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Intractable Likelihood

Interested in Bayesian posterior inference:

p(θ|D) =
p(θ)p(D|θ)

p(D)

The case of intractable p(D) =
´
p(θ)p(D|θ)dθ: while posterior

density is intractable, can use MCMC to generate an (asymptotically
exact) sample from p(θ|D)

The case of intractable p(D|θ): doubly intractable posterior which
cannot be evaluated even up to a normalising constant.

Two situations where (approximate) posterior inference is still possible:

Can simulate from p(·|θ) for any θ ∈ Θ:
Approximate Bayesian Computation (ABC)
[Tavaré et al, 1997; Beaumont et al, 2002]

Can construct an unbiased estimator of p(D|θ):
Pseudo-Marginal MCMC [Beaumont, 2003; Andrieu & Roberts, 2009]
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Motivating Example I: Bayesian GP Classi�cation

Given: covariates X and labels y = [y1, . . . , yn].

Model: y depends on X via latent Gaussian process
f = [f(x1), . . . , f(xn)], with covariance parametrised by θ ∈ Θ

• f |θ ∼ GP(0, κθ) has a covariance function κθ.
• Logistic link p(y|f) =

∏n
i=1

1
1+exp(−yifi) , yi ∈ {−1, 1}.

• κθ: Automatic Relevance Determination (ARD) covariance function:

κθ(xi,xj) = exp

(
−1

2

d∑
s=1

(xi,s − xj,s)2

exp(θs)

)

Goal: For a prior p(θ), sample from p(θ|y) [Williams & Barber, 1998;

Filippone & Girolami, 2014]

• Likelihood p(y|θ) =
´
p(y|f)p(f |θ)df is intractable but can be

unbiasedly estimated (by e.g. importance sampling f).

• Posterior of θ can have tightly coupled and nonlinearly dependent
dimensions - how to sample from it e�ciently without gradients?
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Motivating example II: ABC for modelling ecological dynamics

Given: a time series Y = (Y1, . . . , YT ) of population sizes of a blow�y.

Model: A dynamical system for blow�y population (a discretised
ODE) [Nicholson, 1954; Gurney et al, 1980; Wood, 2010; Meeds & Welling, 2014]

Yt+1 = PYt−τ exp

(
−Yt−τ

Y0

)
et + Yt exp(−δεt),

where et ∼ Gamma
(

1
σ2
P
, σ2
P

)
, εt ∼ Gamma

(
1
σ2
d
, σ2
d

)
.

Parameter vector: θ = {P, Y0, σd, σp, τ, δ}.
B. from prior

1e4

#
 f
li
e
s

Goal: For a prior p(θ), sample from p(θ|Y).
• Cannot evaluate p(Y|θ). But, can sample from p(·|θ).

• For X = (X1, . . . , XT ) ∼ p(·|θ), how to measure distance ρ(X,Y)?
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Outline

1 Preliminaries on Kernel Embeddings

2 Gradient-free kernel-based proposals in adaptive Metropolis-Hastings

3 Using Kernel MMD as a criterion in ABC

4 (Conditional) distribution regression for semi-automatic ABC
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Reproducing Kernel Hilbert Space (RKHS)

De�nition ([Aronszajn, 1950; Berlinet & Thomas-Agnan, 2004])

Let X be a non-empty set and H be a Hilbert space of real-valued
functions de�ned on X . A function k : X × X → R is called a reproducing

kernel of H if:

1 ∀x ∈ X , k(·, x) ∈ H, and
2 ∀x ∈ X , ∀f ∈ H, 〈f, k(·, x)〉H = f(x).

If H has a reproducing kernel, it is said to be a reproducing kernel Hilbert

space.

In particular, for any x, y ∈ X ,
k(x, y) = 〈k (·, y) , k (·, x)〉H = 〈k (·, x) , k (·, y)〉H. Thus H servers as a
canonical feature space with feature map x 7→ k(·, x).

