistics.
- Simple and effective when parameters model marginal distribution of observations.
- Can be thought of as kernel smoothing (Nadaraya-Watson) on the space of embeddings of empirical distributions.

o DR-ABC

- When constructing a summary statistic optimal with respect to a certain loss function, supervised learning from data to parameter space can be used.
- Distribution regression, i.e. kernel ridge regression on the space of embeddings, and conditional distribution regression natural in this context.
- Flexible framework which allows application to time series, group-structured or spatial observations, dynamic systems etc.