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Biological inspiration

Basic computational elements:
neurons.
Receives signals from other
neurons via dendrites.
Sends processed signals via
axons.
Axon-dendrite interactions at
synapses.
1010 − 1011 neurons.
1014 − 1015 synapses.
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Single Neuron Classifier
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activation w>x + b (linear in inputs x)
activation/transfer function s gives the output/activity (potentially
nonlinear in x)
common nonlinear activation function s(a) = 1

1+e−a : logistic regression
learn w and b via gradient descent
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Single Neuron Classifier

xi1
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Overfitting

iterations 30,80

Figures from D. MacKay, Information Theory, Inference and Learning Algorithms

prevent overfitting by:
early stopping: just halt the gradient descent
regularization: L2-regularization called weight decay in neural networks
literature.

http://www.inference.phy.cam.ac.uk/mackay/itila/book.html
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Overfitting

iterations 500,3000

Figures from D. MacKay, Information Theory, Inference and Learning Algorithms

prevent overfitting by:
early stopping: just halt the gradient descent
regularization: L2-regularization called weight decay in neural networks
literature.

http://www.inference.phy.cam.ac.uk/mackay/itila/book.html


Neural Networks Neural Networks

Overfitting

iterations 10000,40000

Figures from D. MacKay, Information Theory, Inference and Learning Algorithms

prevent overfitting by:
early stopping: just halt the gradient descent
regularization: L2-regularization called weight decay in neural networks
literature.

http://www.inference.phy.cam.ac.uk/mackay/itila/book.html
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Multilayer Networks

Data vectors xi ∈ Rp, binary labels yi ∈ {0, 1}.
inputs xi1, . . . , xip

output ŷi = P(Y = 1|X = xi)

hidden unit activities hi1, . . . , him

Compute hidden unit activities:

hil = s

bh
l +

p∑
j=1

wh
jlxij


Compute output probability:

ŷi = s

(
bo +

m∑
l=1

wo
khil

)
xi1 xi2 xi3 xi4

hi1 hi2 hi3 hi4 hi5 hi6 hi7

ŷi
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Multilayer Networks

xi1

xi2
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Training a Neural Network

Objective function: L2-regularized log-loss

J = −
n∑

i=1

yi log ŷi + (1− yi) log(1− ŷi) +
λ

2

∑
jl

(wh
jl)

2 +
∑

l

(wo
l )2


where

ŷi = s

(
bo +

m∑
l=1

wo
l hil

)
hil = s

bh
l +

p∑
j=1

wh
jlxij


Optimize parameters θ =

{
bh,wh, bo,wo

}
, where bh ∈ Rm, wh ∈ Rp×m,

bo ∈ R, wo ∈ Rm with gradient descent.

∂J
∂wo

l
= λwo

l +

n∑
i=1

∂J
∂ŷi

∂ŷi

∂wo
l

= λwo
l +

n∑
i=1

(ŷi − yi)hil,

∂J
∂wh

jl
= λwh

jl +
n∑

i=1

∂J
∂ŷi

∂ŷi

∂hil

∂hil

∂wh
jl

= λwh
jl +

n∑
i=1

(ŷi − yi)wo
l hil(1− hil)xij.

L2-regularization often called weight decay.
Multiple hidden layers: Backpropagation algorithm
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Multiple hidden layers

ŷi = hL+1

i

b b b b b b
hL
i1 hL

im

b b b b b bh1
i1 h1

im

b b b

xi1 = h0
i1

xip = h0
ip

h`+1
i = s

(
W`+1h`i

)
W`+1 =

(
w`jk
)

jk
: weight matrix at

the (`+ 1)-th layer, weight w`jk on
the edge between h`−1

ik and h`ij
s: entrywise (logistic) transfer
function

ŷi = s
(
WL+1s

(
WL (· · · s (W1xi

))))
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Backpropagation

ŷi = hL+1

i

b b b
hℓ+1

i1 hℓ+1

im

hℓ
ij

hℓ−1

ik

wℓ
jk

b b b

b b b

b b b

J = −
n∑

i=1

yi log hL+1
i +(1−yi) log(1−hL+1

i )

Gradients wrt h`ij computed by
recursive applications of chain
rule, and propagated through the
network backwards.