Equivalently, all evaluation functionals f 7→ f(x) are continuous (norm
convergence implies pointwise convergence).
Moore-Aronszajn Theorem: every positive semide�nite
k : X × X → R is a reproducing kernel and has a unique RKHS Hk.
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Kernel Trick and Kernel Mean Trick

implicit feature map x 7→ k(·, x) ∈ Hk
replaces x 7→ [ϕ1(x), . . . , ϕs(x)] ∈ Rs

〈k(·, x), k(·, y)〉Hk
= k(x, y)

inner products readily available

• nonlinear decision boundaries, nonlinear

regression functions, learning on

non-Euclidean/structured data

[Cortes & Vapnik, 1995;

Schölkopf & Smola, 2001]

RKHS embedding: implicit feature mean
[Smola et al, 2007; Sriperumbudur et al, 2010]

P 7→ µk(P ) = EX∼Pk(·, X) ∈ Hk
replaces P 7→ [Eϕ1(X), . . . ,Eϕs(X)] ∈ Rs

〈µk(P ), µk(Q)〉Hk
= EX∼P,Y∼Qk(X,Y )

inner products easy to estimate

• nonparametric two-sample, independence,

conditional independence, interaction testing,

learning on distributions
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• nonparametric two-sample, independence,

conditional independence, interaction testing,

learning on distributions

[Gretton et al, 2005; Gretton et

al, 2006; Fukumizu et al, 2007;

DS et al, 2013; Muandet et al,

2012; Szabo et al, 2015]
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Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al,

2007] between P and Q:

6 4 2 0 2 4 6
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

MMDk(P ,Q) = ‖µk(P )− µk(Q)‖Hk
= sup
f∈Hk: ‖f‖Hk

≤1
|Ef(X)− Ef(Y )|

Characteristic kernels: MMDk(P ,Q) = 0 i� P = Q.
• Gaussian RBF exp(− 1

2σ2 ‖x− x′‖22), Matérn family, inverse
multiquadrics.

For characteristic kernels on LCH X , MMD metrizes weak* topology
on probability measures [Sriperumbudur,2010],

MMDk (Pn, P )→ 0⇔ Pn  P.
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Some uses of MMD

within-sample average similarity
�

between-sample average similarity

k(dogi, fishj)

k(fishi, fishj)

k(dogi, dogj)

k(fishj , dogi)

Figure by Arthur Gretton

MMD has been applied to:

independence tests [Gretton et al, 2009]

two-sample tests [Gretton et al, 2012]

training generative neural networks
for image data [Dziugaite, Roy and

Ghahramani, 2015]

traversal of manifolds learned by
convolutional nets [Gardner et al, 2015]

similarity measure between
observed and simulated data in
ABC [Park, Jitkrittum and DS, 2015]

MMD2
k (P ,Q) = E

X,X′i.i.d.∼ P
k(X,X ′)+E

Y ,Y ′i.i.d.∼ Q
k(Y , Y ′)−2EX∼P,Y∼Qk(X,Y ).
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Outline

1 Preliminaries on Kernel Embeddings
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Kernel Adaptive Metropolis Hastings. ICML 2014.
DS, Heiko Strathmann, Maria Lomeli, Christophe Andrieu
and Arthur Gretton,
http://jmlr.org/proceedings/papers/v32/sejdinovic14.pdf

Code: https://github.com/karlnapf/kameleon-mcmc
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Metropolis-Hastings MCMC

Access to unnormalized target π(θ) ∝ p(θ|D)

Generate a Markov chain with the posterior p(·|D) as the invariant
distribution

• Initialize θ0 ∼ p0
• At iteration t ≥ 0, propose to move to state θ′ ∼ q(·|θt)
• Accept/Reject proposals based on the MH acceptance ratio (preserves
detailed balance)

θt+1 =

{
θ′, w.p. min

{
1, π(θ

′)q(θt|θ′)
π(θt)q(θ′|θt)

}
,

θt, otherwise.
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The choice of proposal q

What proposal q(·|θt) to use in Metropolis-Hastings algorithms?
• Variance of the proposal is too small:

small increments → slow convergence
• Variance of the proposal is too large:

too many rejections → slow convergence

In high dimensions: very di�erent scalings along di�erent principal
directions

[Gelman, Roberts & Gilks, 1996]: in random walk Metropolis with proposal
q(·|θt) = N (θt,Σ) on a product target π (independent dimensions):

• Σ = 2.382

d Σπ is shown to be asymptotically optimal as d→∞
• Asymptotically optimal acceptance rate of 0.234.