∂J
∂hL+1

i

= − yi

hL+1
i

+
1− yi

1− hL+1
i

∂J
∂h`ij

=

m∑
r=1

∂J
∂h`+1

ir

∂h`+1
ir

∂h`ij

∂J
∂w`jk

=

n∑
i=1

∂J
∂h`ij

∂h`ij
∂w`jk
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Neural Networks
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Neural network fit with a weight decay of 0.01

R package implementing neural networks with a single hidden layer: nnet.
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Neural Networks – Discussion

Nonlinear hidden units introduce modelling flexibility.
In contrast to user-introduced nonlinearities, features are global, and can
be learned to maximize predictive performance.
Neural networks with a single hidden layer and sufficiently many hidden
units can model arbitrarily complex functions.
Optimization problem is not convex, and objective function can have
many local optima, plateaus and ridges.
On large scale problems, often use stochastic gradient descent, along
with a whole host of techniques for optimization, regularization, and
initialization.
Recent developments, especially by Geoffrey Hinton, Yann LeCun,
Yoshua Bengio, Andrew Ng and others. See also
http://deeplearning.net/.

https://www.cs.toronto.edu/~hinton/
http://yann.lecun.com/
http://www.iro.umontreal.ca/~bengioy/yoshua_en/index.html
http://cs.stanford.edu/people/ang/
http://deeplearning.net/
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Dropout Training of Neural Networks

Neural network with single layer of hidden
units:

Hidden unit activations:

hik = s

bh
k +

p∑
j=1

Wh
jkxij


Output probability:

ŷi = s

(
bo +

m∑
k=1

Wo
k hik

)

Large, overfitted networks often have
co-adapted hidden units.
What each hidden unit learns may in fact
be useless, e.g. predicting the negation of
predictions from other units.
Can prevent co-adaptation by randomly
dropping out units from network.

xi1 xi2 xi3 xi4

hi1 hi2 hi3 hi4 hi5 hi6 hi7

ŷi

Hinton et al (2012).

http://arxiv.org/abs/1207.0580
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Dropout Training of Neural Networks

Model as an ensemble of networks:

p(yi = 1|xi, θ) =
∑

b⊂{1,...,m}

q|b|(1− q)m−|b|p(yi = 1|xi, θ, drop out units b)

xi1 xi2 xi3 xi4

hi1 hi2 hi3 hi4

ŷi

xi1 xi2 xi3 xi4

hi1 hi3 hi5 hi7

ŷi

xi1 xi2 xi3 xi4

hi1 hi4 hi6

ŷi

xi1 xi2 xi3 xi4

hi3 hi4 hi5

ŷi

Weight-sharing among all networks: each network uses a subset of the
parameters of the full network (corresponding to the retained units).
Training by stochastic gradient descent: at each iteration a network is
sampled from ensemble, and its subset of parameters are updated.
Biological inspiration: 1014 weights to be fitted in a lifetime of 109 seconds

Poisson spikes as a regularization mechanism which prevents
co-adaptation: Geoff Hinton on Brains, Sex and Machine Learning

https://www.youtube.com/watch?v=DleXA5ADG78
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Dropout Training of Neural Networks
Classification of phonemes in speech.

Figure from Hinton et al.
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Support Vector Machines



Support Vector Machines Support Vector Classification

Linearly separable points

Classify two clouds of points, where there exists a hyperplane which linearly
separates one cloud from the other without error.

yi = +1

yi = −1

Data given by {xi, yi}n
i=1, xi ∈ Rp, yi ∈ {−1,+1}



Support Vector Machines Support Vector Classification

Linearly separable points
Classify two clouds of points, where there exists a hyperplane which linearly
separates one cloud from the other without error.

yi = +1

yi = −1

Hyperplane equation w>x + b = 0. Linear discriminant given by

f (x) = sign(w>x + b)



Support Vector Machines Support Vector Classification

Linearly separable points

Classify two clouds of points, where there exists a hyperplane which linearly
separates one cloud from the other without error.

yi = +1

yi = −1

For a datapoint close to the decision boundary, a small change leads to a change in
classification. Can we make the classifier more robust?
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Linearly separable points

Classify two clouds of points, where there exists a hyperplane which linearly
separates one cloud from the other without error.

2/‖w‖

w

yi = +1

yi = −1

Smallest distance from each class to the separating hyperplane w>x + b is
called the margin.
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Maximum margin classifier, linearly separable case
This problem can be expressed as follows:

max
w,b

(margin) = max
w,b

(
1
‖w‖

)
subject to {

w>xi + b ≥ 1 i : yi = +1,
w>xi + b ≤ −1 i : yi = −1.