Σπ unknown � can we learn it while running the chain?

Assumptions not valid for complex targets � non-linear dependence
between principal directions?
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Adaptive MCMC

Adaptive Metropolis [Haario, Saksman & Tamminen, 2001]: Update
proposal qt(·|θt) = N (θt, ν

2Σ̂t), using estimates of the target
covariance
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Adaptive MCMC

Adaptive Metropolis [Haario, Saksman & Tamminen, 2001]: Update
proposal qt(·|θt) = N (θt, ν

2Σ̂t), using estimates of the target
covariance

Locally miscalibrated for targets with strongly non-linear dependencies:
directions of large variance depend on the current location
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Intractable & Non-linear Targets?

E�cient samplers for targets with non-linear dependencies:
Hybrid/Hamiltonian Monte Carlo (HMC) or Metropolis Adjusted
Langevin Algorithms (MALA) [Duane, Pendleteon & Roweth, 1987; Neal, 2011;

Roberts & Stramer, 2003; Girolami & Calderhead, 2011]

• all require target gradients and second order information.

But in pseudo-marginal MCMC, target π(·) cannot be evaluated -
gradients typically unavailable.
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Pseudo-marginal MCMC

Posterior inference, latent process f

p(θ|y) ∝ p(θ)p(y|θ) = p(θ)

ˆ
p(f |θ)p(y|f , θ)df =: π(θ)

Cannot integrate out f , so cannot compute the MH ratio:

α(θ, θ′) = min

{
1,
p(θ′)p(y|θ′)q(θ|θ′)
p(θ)p(y|θ)q(θ′|θ)

}

Replace p(y|θ) with a Monte Carlo (typically importance sampling)
estimate p̂(y|θ)
Replacing the likelihood with an unbiased estimate still results in the
correct invariant distribution [Beaumont, 2003; Andrieu & Roberts, 2009]
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Back to the motivating example: Bayesian GPC

f |θ ∼ GP(0, κθ), p(yi|f(xi)) = 1
1+exp(−yif(xi))

Cannot use a Gibbs sampler on p(θ, f |y), which samples from
p(f |θ,y) and p(θ|f ,y) in turns, since p(θ|f ,y) is extremely sharp.

Use Pseudo-Marginal MCMC to sample
p(θ|y) = p(θ)

´
p(θ, f |y)p(f |θ)df .

Unbiased estimate of p̂(y|θ) via importance sampling:

p̂(y|θ) =
1

nimp

nimp∑
i=1

p(y|f (i))p(f
(i)|θ)

Q(f (i))

No access to the gradient or Hessian of the target.
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Intractable & Non-linear Target in GPC

Sliced posterior over hyperparameters of a Gaussian Process classi�er
on UCI Glass dataset obtained using Pseudo-Marginal MCMC

Classi�cation of window vs. non-window glass:
• Heterogeneous structure of each of the classes (non-window glass
consists of containers, tableware and headlamps): ambiguities in the
set of lengthscales which determine the decision boundary

−6 −5 −4 −3 −2 −1 0
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Adaptive sampler that learns
the shape of non-linear targets
without gradient information?
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RKHS Covariance operator

De�nition

The covariance operator of P is CP : Hk → Hk such that ∀f, g ∈ Hk,
〈f, CP g〉Hk

= CovP [f(X)g(X)].