The resulting classifier is

f (x) = sign(w>x + b),

We can rewrite to obtain a quadratic program:

min
w,b

1
2
‖w‖2

subject to
yi(w>xi + b) ≥ 1.
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Maximum margin classifier: with errors allowed

Allow “errors”: points within the margin, or even on the wrong side of the
decision boudary. Ideally:

min
w,b

(
1
2
‖w‖2 + C

n∑
i=1

I[yi
(
w>xi + b

)
< 0]

)
,

where C controls the tradeoff between maximum margin and loss.
Replace with convex upper bound:

min
w,b

(
1
2
‖w‖2 + C

n∑
i=1

h
(
yi
(
w>xi + b

)))
.

with hinge loss,

h(α) = (1− α)+ =

{
1− α, 1− α > 0
0, otherwise.
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Hinge loss

Hinge loss:

h(α) = (1− α)+ =

{
1− α, 1− α > 0
0, otherwise.

α

I(α < 0)

(1 − α)+
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Support vector classification

Substituting in the hinge loss, we get

min
w,b

(
1
2
‖w‖2 + C

n∑
i=1

h
(
yi
(
w>xi + b

)))
.

To simplify, use substitution ξi = h
(
yi
(
w>xi + b

))
:

min
w,b,ξ

(
1
2
‖w‖2 + C

n∑
i=1

ξi

)
subject to

ξi ≥ 0 yi
(
w>xi + b

)
≥ 1− ξi
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Support vector classification

2/‖w‖

w

yi = +1

yi = −1

ξ/‖w‖
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Does strong duality hold?

1 Is the optimization problem convex wrt the variables w, b, ξ?

minimize f0(w, b, ξ) :=
1
2
‖w‖2 + C

n∑
i=1

ξi

subject to fi(w, b, ξ) := 1− ξi − yi
(
w>xi + b

)
≤ 0, i = 1, . . . , n

fi(w, b, ξ) := −ξi ≤ 0, i = n + 1, . . . , 2n

Each of f0, f1, . . . , fn are convex. No equality constraints.
2 Does Slater’s condition hold? Yes (trivially) since inequality constraints

affine.

Thus strong duality holds, the problem is differentiable, hence the KKT
conditions hold at the global optimum.
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Support vector classification: Lagrangian

The Lagrangian: L(w, b, ξ, α, λ) =

1
2
‖w‖2 + C

n∑
i=1

ξi +

n∑
i=1

αi
(
1− ξi − yi

(
w>xi + b

))
+

n∑
i=1

λi(−ξi)

with dual variable constraints

αi ≥ 0, λi ≥ 0.

Minimize wrt the primal variables w, b, and ξ.
Derivative wrt w:

∂L
∂w

= w−
n∑

i=1

αiyixi = 0 w =

n∑
i=1

αiyixi.

Derivative wrt b:
∂L
∂b

=
∑

i

yiαi = 0.
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Support vector classification: Lagrangian
Derivative wrt ξi:

∂L
∂ξi

= C − αi − λi = 0 αi = C − λi.

Since λi ≥ 0,
αi ≤ C.

Now use complementary slackness:
Non-margin SVs (margin errors): αi = C > 0:

1 We immediately have yi
(
w>xi + b

)
= 1− ξi.

2 Also, from condition αi = C − λi, we have λi = 0, so ξi ≥ 0
Margin SVs: 0 < αi < C:

1 We again have yi
(
w>xi + b

)
= 1− ξi.

2 This time, from αi = C − λi, we have λi > 0, hence ξi = 0.
Non-SVs (on the correct side of the margin): αi = 0:

1 From αi = C − λi, we have λi > 0, hence ξi = 0.
2 Thus, yi

(
w>xi + b

)
≥ 1
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The support vectors

We observe:
1 The solution is sparse: points which are neither on the margin nor

“margin errors” have αi = 0
2 The support vectors: only those points on the decision boundary, or

which are margin errors, contribute.
3 Influence of the non-margin SVs is bounded, since their weight cannot

exceed C.
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Support vector classification: dual function

Thus, our goal is to maximize the dual,

g(α, λ) =
1
2
‖w‖2 + C

n∑
i=1

ξi +

n∑
i=1

αi
(
1− yi

(
w>xi + b

)
− ξi

)
+

n∑
i=1

λi(−ξi)