Covariance operator: CP : Hk → Hk is given by the covariance of
canonical features

CP =

ˆ
(k(·, x)− µP )⊗ (k(·, x)− µP ) dP (x)

Empirical versions of embedding and the covariance operator:

µz =
1

n

n∑
i=1

k(·, zi) Cz =
1

n

n∑
i=1

(k(·, zi)− µz)⊗ (k(·, zi)− µz)

The empirical covariance captures non-linear features of the underlying
distribution, e.g. Kernel PCA [Schölkopf, Smola and Müller, 1998]
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RKHS covariance informs the MH proposal

Based on chain history {zi}ni=1, capture non-linearities using
covariance Cz = 1

n

∑n
i=1 (k(·, zi)− µz)⊗ (k(·, zi)− µz) in the RKHS

Hk.

xt

Input space X
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Proposal Construction Summary

1 Get a chain subsample z = {zi}ni=1

2 Construct an RKHS sample f ∼ N (k (·, xt) , ν2Cz)

3 Propose x′ such that k (·, x′) is close to f (with an additional
exploration term ξ ∼ N

(
0, γ2Id

)
).

This gives:

x′|xt, f, ξ = xt − η∇x ‖k (·, x)− f‖2Hk
|x=xt + ξ

Integrate out RKHS samples f , gradient step, and ξ to obtain marginal
Gaussian proposal on the input space:

qz(x′|xt) = N (xt, γ
2Id + ν2Mz,xtHM

>
z,xt),

Mz,xt = [∇xk(x, z1)|x=xt , . . . ,∇xk(x, zn)|x=xt ] .
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MCMC Kameleon: Kernel Adaptive Metropolis Hastings
Input: unnormalized target π; subsample size
n; scaling parameters ν, γ, kernel k;
update schedule {pt}t≥1 with pt → 0,∑∞

t=1 pt =∞

At iteration t+ 1,

1 With probability pt, update a random subsample z = {zi}ni=1 of the
chain history {xi}t−1i=0,

2 Sample proposed point x′ from
qz(·|xt) = N (xt, γ

2Id + ν2Mz,xtHM
>
z,xt),

3 Accept/Reject with standard MH ratio:

xt+1 =

{
x′, w.p. min

{
1, π(x

′)qz(xt|x′)
π(xt)qz(x′|xt)

}
,

xt, otherwise.

Convergence to target π preserved as long as pt → 0
[Roberts & Rosenthal, 2007].
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Locally aligned covariance

Kameleon proposals capture local covariance structure
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Examples of Covariance Structure for Standard Kernels

Linear kernel: k(x, x′) = x>x′

qz(·|y) = N (y, γ2I + 4ν2Z>HZ)

which is classical Adaptive Metropolis [Haario et al 1999;2001].

Gaussian RBF kernel: k(x, x′) = exp
(
− 1

2σ2 ‖x− x′‖22
)

[
cov[qz(·|xt)]

]
ij

= γ2δij +
4ν2

σ4

n∑
`=1

[k(y, z`)]
2(z`,i − xt,i)(z`,j − xt,j)

+ O
(

1

n

)
.

In�uence of previous points z` on the proposal covariance is weighted
by the similarity k(xt, z`) to the current location xt.
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Setup

(SM) Standard Metropolis with the isotropic proposal
q(·|xt) = N (xt, ν

2I) and scaling ν = 2.38/
√
d [Gelman, Roberts & Gilks,

1996].

(AM-FS) Adaptive Metropolis with a learned covariance matrix and
�xed global scaling ν = 2.38/

√
d

(AM-LS) Adaptive Metropolis with a learned covariance matrix and
global scaling ν learned to bring the acceptance rate close to
α∗ = 0.234 [Gelman, Roberts & Gilks, 1996].

(KAMH-LS) MCMC Kameleon with the global scaling ν learned to
bring the acceptance rate close to α∗ = 0.234
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UCI Glass dataset
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comparison in terms of all mixed moments up to order 3

8-dimensional non-linear posterior p(θ|y): no ground truth, performance
with respect to a long-run, heavily thinned benchmark sample.
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Random Fourier features: Inverse Kernel Trick
Bochner's representation: any positive de�nite translation-invariant
kernel on Rp can be written as

k(x, y) =

ˆ
Rp

exp
(
iω>(x− y)

)
dΛ(ω)

=

ˆ
Rp

{
cos
(
ω>x

)
cos
(
ω>y

)
+ sin

(
ω>x

)
sin
(
ω>y

)}
dΛ(ω)

for some positive measure (w.l.o.g. a probability distribution) Λ.

Sample m frequencies {ωj} ∼ Λ and use a Monte Carlo estimator of
the kernel function instead [Rahimi & Recht, 2007]:

k̂(x, y) =
1

m

m∑
j=1

{
cos
(
ω>j x

)
cos
(
ω>j y

)
+ sin

(
ω>j x

)
sin
(
ω>j y

)}
= 〈ϕω(x), ϕω(y)〉R2m ,

with an explicit set of features x 7→
√

1
m

[
cos
(
ω>1 x

)
, sin

(
ω>1 x

)
, . . .

]
.

How fast does m need to grow with n? Sublinear for regression [Bach,

2015; Rudi et al, 2016]
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RFF Kameleon

Kameleon updates cost O(np2 + p3) where p is the ambient dimension
and n is the number of samples used to estimate the RKHS covariance

A version based on random Fourier features allows online updates
independent of n, costing O(m2p+mp2 + p3): preserves the bene�ts
of capturing nonlinear covariance structure with no limit on the
number of samples that can be used � better estimation of covariance

in the �wrong� RKHS.
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Summary

A family of simple, versatile, gradient-free adaptive MCMC samplers.

Proposals automatically conform to the local covariance structure of
the target distribution at the current chain state.

Outperforming existing approaches on intractable target distributions
with nonlinear dependencies.

Random Fourier feature expansions: tradeo�s between the
computational and statistical e�ciency

code: https://github.com/karlnapf/kameleon-mcmc
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Outline

1 Preliminaries on Kernel Embeddings

2 Gradient-free kernel-based proposals in adaptive Metropolis-Hastings

3 Using Kernel MMD as a criterion in ABC

4 (Conditional) distribution regression for semi-automatic ABC
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K2-ABC: Approximate Bayesian Computation with Kernel Embeddings.
AISTATS 2016
Mijung Park, Wittawat Jitkrittum, and DS.
http://arxiv.org/abs/1502.02558

Code: https://github.com/wittawatj/k2abc
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ABC

Observe a dataset Y,

p(θ|Y) ∝ p(θ)p(Y|θ)

= p(θ)

ˆ
p(X|θ) dδY(X)

≈ p(θ)
ˆ
p(X|θ)κε(X,Y) dX,

where κε(X,Y) de�nes similarity of X and Y.

(ABC likelihood) pε(Y|θ) :=

ˆ
p(X|θ)κε(X,Y) dX.

Simplest choice κε(X,Y) := 1(ρ(X,Y) < ε)

• ρ : a distance function between observed and simulated data
• 1(·) ∈ {0, 1}: indicator function
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Rejection ABC Algorithm

Input: observed dataset Y, distance ρ, threshold ε

Output: posterior sample {θi}Mi=1 from approximate posterior
pε(θ|Y) ∝ p(θ)pε(Y|θ)

1: repeat
2: Sample θ ∼ p(θ)
3: Sample a pseudo dataset X ∼ p(·|θ)
4: if ρ(X,Y) < ε then
5: Keep θ
6: end if
7: until we have M points

Notation: Y = observed set. X = pseudo (generated) dataset.
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Data Similarity via Summary Statistics

Distance ρ is typically de�ned via summary statistics

ρ(X,Y) = ‖s(X)− s(Y)‖2.

How to select the summary statistics s(·)? Unless s(·) is su�cient,
targets the incorrect (partial) posterior p(θ|s(Y)) rather than p(θ|Y).

Hard to quantify additional bias.

• Adding more summary statistics decreases �information loss�:
p(θ|s(Y)) ≈ p(θ|Y)

• ρ computed on a higher dimensional space - without appropriate
calibration of distances therein, leads to a higher rejection rate so need
to increase ε: pε(θ|s(Y)) 6≈ p(θ|s(Y))

Contribution: Use a nonparametric distance (MMD) between the
empirical measures of datasets X and Y).