=
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj + C
n∑

i=1

ξi −
n∑

i=1

n∑
j=1

αiαjyiyjx>i xj

−b
n∑

i=1

αiyi︸ ︷︷ ︸
0

+

n∑
i=1

αi −
n∑

i=1

αiξi −
n∑

i=1

(C − αi)ξi

=

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj.
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Support vector classification: dual problem

Maximize the dual,

g(α) =

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj,

subject to the constraints

0 ≤ αi ≤ C,
n∑

i=1

yiαi = 0

This is a quadratic program. From α, obtain the hyperplane with
w =

∑n
i=1 αiyixi

Offset b can be obtained from any of the margin SVs: 1 = yi
(
w>xi + b

)
.
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Support vector classification: kernel version

Taken from Schoelkopf and Smola (2002)
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Support vector classification: kernel version

Maximum margin classifier in RKHS: write the hinge loss formulation

min
w

(
1
2
‖w‖2

H + C
n∑

i=1

θ (yi 〈w, k(xi, ·)〉H)

)
for the RKHSH with kernel k(x, x′). Maximizing the margin equivalent to
minimizing ‖w‖2

H: for many RKHSs a smoothness constraint (e.g. Gaussian
kernel).

Optimization over an infinitely dimensional space!
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Support vector classification: kernel version

Maximum margin classifier in RKHS: write the hinge loss formulation

min
w

(
1
2
‖w‖2

H + C
n∑

i=1

θ (yi 〈w, k(xi, ·)〉H)

)
for the RKHSH with kernel k(x, x′). Maximizing the margin equivalent to
minimizing ‖w‖2

H: for many RKHSs a smoothness constraint (e.g. Gaussian
kernel).
Optimization over an infinitely dimensional space!
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Support vector classification: kernel version
Dual in the linear case:

g(α) =

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj,

subject to the constraints

0 ≤ αi ≤ C,
n∑

i=1

yiαi = 0

Dual in the kernel case:

max
α

 n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi, xj)

 ,

subject to the constraints

0 ≤ αi ≤ C,
n∑

i=1

yiαi = 0

Convex in α since K is positive definite.
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Support vector classification: kernel version
Dual in the linear case:

g(α) =

n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjx>i xj,

subject to the constraints

0 ≤ αi ≤ C,
n∑

i=1

yiαi = 0

Dual in the kernel case:

max
α

 n∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi, xj)

 ,

subject to the constraints

0 ≤ αi ≤ C,
n∑

i=1

yiαi = 0

Convex in α since K is positive definite.
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Primal and the representer theorem
After solving the dual we can obtain the decision function

w(·) =

n∑
i=1

yiαik(xi, ·).

which lies in a finite dimensional subspace of H , i.e., it is a (sparse) linear
combination of the features (representer theorem).
Thus, we can also derive the finite-dimensional primal by setting
w(·) =

∑n
i=1 βik(xi, ·).

min
β,ξ

(
1
2
β>Kβ + C

n∑
i=1

ξi

)
(1)

where the matrix K has i, jth entry Kij = k(xi, xj), subject to

ξi ≥ 0 yi

n∑
j=1

βjk(xi, xj) ≥ 1− ξi.

What is an advantage of the dual?
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Kernel Methods
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Non-linear methods

Linear methods (LDA, logistic regression,
naïve Bayes) are simple and effective
techniques to learn from data “to first order”.
To capture more intricate information from
data, non-linear methods are often needed:

Explicit non-linear transformations x 7→ ϕ(x).
Local methods like kNN.

Kernel methods: introduce non-linearities
through implicit non-linear transforms, often
local in nature.
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XOR example

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x
1

x
2

No linear classifier separates red from blue.
Linear separation after mapping to a higher dimensional feature space:

R2 3
(

x(1) x(2)
)>

= x 7→ ϕ(x) =
(

x(1) x(2) x(1)x(2)
)> ∈ R3
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Kernel SVM

Back to the dual C-SVM with explicit non-linear transformation x 7→ ϕ(x):

max
α

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjϕ(xi)
>ϕ(xj) subject to

{∑n
i=1 αiyi = 0

0 � α � C
Suppose p = 2, and we would like to introduce quadratic non-linearities,