• No need to design s(·).
• Rejection rate does not blow up since MMD penalises the higher order
moments via Mercer expansion.
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Embeddings via Mercer Expansion

Mercer Expansion

For a compact metric space X , and a continous kernel k,

k(x, y) =

∞∑
r=1

λrΦr(x)Φr(y),

with {λr,Φr}r≥1 eigenvalue, eigenfunction pairs of
f 7→

´
f(x)k(·, x)dP (x) on L2(P ), with λr → 0, as r →∞. Φr are

typically functions of increasing �complexity�, i.e., Hermite polynomials of
increasing degree.

Hk 3 k(·, x) ↔
{√

λrΦr(x)
}
∈ `2

Hk 3 µk(P ) ↔
{√

λrEΦr(X)
}
∈ `2∥∥∥µk(P̂ )− µk(Q̂)

∥∥∥2
Hk

=
∞∑
r=1

λr

(
1

nx

nx∑
t=1

Φr(Xt)−
1

ny

ny∑
t=1

Φr(Yt)

)2
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K2-ABC (proposed method)

Input: observed data Y, threshold ε

Output: Empirical posterior
∑M

i=1wiδθi

1: for i = 1, . . . ,M do
2: Sample θi ∼ p(θ)
3: Sample pseudo dataset Xi ∼ p(·|θi)

4: w̃i = κε(Xi,Y) = exp

(
− M̂MD

2
(Xi,Y)
ε

)
5: end for
6: wi = w̃i/

∑M
j=1 w̃j for i = 1, . . . ,M

Easy to sample from
∑M

i=1wiδθi .

�K2� because we use two kernels. k (in MMD) and κε.
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Toy data: Failure of Insu�cient Statistics

p(y|θ) =

5∑
i=1

θiUniform(y; [i− 1, i])

π(θ) = Dirichlet(θ;1)

θ∗ = (see �gure A)
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Summary statistics s(y) = (Ê[y], V̂[y])> are insu�cient to represent
p(y|θ).
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Blow Fly Population Modelling
Number of blow �ies over time

Yt+1 = PYt−τ exp

(
−Yt−τ

Y0

)
et + Yt exp(−δεt)

et ∼ Gam
(

1
σ2
P
, σ2P

)
and εt ∼ Gam

(
1
σ2
d
, σ2d

)
.

Want θ := {P, Y0, σd, σp, τ, δ}.

0 180

actual observation

0

1e4

K2-ABC

SL-ABC

K-ABC
0

1e4

0

1e4

# 
fli

es

time

Simulated trajectories with inferred
posterior mean of θ

• Observed sample of size 180.
• Other methods use handcrafted
10-dimensional summary statistics
s(·) from [Meeds & Welling, 2014]:
quantiles of marginals, �rst-order
di�erences, maximal peaks, etc.
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Blow�y dataset

0

2

4

6

8

K2 SL K-ABCSA-custom IS SAQ

Let θ̃ be the posterior mean.

Simulate X ∼ p(·|θ̃).
s = s(X) and s∗ = s(Y).

Improved mean squared error on
s, even though SL-ABC,
SA-custom explicitly operate on
s while K2-ABC does not.

K2 K2-rf K2-lin SL

1

2

3

0

Computation of M̂MD
2
(X,Y)

costs O(n2).

Linear-time unbiased estimators
of MMD2 or random feature
expansions reduce the cost to
O(n).
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Outline
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3 Using Kernel MMD as a criterion in ABC

4 (Conditional) distribution regression for semi-automatic ABC
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DR-ABC: Approximate Bayesian Computation with
Kernel-Based Distribution Regression
Jovana Mitrovic, DS, and Yee Whye Teh.
http://arxiv.org/abs/1602.04805
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Semi-Automatic ABC

[Fearnhead & Prangle, 2012] consider summary statistics �optimal� for
Bayesian inference with respect to a particular loss function, i.e.
achieves the minimum expected loss under the true posterior

ˆ
L(θ, θ̂)p(θ|y)dθ,

where θ̂ is a point estimate under the ABC partial posterior pε(θ|s(y)).

Under the squared loss L(θ, θ̂) = ‖θ− θ̂‖22, and for θ̂ = Eε [θ|s(y)], the
optimal summary statistic is the true posterior mean s(y) = E [θ|y].

• Results in ABC approximation that attempts to have the same posterior
mean as the true posterior (but still returns the whole posterior).

SA-ABC

Use regression on simulated (xi, θi) pairs to estimate the regression
function g(x) = Ê [θ|x].

Use g as the summary statistic in the usual ABC algorithm.
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Regression in SA-ABC

Linear on all concatenated dataset xi? Adding quadratic terms and/or
basis functions? Can be extremely high-dimensional and poorly
behaved.

Target θ is not a property of the concatenated data but of its
generating distribution p(·|θ).

Contribution: Distribution regression (for iid data from p(·|θ)) and
conditional distribution regression (for time series or models with
�auxiliary observations�) to select optimal summary statistics.
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Learning on Distributions

Multiple-Instance Learning: Input is a bag of Bi vectors
xi = {xi1, . . . , xiBi}, each xia ∈ X assumed to arise from a
probability distribution Pi on X .
Represent the i-th bag by the corresponding empirical kernel
embedding w.r.t. a kernel k on X .

mi = m[xi] = µ̂k [Pi] =
1

Bi

Bi∑
a=1

k(·, xia)

Now treat the problem as having inputs mi ∈ Hk: just need to de�ne
a kernel K on Hk. [Muandet et al, 2012; Szabo et al, 2015].

Linear: K(mi,mj) = 〈mi,mj〉Hk
=

1

BiBj

Bi∑
a=1

Bj∑
b=1

k(xia, xjb)

Gaussian: K(mi,mj) = exp

(
− 1

2γ2
‖mi −mj‖2Hk

)
.

Term ‖mi −mj‖2Hk
is precisely the MMD2.
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DR-ABC

Input: prior p(θ), simulator p(·|θ), observed
data y = {yi}i, threshold ε

Step 1: Simulate training pairs (θi,xi)
n
i=1, where each

xi = (xi1, . . . , xiB)
i.i.d.∼ p(·|θ) and perform distribution kernel ridge

regression:

g(x) =

n∑
i=1

αiK(m[x],mi)

with α = (K + λI)−1θ, Kij = K(mi,mj) and θ = [θ1, θ2, . . . , θn]>

Step 2: Run ABC with g(·) as the summary statistic.
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Regression from Conditional Distributions

Often, θ models a certain transition operator, e.g. time series, or a
conditional distribution of observations given certain auxiliary
information z (e.g. a spatial location). In that case, more natural to
regress from a conditional embedding operator [Fukumizu et al 2008; Song

et al 2013] CX|Z : HkZ → HkX of {Pθ(·|z)}z∈Z , such that

µX|Z=z = CX|ZkZ(·, z), CX|ZCZZ = CXZ

Now simply need a kernel on the space of linear operators from HkZ
to HkX , e.g. a linear kernel K(C,C ′) = Tr(C∗C ′) or any kernel that
depends on ||C − C ′||HS .
Easily implementable with multiple layers of random Fourier features.
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Experiments
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Toy example: Gaussian hierarchical model

1000 2000 3000 4000 5000
Number of particles used in ABC

0

20

40

60

80

100

120

M
S
E
 o

f 
p
a
ra

m
e
te

r 
o
f 

in
te

re
st

cond_100

cond_200

full_100

full_200

k2
sa-abc

Blow�y data, again.

θ ∼ N (2, 1),

z ∼ N (0, 2),

x|z, θ ∼ N (θz2, 1).
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Summary

K2-ABC

• A dissimilarity criterion for ABC based on MMD between empirical
distributions of observed and simulated data

• No �information loss� due to insu�cient statistics.
• Simple and e�ective when parameters model marginal distribution of
observations.

• Can be thought of as kernel smoothing (Nadaraya-Watson) on the
space of embeddings of empirical distributions.

DR-ABC
• When constructing a summary statistic optimal with respect to a
certain loss function, supervised learning from data to parameter space
can be used.

• Distribution regression, i.e. kernel ridge regression on the space of
embeddings, and conditional distribution regression natural in this
context.

• Flexible framework which allows application to time series,
group-structured or spatial observations, dynamic systems etc.
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