ϕ(x) =

(
1,
√

2x(1),
√

2x(2),
√

2x(1)x(2),
(

x(1)
)2
,
(

x(2)
)2
)>

Then

ϕ(xi)
>ϕ(xj) = 1 + 2x(1)

i x(1)
j + 2x(2)

i x(2)
j + 2x(1)

i x(2)
i x(1)

j x(2)
j

+
(

x(1)
i

)2 (
x(1)

j

)2
+
(

x(2)
i

)2 (
x(2)

j

)2
= (1 + x>i xj)

2

Since only dot-products are needed in the objective function, non-linear
transform need not be computed explicitly - inner product between
features is often a simple function (kernel) of xi and xj:
k(xi, xj) = ϕ(xi)

>ϕ(xj) = (1 + x>i xj)
2

Generally, m-order interactions can be implemented simply by
k(xi, xj) = (1 + x>i xj)

m (polynomial kernel).
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Kernel SVM: Kernel trick

Kernel SVM with k(xi, xj). Non-linear transformation x 7→ ϕ(x) still present,
but implicit (coordinates of the vector ϕ(x) are never computed).

max
α

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjk(xi, xj) subject to

{∑n
i=1 αiyi = 0

0 � α � C

Prediction? f (x) = sign
(
w>ϕ(x) + b

)
, where w =

∑n
i=1 αiyiϕ(xi) and offset

b obtained from a margin support vector xj with αj ∈ (0,C).
No need to compute w either! Just need

w>ϕ(x) =
n∑

i=1

αiyiϕ(xi)
>ϕ(x) =

n∑
i=1

αiyik(xi, x).

Get offset from

b = yj − w>ϕ(xj) = yj −
n∑

i=1

αiyik(xi, xj)

for any margin support-vector xj (αj ∈ (0,C)).
Fitted a separating hyperplane in a high-dimensional feature space
without ever mapping explicitly to that space.
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Kernel trick in general

In a learning algorithm, if only inner products x>i xj are explicitly used,
rather than data items xi, xj directly, we can replace them with a kernel
function k(xi, xj) = 〈ϕ(xi), ϕ(xj)〉, where ϕ(x) could be nonlinear, high-
and potentially infinite-dimensional features of the original data.

Kernel ridge regression
Kernel PCA
Kernel K-means
Kernel FDA
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Gram matrix

The Gram matrix is the matrix of dot-products, Kij = ϕ(xi)
>ϕ(xj).

K =



−− ϕ(x1)> −−
...

−− ϕ(xi)
> −−

...
−− ϕ(xn)> −−

 ·
 | | |
ϕ(x1) · · · ϕ(xj) · · · ϕ(xn)
| | |



Since K = ΦΦ>, it is symmetric and positive semidefinite.
Recall: Gram matrix closely related to the distance matrix (MDS)
Assuming features are centred, the sample covariance of features is
Φ>Φ.
Many kernel methods, e.g. kernel PCA, make use of the duality between
the Gram and the sample covariance matrix.
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Kernel: an inner product between feature maps

Definition (kernel)

Let X be a non-empty set. A function k : X × X → R is a kernel if there
exists a Hilbert space and a map ϕ : X → H such that ∀x, x′ ∈ X ,

k(x, x′) := 〈ϕ(x), ϕ(x′)〉H .

Almost no conditions on X (eg, X itself need not have an inner product,
e.g., documents).
Think of kernel as similarity measure between features

What are some simple kernels? E.g., for text documents? For images?

A single kernel can correspond to multiple sets of underlying features.

ϕ1(x) = x and ϕ2(x) =
(

x/
√

2 x/
√

2
)>
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Positive semidefinite functions

If we are given a “measure of similarity” with two arguments, k(x, x′), how can
we determine if it is a valid kernel?

1 Find a feature map?
Sometimes not obvious (especially if the feature vector is infinite
dimensional)

2 A simpler direct property of the function: positive semidefiniteness.
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Positive semidefinite functions

Definition (Positive semidefinite functions)

A symmetric function κ : X × X → R is positive semidefinite if
∀n ≥ 1, ∀(a1, . . . an) ∈ Rn, ∀(x1, . . . , xn) ∈ X n,

n∑
i=1

n∑
j=1

aiajκ(xi, xj) ≥ 0.

Kernel k(x, y) := 〈ϕ(x), ϕ(y)〉H for a Hilbert space H is positive
semidefinite.

n∑
i=1

n∑
j=1

aiajk(xi, xj) =

n∑
i=1

n∑
j=1

〈aiϕ(xi), ajϕ(xj)〉H

=

∥∥∥∥∥
n∑

i=1

aiϕ(xi)

∥∥∥∥∥
2

H

≥ 0.
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Positive semidefinite functions are kernels

Moore-Aronszajn Theorem

Every positive semidefinite function is a kernel for some Hilbert space H.

H is usually thought of as a space of functions
(Reproducing kernel Hilbert space - RKHS)

Gaussian RBF kernel k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖2
)

has an infinite-

dimensional H with elements h(x) =
∑m

i=1 aik(xi, x)
(recall that w>ϕ(x) in SVM has exactly this form!).
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Reproducing kernel

Definition (Reproducing kernel)

Let H be a Hilbert space of functions f : X → R defined on a non-empty set
X . A function k : X ×X → R is called a reproducing kernel of H if it satisfies

∀x ∈ X , kx = k(·, x) ∈ H,
∀x ∈ X , ∀f ∈ H, 〈f , k(·, x)〉H = f (x) (the reproducing property).

In particular, for any x, y ∈ X , k(x, y) = 〈k (·, y) , k (·, x)〉H = 〈k (·, x) , k (·, y)〉H.
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Reproducing kernel

Definition (Reproducing kernel)

Let H be a Hilbert space of functions f : X → R defined on a non-empty set
X . A function k : X ×X → R is called a reproducing kernel of H if it satisfies

∀x ∈ X , kx = k(·, x) ∈ H,
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In particular, for any x, y ∈ X , k(x, y) = 〈k (·, y) , k (·, x)〉H = 〈k (·, x) , k (·, y)〉H.
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RKHS

Definition (Reproducing kernel Hilbert space)

A Hilbert space H of functions f : X → R, defined on a non-empty set X is
said to be a Reproducing Kernel Hilbert Space (RKHS) if evaluation
functionals δx : H → R, δxf = f (x) are continuous ∀x ∈ X .

Theorem (Norm convergence implies pointwise convergence)

If limn→∞ ‖fn − f‖H = 0, then limn→∞ fn(x) = f (x), ∀x ∈ X .

If two functions f , g ∈ H are close in the norm of H, then f (x) and g(x) are
close for all x ∈ X
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RKHS of a Gaussian RBF kernel
Gaussian kernel

k(x, y) = exp
(
−‖x− y‖2

2γ2

)
=

∞∑
j=1

(√
λjej(x)

)(√
λjej(x′)

)
λj ∝ bj b < 1

ej(x) ∝ exp(−(c− a)x2)Hj(x
√

2c),

a, b, c are functions of γ, and
Hj is the j-th order Hermite
polynomial.

‖f‖2
Hk

=

∞∑
j=1

a2
j

λj

(Figure from Rasmussen and Williams)
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Examples of kernels

Linear: k(x, x′) = x>x′.
Polynomial: k(x, x′) = (c + x>x′)m, c ∈ R, m ∈ N.

Gaussian RBF: k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖2
)

, γ > 0.

Laplacian: k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖
)

, γ > 0.

Rational quadratic: k(x, x′) =

(
1 +
‖x−x′‖2

2αγ2

)−α
, α, γ > 0.

Brownian covariance: k(x, x′) = 1
2 (‖x‖γ + ‖x‖γ − ‖x− x′‖γ), γ ∈ [0, 2].
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New kernels from old: sums, transformations

The great majority of useful kernels are built from simpler kernels.

Lemma (Sums of kernels are kernels)

Given α > 0 and k, k1 and k2 all kernels on X , then αk and k1 + k2 are kernels
on X .

To prove this, just check inner product definition. A difference of kernels may
not be a kernel (why?)

Lemma (Mappings between spaces)

Let X and X̃ be sets, and define a map s : X → X̃ . Define the kernel k on X̃ .
Then the kernel k(s(x), s(x′)) is a kernel on X .

Example: k(x, x′) = x2 (x′)2
.
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New kernels from old: products

Lemma (Products of kernels are kernels)

Given k1 on X1 and k2 on X2, then k1 × k2 is a kernel on X1 ×X2.

Proof.
Sketch for finite-dimensional spaces only. Assume H1 corresponding to k1 is
Rm, and H2 corresponding to k2 is Rn. Define:

k1 := u>v for u, v ∈ Rm (e.g.: kernel between two images)
k2 := p>q for p, q ∈ Rn (e.g.: kernel between two captions)

Is the following a kernel?

K [(u, p); (v, q)] = k1 × k2

(e.g. kernel between one image-caption pair and another)
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New kernels from old: products

Proof.
(continued)

k1k2 =
(
u>v

) (
q>p

)
= trace(u>vq>p)

= trace(pu>vq>)

= 〈A,B〉 ,

where A := pu>, B := qv> (features of image-caption pairs) Thus k1k2 is a
valid kernel, since inner product between A,B ∈ Rm×n is

〈A,B〉 = trace(AB>).
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Kernel methods at scale

Expressivity of kernel methods (rich, often infinite-dimensional hypothesis
classes) comes with a cost that scales at least quadratically in the
number of observations (due to needing to compute, store and often
invert the Gram matrix).
Problematic when we have a lot of observations (and this is exactly when
we want to use a rich expressive model!)
Scaling up kernel methods is a very active research area (Rahimi & Recht
2007; Le, Sarlos, Smola, 2013; Wilson et al, 2014; Dai et al, 2014;
Sriperumbudur, Szabo, 2015).
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Random Fourier features
Bochner’s representation: any positive definite translation-invariant kernel
on Rp can be written as

k(x, y) =

∫
Rp

dΓ(ω) exp
(

iω>(x− y)
)

= 2
∫
Rp

dΓ(ω)

∫ 2π

0
db cos

(
ω>x + b

)
cos
(
ω>y + b

)
for some positive measure (w.l.o.g. a probability distribution) Γ.

Idea: for a given kernel k, compute its inverse Fourier transform and
sample m frequencies ωi ∼ Γ, bi ∼ Unif[0, 2π] and use a Monte Carlo
estimator of the kernel function:

k(x, y) =
2
m

m∑
i=1

cos
(
ω>i x + bi

)
cos
(
ω>i y + bi

)
= 〈φω,b(x), φω,b(y)〉,

with an explicit set of features
x 7→

[√
2
m cos

(
ω>

1 x + b1
)
, . . . ,

√
2
m cos

(
ω>

m x + bm
)]
∈ Rm, allowing running

algorithms in the primal and reducing quadratic cost in n to quadratic cost
in m. (Rahimi & Recht 2007), (Le, Sarlos, Smola, 2013)

http://www.eecs.berkeley.edu/~brecht/papers/07.rah.rec.nips.pdf
http://cs.stanford.edu/~quocle/LeSarlosSmola_ICML13.pdf
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Inducing variables

Directly approximate the n× n Gram matrix KXX of a set of inputs {xi}n
i=1

with
K̂XX = KXZK−1

ZZ KZX

where KZZ is m× m on “inducing” inputs {zi}m
i=1.

Corresponds to explicit feature representation x 7→ KxZK−1/2
ZZ .

Surrogate kernel k̂(x, x′) = 〈k|(·, x), k|(·, x′)〉, where k|(·, x) is a projection
of k(·, x) to span {k(·, z1), . . . , k(·, zm)}
Often used in regression with Gaussian processes: with the use of
Sherman-Morrison-Woodbury identity, reduces O(n3) cost to O(nm2).
(Quiñonero-Candela and Rasmussen, 2005), (Snelson and Ghahramani, 2006)

http://www.jmlr.org/papers/v6/quinonero-candela05a.html
http://www.gatsby.ucl.ac.uk/~snelson/SPGP_up.pdf
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Kernel Methods – Discussion

Kernel methods allows for very flexible and powerful machine learning
models.
Nonparametric method: parameter space (e.g., of parameter w in SVM)
can be infinite-dimensional
Kernels can be defined over more complex structures than vectors, e.g.
graphs, strings, images, probability distributions.
Computational cost at least quadratic in the number of observations,
often O(n3) computation and O(n2) memory (various approximations with
good scaling up properties)
Further reading:

Bishop, Pattern Recognition and Machine Learning, Chapter 6.
Schölkopf and Smola, Learning with Kernels, 2001.
Rasmussen and Williams, Gaussian Processes for Machine Learning, 2006.

http://agbs.kyb.tuebingen.mpg.de/lwk/
http://www.gaussianprocess.org/gpml/
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